CERN Accelerating science

002637262 001__ 2637262
002637262 005__ 20230713053726.0
002637262 0247_ $$2DOI$$9submitter$$a10.1038/s41586-018-0485-4
002637262 0248_ $$aoai:cds.cern.ch:2637262$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002637262 037__ $$9arXiv$$aarXiv:1808.09759$$cphysics.acc-ph
002637262 035__ $$9arXiv$$aoai:arXiv.org:1808.09759
002637262 035__ $$9Inspire$$aoai:inspirehep.net:1691925$$d2023-07-11T11:38:35Z$$h2023-07-13T02:15:40Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002637262 035__ $$9Inspire$$a1691925
002637262 041__ $$aeng
002637262 100__ $$aAdli, E.$$tGRID:grid.5510.1$$uOslo U.$$vUniversity of Oslo, Oslo, Norway.
002637262 245__ $$9submitter$$aAcceleration of electrons in the plasma wakefield of a proton bunch
002637262 246__ $$9crossref$$aAcceleration of electrons in the plasma wakefield of a proton bunch
002637262 260__ $$c2018-08-29
002637262 269__ $$c2018-08-29
002637262 300__ $$a5 p
002637262 500__ $$9arXiv$$a7 pages, 4 figures
002637262 520__ $$9submitter$$aHigh-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1–5, in which the electrons in a plasma are excited, leading to strong electric fields, is one such promising novel acceleration technique. Pioneering experiments have shown that an intense laser pulse6–9 or electron bunch10,11 traversing a plasma drives electric fields of tens of gigavolts per metre and above. These values are well beyond those achieved in conventional radio-frequency accelerators, which are limited to about 0.1 gigavolt per metre. A limitation of laser pulses and electron bunches is their low stored energy, which motivates the use of multiple stages to reach very high energies5,12. The use of proton bunches is compelling, as they have the potential to drive wakefields and accelerate electrons to high energy in a single accelerating stage13. The long proton bunches currently available can be used, as they undergo a process called self-modulation14–16, a particle–plasma interaction which longitudinally splits the bunch into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17–19 uses intense bunches of protons, each of energy 400 gigaelectronvolts (GeV), with a total bunch energy of 19 kilojoules, to drive a wakefield in a 10-metre-long plasma. Bunches of electrons are injected into the wakefield formed by the proton microbunches. Here we present measurements of electrons accelerated up to 2 GeV at the AWAKE experiment. This constitutes the first demonstration of proton-driven plasma wakefield acceleration. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that the results shown here are a significant step towards the development of future high-energy particle accelerators21,22.
002637262 520__ $$9Springer$$aHigh-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration 1$^{–}$5 , in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse 6$^{–}$9 or electron bunch 10$^{,}$11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies 5$^{,}$12 . The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage 13 . Long, thin proton bunches can be used because they undergo a process called self-modulation 14$^{–}$16 , a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN 17$^{–}$19 uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage 20 means that our results are an important step towards the development of future high-energy particle accelerators 21$^{,}$22 .
002637262 520__ $$9arXiv$$aHigh energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. In order to increase the energy or reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields, is one such promising novel acceleration technique. Pioneering experiments have shown that an intense laser pulse or electron bunch traversing a plasma, drives electric fields of 10s GV/m and above. These values are well beyond those achieved in conventional RF accelerators which are limited to ~0.1 GV/m. A limitation of laser pulses and electron bunches is their low stored energy, which motivates the use of multiple stages to reach very high energies. The use of proton bunches is compelling, as they have the potential to drive wakefields and accelerate electrons to high energy in a single accelerating stage. The long proton bunches currently available can be used, as they undergo self-modulation, a particle-plasma interaction which longitudinally splits the bunch into a series of high density microbunches, which then act resonantly to create large wakefields. The AWAKE experiment at CERN uses intense bunches of protons, each of energy 400 GeV, with a total bunch energy of 19 kJ, to drive a wakefield in a 10 m long plasma. Bunches of electrons are injected into the wakefield formed by the proton microbunches. This paper presents measurements of electrons accelerated up to 2 GeV at AWAKE. This constitutes the first demonstration of proton-driven plasma wakefield acceleration. The potential for this scheme to produce very high energy electron bunches in a single accelerating stage means that the results shown here are a significant step towards the development of future high energy particle accelerators.
002637262 540__ $$3publication$$aCC-BY-4.0$$uhttps://creativecommons.org/licenses/by/4.0/
002637262 542__ $$3publication$$f© 2018 Springer
002637262 65017 $$2arXiv$$aphysics.acc-ph
002637262 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002637262 690C_ $$aCERN
002637262 690C_ $$aARTICLE
002637262 693__ $$aCERN SPS$$eAWAKE
002637262 700__ $$aAhuja, A.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aApsimon, O.$$tGRID:grid.450757.4$$tGRID:grid.5379.8$$uCockcroft Inst. Accel. Sci. Tech.$$uManchester U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Manchester, Manchester, UK.
002637262 700__ $$aApsimon, R.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aBachmann, A.-M.$$tGRID:grid.6936.a$$tGRID:grid.435824.c$$tGRID:grid.9132.9$$uMunich, Tech. U.$$uMunich, Max Planck Inst.$$uCERN$$vTechnical University Munich, Munich, Germany.$$vMax Planck Institute for Physics, Munich, Germany.$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBarrientos, D.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBatsch, F.$$tGRID:grid.6936.a$$tGRID:grid.435824.c$$tGRID:grid.9132.9$$uMunich, Tech. U.$$uMunich, Max Planck Inst.$$uCERN$$vTechnical University Munich, Munich, Germany.$$vMax Planck Institute for Physics, Munich, Germany.$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBauche, J.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBerglyd Olsen, V.K.$$tGRID:grid.5510.1$$uOslo U.$$vUniversity of Oslo, Oslo, Norway.
002637262 700__ $$aBernardini, M.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBohl, T.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBracco, C.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aBraunmüller, F.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aBurt, G.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aButtenschön, B.$$tGRID:grid.475228.e$$uGreifswald, Max Planck Inst.$$vMax Planck Institute for Plasma Physics, Greifswald, Germany.
002637262 700__ $$aCaldwell, A.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aCascella, M.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aChappell, J.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aChevallay, E.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aChung, M.$$tGRID:grid.42687.3f$$uUNIST, Ulsan$$vUNIST, Ulsan,Republic of Korea.
002637262 700__ $$aCooke, D.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aDamerau, H.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aDeacon, L.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aDeubner, L.H.$$tGRID:grid.10253.35$$uPhilipps U. Marburg$$vPhilipps-Universität Marburg, Marburg, Germany.
002637262 700__ $$aDexter, A.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aDoebert, S.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aFarmer, J.$$tGRID:grid.411327.2$$uHeinrich Heine U., Dusseldorf$$vHeinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
002637262 700__ $$aFedosseev, V.N.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aFiorito, R.$$tGRID:grid.10025.36$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLiverpool U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Liverpool, Liverpool, UK.
002637262 700__ $$aFonseca, R.A.$$tGRID:grid.45349.3f$$uISCTE, Lisbon$$vISCTE - Instituto Universitéario de Lisboa, Lisboa, Portugal.
002637262 700__ $$aFriebel, F.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGarolfi, L.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGessner, S.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGorgisyan, I.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGorn, A.A.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aGranados, E.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGrulke, O.$$tGRID:grid.5170.3$$tGRID:grid.475228.e$$uDenmark, Tech. U.$$uGreifswald, Max Planck Inst.$$vTechnical University of Denmark, Lyngby, Denmark.$$vMax Planck Institute for Plasma Physics, Greifswald, Germany.
002637262 700__ $$aGschwendtner, E.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aHansen, J.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aHelm, A.$$tGRID:grid.9983.b$$uLisbon, CFP$$vGoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
002637262 700__ $$aHenderson, J.R.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aHüther, M.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aIbison, M.$$tGRID:grid.10025.36$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLiverpool U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Liverpool, Liverpool, UK.
002637262 700__ $$aJensen, L.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aJolly, S.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aKeeble, F.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aKim, S.-Y.$$tGRID:grid.42687.3f$$uUNIST, Ulsan$$vUNIST, Ulsan,Republic of Korea.
002637262 700__ $$aKraus, F.$$tGRID:grid.10253.35$$uPhilipps U. Marburg$$vPhilipps-Universität Marburg, Marburg, Germany.
002637262 700__ $$aLi, Y.$$tGRID:grid.450757.4$$tGRID:grid.5379.8$$uCockcroft Inst. Accel. Sci. Tech.$$uManchester U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Manchester, Manchester, UK.
002637262 700__ $$aLiu, S.$$tGRID:grid.232474.4$$uTRIUMF$$vTRIUMF, Vancouver, Canada.
002637262 700__ $$aLopes, N.$$tGRID:grid.9983.b$$uLisbon, CFP$$vGoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
002637262 700__ $$aLotov, K.V.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aMaricalva Brun, L.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aMartyanov, M.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aMazzoni, S.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aGodoy, D. Medina$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aMinakov, V.A.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aMitchell, J.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aMolendijk, J.C.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aMoody, J.T.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aMoreira, M.$$tGRID:grid.9983.b$$tGRID:grid.9132.9$$uCERN$$uLisbon, CFP$$vCERN, Geneva, Switzerland.$$vGoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
002637262 700__ $$aMuggli, P.$$tGRID:grid.435824.c$$tGRID:grid.9132.9$$uCERN$$uMunich, Max Planck Inst.$$vCERN, Geneva, Switzerland.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aÖz, E.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aPasquino, C.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aPardons, A.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aPeña Asmus, F.$$tGRID:grid.6936.a$$tGRID:grid.435824.c$$uMunich, Tech. U.$$uMunich, Max Planck Inst.$$vTechnical University Munich, Munich, Germany.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aPepitone, K.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aPerera, A.$$tGRID:grid.10025.36$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLiverpool U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Liverpool, Liverpool, UK.
002637262 700__ $$aPetrenko, A.$$tGRID:grid.418495.5$$tGRID:grid.9132.9$$uNovosibirsk, IYF$$uCERN$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.$$vCERN, Geneva, Switzerland.
002637262 700__ $$aPitman, S.$$tGRID:grid.9835.7$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$vCockcroft Institute, Daresbury, UK.$$vLancaster University, Lancaster, UK.
002637262 700__ $$aPukhov, A.$$tGRID:grid.411327.2$$uHeinrich Heine U., Dusseldorf$$vHeinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
002637262 700__ $$aRey, S.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aRieger, K.$$tGRID:grid.435824.c$$uMunich, Max Planck Inst.$$vMax Planck Institute for Physics, Munich, Germany.
002637262 700__ $$aRuhl, H.$$tGRID:grid.5252.0$$uUnlisted, DE$$vLudwig-MaximiliansUniversität,Munich, Germany.
002637262 700__ $$aSchmidt, J.S.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aShalimova, I.A.$$tGRID:grid.465353.2$$tGRID:grid.4605.7$$uInst. Comp. Math Geophys.$$uNovosibirsk State U.$$vInstitute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia.$$vNovosibirsk State University, Novosibirsk, Russia.
002637262 700__ $$aSherwood, P.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aSilva, L.O.$$tGRID:grid.9983.b$$uLisbon, CFP$$vGoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
002637262 700__ $$aSoby, L.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aSosedkin, A.P.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aSperoni, R.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aSpitsyn, R.I.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aTuev, P.V.$$tGRID:grid.4605.7$$tGRID:grid.418495.5$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University, Novosibirsk, Russia.$$vBudker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.
002637262 700__ $$aTurner, M.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aVelotti, F.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aVerra, L.$$tGRID:grid.4708.b$$tGRID:grid.9132.9$$uMilan U.$$uCERN$$vUniversity of Milan, Milan, Italy.$$vCERN, Geneva, Switzerland.
002637262 700__ $$aVerzilov, V.A.$$tGRID:grid.232474.4$$uTRIUMF$$vTRIUMF, Vancouver, Canada.
002637262 700__ $$aVieira, J.$$tGRID:grid.9983.b$$uLisbon, CFP$$vGoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
002637262 700__ $$aWelsch, C.P.$$tGRID:grid.10025.36$$tGRID:grid.450757.4$$uCockcroft Inst. Accel. Sci. Tech.$$uLiverpool U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Liverpool, Liverpool, UK.
002637262 700__ $$aWilliamson, B.$$tGRID:grid.450757.4$$tGRID:grid.5379.8$$uCockcroft Inst. Accel. Sci. Tech.$$uManchester U.$$vCockcroft Institute - Daresbury - UK$$vManchester U. - Manchester - UK
002637262 700__ $$aWing, M.$$tGRID:grid.83440.3b$$uUniversity Coll. London$$vUCL, London, UK.
002637262 700__ $$aWoolley, B.$$tGRID:grid.9132.9$$uCERN$$vCERN, Geneva, Switzerland.
002637262 700__ $$aXia, G.$$tGRID:grid.450757.4$$tGRID:grid.5379.8$$uCockcroft Inst. Accel. Sci. Tech.$$uManchester U.$$vCockcroft Institute, Daresbury, UK.$$vUniversity of Manchester, Manchester, UK.
002637262 710__ $$gAWAKE Collaboration
002637262 773__ $$pNature$$y2018
002637262 8564_ $$uhttps://www.interactions.org/press-release/awake-achieves-first-ever-acceleration-electrons-proton$$yInteractions.org article
002637262 8564_ $$81430226$$s6457065$$uhttp://cds.cern.ch/record/2637262/files/arXiv:1808.09759.pdf
002637262 8564_ $$81430221$$s1214645$$uhttp://cds.cern.ch/record/2637262/files/images_fig_1.png$$y00000 The layout of the AWAKE experiment. The proton bunch and laser pulse propagate from left to right across the image, through a 10\,m column of rubidium vapour. This laser pulse (green, bottom images) singly ionises the rubidium (Rb) to form a plasma (yellow) which then interacts with the proton bunch (red, bottom left image). This interaction modulates the long proton bunch into a series of microbunches (bottom right image) which drive a strong wakefield in the plasma. The self-modulation of the proton bunch is measured in imaging stations 1 and 2 and the optical and coherent transition radiation (OTR, CTR) diagnostics. The rubidium is supplied by two flasks (pink) at each end of the vapour source. The density is controlled by changing the temperature in these flasks and a gradient may be introduced by changing their relative temperature. Electrons (blue), generated using a radio frequency (RF) source, propagate a short distance behind the laser pulse and are injected into the wakefield by crossing at an angle. Some of these electrons are captured in the wakefield and accelerated to high energies. The accelerated electron bunches are focused and separated from the protons by the spectrometer's quadrupoles and dipole magnet (grey, right). These electrons interact with a scintillating screen (top right image), allowing them to be imaged and their energy inferred from their position.
002637262 8564_ $$81430222$$s57146$$uhttp://cds.cern.ch/record/2637262/files/images_fig_2.png$$y00001 Signal of accelerated electrons. An image of the scintillator (horizontal distance, $x$, and vertical distance, $y$) with an electron signal clearly visible (top) and a vertical integration over the observed charge in the central region of the image (bottom), with background subtraction and geometric corrections applied, is shown. The intensity of the image is given in charge, $Q$, per unit area, calculated using the central value from the calibration of the scintillator. A $1\,\sigma$ uncertainty band from the background subtraction is shown in orange around zero on the bottom plot. Both the image and the projection are binned in space, as shown on the top axis, but the central value from the position--energy conversion is indicated at various points on the bottom axis. The electron signal is clearly visible above the noise, with a peak intensity at energy, $E \sim 800$\,MeV.
002637262 8564_ $$81430223$$s110890$$uhttp://cds.cern.ch/record/2637262/files/images_fig_3.png$$y00002 Background-subtracted projections of consecutive electron-injection events. Each projection is a vertical integration over the central region of a background-subtracted spectrometer camera image. Brighter colours indicate regions of high charge density, $dQ/dx$, corresponding to accelerated electrons. The spectrometer's quadrupoles were varied to focus at energies of 460--620\,MeV over the duration of the dataset. No other parameters were deliberately varied. The consistent peak around energy $E \sim 600$\,MeV demonstrates the stability and reliability of the electron acceleration.
002637262 8564_ $$81430224$$s1999$$uhttp://cds.cern.ch/record/2637262/files/images_fig_4.png$$y00003 Measurement of the highest peak energies, $\mu_E$, achieved at different plasma densities, $n_{pe}$, with and without plasma density gradients. The gradients chosen are those which are observed to maximise the energy gain. Acceleration to $2.0\pm0.1$\,GeV is achieved with a plasma density of \mbox{$6.6\times10^{14}\,\mathrm{cm}^{-3}$} with a $+2.2\%\pm0.1\%$ plasma density difference over 10\,m.
002637262 8564_ $$81430225$$s2024793$$uhttp://cds.cern.ch/record/2637262/files/s41586-018-0485-4_reference.pdf$$yFulltext
002637262 8564_ $$81448186$$s2011986$$uhttp://cds.cern.ch/record/2637262/files/10.1038_s41586-018-0485-4.pdf$$yFulltext
002637262 960__ $$a13
002637262 980__ $$aARTICLE