002635129 001__ 2635129
002635129 003__ SzGeCERN
002635129 005__ 20180822202555.0
002635129 0247_ $$2DOI$$a10.1016/j.nima.2006.07.005
002635129 0248_ $$aoai:inspirehep.net:734569$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002635129 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:734569$$d2018-08-21T12:21:24Z$$h2018-08-22T04:00:11Z$$mmarcxml
002635129 035__ $$9Inspire$$a734569
002635129 041__ $$aeng
002635129 084__ $$2PACS$$a29.40.Gx
002635129 084__ $$2PACS$$a29.40
002635129 100__ $$aPellegrini, [email protected]$$uBarcelona, Inst. Microelectron.
002635129 245__ $$aTechnology development of p-type microstrip detectors with radiation hard p-spray isolation
002635129 260__ $$c2006
002635129 269__ $$c2006
002635129 300__ $$a6 p
002635129 520__ $$9Elsevier$$aA technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was $V_{\rm{FD}} = 41 \pm 3$ V, while the leakage current density for the microstrip devices at $V_{\rm{FD}} + 20$ V was 400 nA/cm$^2$.
002635129 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002635129 6531_ $$9author$$aMicrostrip detectors
002635129 6531_ $$9author$$aRadiation hardness
002635129 6531_ $$9author$$ap-spray isolation
002635129 6531_ $$9author$$aSuper-LHC
002635129 6531_ $$9author$$a29.40
002635129 690C_ $$aCERN
002635129 693__ $$aNot applicable$$eRD50
002635129 700__ $$aFleta, C$$uBarcelona, Inst. Microelectron.
002635129 700__ $$aCampabadal, F$$uBarcelona, Inst. Microelectron.
002635129 700__ $$aDíez, S$$uBarcelona, Inst. Microelectron.
002635129 700__ $$aLozano, M$$uBarcelona, Inst. Microelectron.
002635129 700__ $$aRafí, J M$$uBarcelona, Inst. Microelectron.
002635129 700__ $$aUllán, M$$uBarcelona, Inst. Microelectron.
002635129 773__ $$c360-365$$n2$$pNucl. Instrum. Methods Phys. Res., A$$v566$$y2006
002635129 960__ $$a13
002635129 980__ $$aARTICLE
002635129 999C6 $$a0-0-1-1-0-0-0$$t2018-08-10 15:21:12$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44
002635129 999C5 $$9CURATOR$$hG. Darbo, et al.$$mOutline of R&D; activities for Atlas at an upgraded LHC, CERN document, January$$o1$$rCOM-GEN-2005-002$$y2005
002635129 999C5 $$9CURATOR$$hT.S. Virdee$$m401$$o2$$sPhys.Rept.,403-404,401$$y2004
002635129 999C5 $$0688067$$hM. Bruzzi, et al.$$o3$$sNucl.Instrum.Meth.,A541,189$$y2005
002635129 999C5 $$0688078$$hH.F.-W. Sadrozinski, A. Seiden$$o4$$sNucl.Instrum.Meth.,A541,434$$y2005
002635129 999C5 $$0511060$$hM.S. Alam, et al.$$o5$$sNucl.Instrum.Meth.,A456,217$$y2001
002635129 999C5 $$9CURATOR$$hM. Lozano, et al.$$o6$$rIEEE Trans.Nucl.Sci.,52,1468$$y2005
002635129 999C5 $$0669924$$hG. Casse, et al.$$o7$$sNucl.Instrum.Meth.,A535,362$$y2004
002635129 999C5 $$0602746$$hI. Gorelov, et al.$$o8$$sNucl.Instrum.Meth.,A489,202$$y2002
002635129 999C5 $$hC. Fleta, et al.$$mp-spray implant optimization for the fabrication of nin-p microstrip detectors, Nucl. Instr. and Meth. A, submitted for publication$$o9$$y2006
002635129 999C5 $$0540422$$hG. Lindstro¨m, et al.$$o10$$sNucl.Instrum.Meth.,A465,60$$y2001