Soft physics at ATLAS and CMS

Oleg Kuprash

On behalf of the ATLAS and CMS Collaborations

Large Hadron Collider Physics, LHCP2018
4-9 June 2018, Bologna, Italy

Soft physics

Soft domain of the strong interaction

- Soft interactions: interactions with low transverse momentum exchange where perturbative approach is not applicable
- Soft phenomena approached with phenomenological methods
- Total and inelastic pp cross sections dominated by soft interactions

$$\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}} = \sigma_{\text{el}} + \sigma_{\text{Diffractive}} + \sigma_{\text{nonDiffractive}}$$
 @7 TeV:

- Area includes:

 - Total & inelastic pp cross sections
 Diffraction (indicated by rapidity gaps)
 - Underlying event

 - ➤ Hadronization

 Source of crucial information for Monte Carlo tunes needed to properly simulate ~all processes studied at LHC

 $\sigma_{\rm inel}$: ~75% of $\sigma_{\rm tot}$

CMS: Inelastic pp cross section

- $\sqrt{s}=13$ TeV, using 2015 low-pileup LHC runs with average pileup between 0.05 and 0.54
- Trigger on filled bunch crossings (empty/single bunch triggers to collect background events)
- Offline selection: energy deposits above 5 GeV in a forward calorimeter, $|\eta| > 3.0$
 - ➤ Noise-subtracted fraction of events above 98.5%
 - > Central exclusive production negligible
 - > Two data sets with different phase space coverage and detector configuration

	Forward detector	Pseudorapidity	M _x , M _y	$\xi = M^2/s$	Magnetic field	Lumi
1	Forward hadron (HF)	3.0< η <5.2	M _{x,y} >13 GeV	$\xi > 10^{-6}$	B = 3.8 T	41 μb ⁻¹
2	HF and CASTOR	3.0< η <5.2 and -6.6<η<-5.2	M _x >4.1 GeV, M _Y >13 GeV	$\xi_{\rm X} > 10^{-7},$ $\xi_{\rm Y} > 10^{-6}$	B = 0 T	28 μb ⁻¹

 Uncertainty dominated by systematics of the integrated luminosity measurement

	$\sigma(\xi > 10^{-6})$	$\sigma(\xi_{\rm X} > 10^{-7} {\rm or} \xi_{\rm Y} > 10^{-6})$
	(mb)	(mb)
Model dependence	0.68	0.39
HF energy scale uncertainty	0.35	0.14
CASTOR energy scale uncertainty	_	0.04
Run-to-run variation	0.15	0.14
Total	0.78	0.45
Integrated luminosity uncertainty	1.55	1.58

CMS: Inelastic pp cross section

- Fiducial cross sections compared between two phase space regions
- Region $10^{-7} < \xi < 10^{-6}$ (4.1 < M_x < 13 GeV) probed for the first time
- Compatible results for ATLAS and CMS, predictions overshoot the data

Relative cross section increase in %				
Data	1.64 ± 0.53			
Epos LHC	1.76			
QGSJETII-04	2.36			
PYTHIA 6 Z2* (SS)	1.74			
PYTHIA 8 CUETP8M1 (SS)	1.52			
PYTHIA 8 Monash (DL)	3.83			
PYTHIA 8 MBR	2.32			

CMS: dijets with a large rapidity gap

- Data collected in 2010 at $\sqrt{s}=7$ TeV, with low pileup $<\mu>=1.16$... 1.6, L=8 pb⁻¹
- Anti- k_T jets with $p_T^{\rm jet} > 40$ GeV, $1.5 < |\eta^{\rm jet}| < 4.7$, two leading- p_T jets on opposite sides of the detector: $\eta^{\rm jet1}\eta^{\rm jet2} < 0$
- Charged particle multiplicity $N_{\rm tracks}$ is studied for $p_{\rm T}^{\rm track}>0.2$ GeV in the range $|\eta^{\rm track}|<1.0$

- Mechanisms to generate gap topology (N_{tracks}=0 or 1 or 2):
 - ➤ Color singlet exchange (CSE) between colliding partons (gluon ladder); modeled with HERWIG
 - Tracks may be produced by radiation/interaction of spectator partons defines gap survival probability
 - Fluctuation in the radiation and hadronization in inclusive dijet production (excluding CSE); modeled with Pythia6

8 pb⁻¹ (7 TeV)

PYTHIA 6 (normalized for $N_{tracks} > 3$)

CMS: dijets with a large rapidity gap

PYTHIA6 (no CSE) normalized to data in the region $N_{tracks}>3$

- **HERWIG6** (includes CSE) normalized to data in the region N_{tracks}=0
- HERWIG6 agrees with the data N_{tracks} distribution
- The relative amount of CSEinitiated events is quantified:

$$f_{\text{CSE}} = \frac{N_{\text{events}}^{\text{F}} - N_{\text{non-CSE}}^{\text{F}}}{N_{\text{events}}}$$

CMS

= 100-200 GeV

 $N_{
m events}^{
m F}$ - number of events in the first multiplicity bins $(N_{tracks} < 2 \text{ or } N_{tracks} < 3)$

 $N_{\text{non-CSE}}^{\text{F}}$ - number of events originated from non-CSE mechanism (estimated with data-driven methods)

 $N_{\rm events}$ - total number of events

Uncertainties	of f _{CSE}	in	%
---------------	---------------------	----	---

	CSE		
Source	40–60 GeV	60–100 GeV	100-200 GeV
Jet energy scale	±5.1	±6.7	±2.1
Tracks quality	± 0.3	± 1.3	± 0.4
Background subtraction	± 14.1	± 0.9	±1.9
Total systematic	± 15.0	± 6.9	± 2.8
Statistical	±23	±22	±15

CMS: dijets with a large rapidity gap

- Extracted f_{CSE} as a function of secondleading jet p_T was compared to D0 and CDF results
 - Decrease of f_{CSE} with the increasing center-of-mass energy is observed
- f_{CSE} also measured for different rapidity differences between two leading jets
 - \triangleright Increases with increasing $<\Delta\eta_{ii}>$

$p_{\rm T}^{\rm jet2}$ (GeV)	40–60			60–100		100–200	
$\Delta \eta_{\rm jj}$ range	$\overline{\langle \Delta \eta_{ m jj} angle}$	f _{CSE} (%)	$\overline{\langle \Delta \eta_{ m jj} angle}$	f _{CSE} (%)	$\overline{\langle \Delta \eta_{ m jj} angle}$	f _{CSE} (%)	
3–4	3.63	$0.25 \pm 0.20 \pm 0.04$	3.62	$0.47 \pm 0.19 \pm 0.05$	3.61	$0.78 \pm 0.21 \pm 0.06$	
4–5	4.46	$0.41 \pm 0.16 \pm 0.14$	4.45	$0.47 \pm 0.16 \pm 0.08$	4.41	$0.99 \pm 0.23 \pm 0.06$	
5–7	5.60	$1.24 \pm 0.32 \pm 0.10$	5.49	$0.91 \pm 0.32 \pm 0.21$	5.37	$1.95 \pm 0.69 \pm 0.44$	

ATLAS: Diffractive Processes in Forward Photon Spectra

- 13 TeV, 0.191 nb⁻¹, 2015 data, $\langle \mu \rangle = 0.01$
- First joint analysis of ATLAS and LHCf
 - ➤ LHCf: designed for precision measurement of neutral particles; covers 0 polar angle limit

- ATLAS inner tracker used to reject events with tracks ($p_{\rm T}^{\rm track} > 0.1~{\rm GeV}$) within $|\eta| < 2.5$ to suppress non-diffractive events; purity of diffractive events > 99%
- LHCf measured photon spectra in two regions: $8.81 < \eta < 8.99$ and $\eta > 10.94$
 - Strictly one photon with E > 200 GeV required
- MC models reproduce main features of N_{track} distribution, but far from agreement

ATLAS: Diffractive Processes in Forward Photon Spectra

- Photon spectra unfolded to particle level and compared to various MC models
- Presented inclusively and for diffractive events with N_{charged particles}=0
- EPOS gives a better overall description compared to other models

Roman Po Flange

ATLAS: Proton tagging with AFP

- > 2+2 Roman Pots with 4 silicon tracking planes + ToF detectors
- > ±205 and ±217 m from IP1, up to 3 mm from the LHC beam
- Negative-z arm installed in 2016, both arms completed in 2017
- Protons transported from IP by the LHC optic system
- After loosing a fraction ξ of the initial energy in a diffractive scattering, the proton is deflected differently by LHC magnets -> spatial distribution of proton hits in the AFP tracker plane
- Estimated sensitivity: $0.02 < \xi < 0.1$
- Diffraction dissociation: correlate AFP signals with the activity in ATLAS calorimeter

y-pixel [250 µm

ATLAS: Proton tagging with AFP

- 2016 data (negative-z arm only), $\langle \mu \rangle = 0.3$, $\beta^* = 0.4$ m. AFP + J10 trigger
- Require single cluster of hits in at least 5 out of 7 AFP tracker planes
- At least one jet with $p_T > 20$ GeV and $|\eta| < 3.0$ reconstructed from calorimeter cells, one primary vertex (PV), jets compatible with the PV
- In total 6.3·10⁵ events selected; detector level distributions studied
- Compare to a sample of $2.4 \cdot 10^5$ jet events with MBTS + J10 trigger (MBTS: 2 hits $2.08 < |\eta| < 3.86$)

 $\xi_{\rm cal} = \frac{1}{\sqrt{s}} \sum_{i} p_{\rm T}^{i} e^{-\eta_{i}}$

AFP hit position correlated with the proton energy loss ξ_{cal} .
AFP sees diffractive events!

Hit position uncorrelated to $\xi_{\rm cal}$: pileup and beam halo

Summary

- Soft physics
 - > Studies a major part of pp collisions phenomena
 - Source of valuable input for Monte Carlo tunes
- Presented:
 - > CMS measurement of inelastic pp cross section at 13 TeV
 - > CMS measurement of dijet production with a large rapidity gap at 8 TeV
 - First joint ATLAS and LHCf measurement of the forward photon spectra, inclusively, and within diffractive events at 13 TeV
 - ➤ Detector level distributions with one-arm ATLAS Forward Proton detector

Backup

ATLAS: Diffractive Processes in Forward Photon Spectra

- Ratio of yields: diffractive to inclusive as a function of photon energy
- EPOS gives a better overall description compared to other models
- Pythia8 overshoots data at very forward rapidities

AFP geometrical acceptance

