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Abstract: In the field of detector development for High Energy Physics, the so-called Transient
Current Technique (TCT) is used to characterize the electric field profile and the charge trapping
inside silicon radiation detectors where particles or photons create electron-hole pairs in the bulk
of a semiconductor device, as PiN diodes. In the standard approach, the TCT signal originates
from the free carriers generated close to the surface of a silicon detector, by short pulses of light
or by alpha particles. This work proposes a new principle of charge injection by means of lateral
PN junctions implemented in one of the detector electrodes, called the electrical TCT (el-TCT).
This technique is fully compatible with CMOS technology and therefore opens new perspectives
for assessment of radiation detectors performances.
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1 Introduction

The Transient Current Technique (TCT) is based on the measurement of the current pulse shape
produced by free charge carriers drifting within the electric field of a depleted semiconductor
region [1]–[5]. TCT is typically applied to characterize silicon PiN diodes for particle or light
detection, i.e. PN junction devices with a thin strongly doped region acting as electrode and a wide
lightly doped region used to build up a depleted volume serving to detect the particles or photons by
ionization (see figure 1). TCT allows the inspection of the electric field profile inside the diode bulk.
This is possible by analysing the waveform of the transient current induced by drifting free charges.
Since the electric field profile depends on the local space charge density, TCT can be exploited to
evaluate the presence of fixed charges originating from ionized dopants or traps. The latter being
for example the main reason for the radiation induced performance degradation of silicon particle
detectors in high luminosity hadron colliders [2, 6, 7]. The sensing region of a typical high energy
particle detector architecture is sketched in figure 1. In the transient current technique, electron-hole
pairs are generated in silicon by means of a short laser pulse with a wavelength from the IR to the
visible range, i.e. 1064 nm to 404 nm, (as is the case in figure 1) of some tens of ps [8]. Alpha
particles can also be used for charge injection [9]. Illuminating the P+ electrode side and using a
wavelength that is absorbed in the first few microns of the silicon as depicted in figure 1 (e.g. λ =
660 nm with an absorption coefficient of 2.57 × 103 cm−1 [10] and therefore a penetration depth of
3.89 µm), the generated holes are immediately collected by the p-type electrode, while the electrons
drift until reaching the ohmic contact after some tens of ns. These drifting charges induce a current
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in electrodes according to the Shockley-Ramo’s theorem [11]. In case of a uniformly doped layer
the electric field is linear across the device. The movement of an electron cloud, generated close
to the P+-contact and drifting towards the N+-contact, and the corresponding transient current is
illustrated in figure 1. The shape of the transient current pulse can be used to reconstruct the local
electric field inside the depleted region [2, 12]. TCT is therefore a very powerful tool to determine
the electric field profiles (i.e. the space charge profile) and the carrier lifetimes. Moving the laser
over the detector surface allows to establish the corresponding 2D profiles, provided the device is
accessible to the laser beam.

Illumination with lasers is the standard way of generating the charge carriers used to obtain the
transients in TCT. This requires the use of sub-nanosecond pulsed lasers and the implementation
of openings in the metal layers of the device under test to allow for light penetration. This “light
injection TCT” is therefore usually performed on dedicated TCT test structures.

Figure 1. Principle of light injection TCT. Electrons are generated inside the bulk of a reverse biased diode
using a pulsed laser beam. These drift along the diode and generate a transient current whose shape is
related to the profile of the electric field. In this figure, the positions di refer to the positions inside the diode,
considering that at time 0 ns the cloud is located at position d1.

In this article, a different approach, called electrical injection TCT (el-TCT), is discussed. It
is obtained through the implementation of a lateral PiN structure in an operational device, that
is assumed to give only little or no impact on its performance and would allow to apply the
TCT technique during irradiation tests and experiments. Such characterization is impossible to
perform with light injection TCT. In the present work we provide a proof of concept for el-TCT
while the implementation of el-TCT structures in operating devices is not studied in detail. This
article contains a preliminary study of the concept of el-TCT, that is evaluated through numerical
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simulations carried out with the Sentaurus TCAD software package [13], resulting in an adaptation
of the silicon diode layout for el-TCT applications. These simulations are followed by the design,
fabrication and experimental characterisation of optimized silicon structures. The experimental
data presented in this paper allows a preliminary assessment of el-TCT with respect to the standard
light injection TCT.

2 Principle and simulations of electrical injection TCT

2.1 The device architecture

A cross section of the el-TCT device structure is shown in figure 2a. and table 1 summarises
the device parameters used for the TCAD simulations. The n-type substrate doping concentration
was set to 7 × 1011 cm−3. Gaussian doping profiles with maximum concentrations at the surface
have been used to simulate the strongly doped silicon regions generated by implantation and then
diffusion. The doping of the top side extends into the PW and NW regions, that are the p-type (P+)
and n-type strongly (N+) doped region on the front side of the device (see figure 2a). In the S
regions (corresponding to the spaces between the PW and the NW regions), the doping is obtained
by lateral diffusion from the PW and the NW regions. The thickness Th of the device is 320 µm.
The simulated structure represents only a small part of the devices produced in this work (see
figure 8). In the el-TCT concept, injection of free charge carriers (electrons in our case) is done by
means of n-type implants surrounded by p-type doped regions (respectively red and blue regions in
figure 2). Note that the p-type doped layers constitute the front electrodes of the detector which are
also implemented in devices for optical TCT, while the n-type doped layers are specific to el-TCT
architectures. The electrons are injected into the lightly doped substrate by pulsing node B from
Vbias,B to Vtrans,B (e.g. for 1 ns), while the voltage difference between nodes A and C is set to operate
the PN junction in reverse bias (i.e. Vbias,A −Vbias,C < 0) creating an electric field in the bulk of the
PiN structure. A biasing scheme (including the voltage waveform applied to contact B) is shown in
figure 2b. This architecture and the related biasing sequence are optimized so that injection takes
place at node B. The principle of operation and device optimization will be addressed in the next
section.

Table 1. List of doping parameters for TCAD simulation. PW, NW, S, Th, DLp, DLn, DLn are expressed in
µm and Cp, CB,n, CC,n are expressed in cm−3. Cp is the peak P-type doping concentration at surface, CB,n
is the peak N-type doping concentration at node B, CC,n is the peak N-type doping concentration at surface
(back side, contact C), DLp is the P-type doping Gaussian width, DLB,n is the N-type doping Gaussian width
at node B, DLC,n is the N-type doping Gaussian width (back side, contact C).

PW NW S Th Cp CA,n CC,n DLp DLB,n DLC,n

7 3 2 320 4.5 × 1018 5.82 × 1019 1019 1.25 1.02 0.7

3 Principle of charge injection

The injection of carriers into the lightly doped region depends strongly on the shape of the doping
profiles and the distance S between the peaks of the Gaussian profiles of the implants, i.e. the
distance between the edges of the implanted areas (see figure 2 and table 1).

– 3 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
0
5
0
2
1

Figure 2. (a) Cross section of a device for el-TCT and (b) scheme of the applied voltage signals for el-TCT.
Diffusion doping is shown in the gap between the electrodes. P+ and N+ indicates respectively p-type and
n-type doped regions.

A static IV characteristic obtained from TCAD simulations of the current exiting at node C
versus the voltage applied at node B (the voltages applied at nodes C and A are respectively +200V
and +0V) is shown in figure 3. The following physics processes are implemented for the performed
Sentaurus TCAD simulations (using the default settings if not mentioned otherwise): high field
velocity saturation for electrons and holes, with the low field mobilities equal to 1417 cm2/Vs for
electrons and 470.5 cm2/Vs for holes, Shockley-Read-Hall recombination (depending on electric
field, doping and temperature), Auger recombination and impact ionization for electrons and holes.

Figure 3. Static IV characteristic of the current at node C versus the positive voltage at node B (voltages
applied at node C and A are respectively +200V and +0V).

As long as the voltage at node B is higher than +4V, current does not flow. In other words,
applying a voltage between A and C so that the PiN diode remains reverse-biased blocks injection
of electrons from B to C. The injection of electrons becomes effective only when the voltage on
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the n-type node B is lower than +4V. For these voltage values, the IV characteristic follows a
resistive behaviour. A current appears between nodes B and C during injection, whereas the lateral
PN junction remains reverse-biased and controls the electrostatic potential below the n-type doped
region at node B (and therefore the current between nodes A and B). In fact, the injection process
is controlled by the fringing electric field created by the lateral p-type and n-type doped layers.

In order to understand how electrical injection is controlled by external voltages, a cross section
of the potential profile at the centre of the device is plotted in figure 4 during transient operation for
two relevant biasing conditions: (a) with no voltage pulse applied (before 0 ns, with Vbias,B= +4V)
and (b) with a pulse voltage of Vtrans,B= +3V. The 2D plot of the conduction band edge energy
before the pulse reveals the presence of an energy barrier that blocks electrons to be injected. This
barrier is visible in the conduction band edge potential plot of figure 4 obtained along the centre of
the device, i.e. along the injecting channel. The voltage applied to that p-type doped layer creates
a lateral barrier which encloses and isolates the source of electrons (n-type node). Similarly, the
electron density along the same line is shown in figure 4a and it is possible to see that the “channel”
ends when the electron density becomes negligible, which corresponds to a depth of about 4 µm.

Next, when the voltage applied at node B is lowered to +3V during 1 ns, the shape of the
potential is modified and a channel starts to open (see figure 4b). Indeed, the energy barrier for
electrons is decreased. After 1 ns, the electron concentration at 4 µm is about 3 × 1013 cm−3, much
higher than before the pulse (3 × 1010 cm−3).

Finally, when the potential at node B is reset to the off-state potential after 1 ns, the energy
barrier goes back to its initial value and the channel switches off again. The time scale of the pulse
corresponds to the time needed for electrons to reach the region where the electric field created by
the reverse biased PiN junction will make them drift towards node C (corresponding to the blue
area in figure 4) preventing electrons to flow towards node B. It is this displacement current that
creates the transient current signal at the output node C.

3.1 Thermionic injection

To get a deeper understanding of the electrical injection principle, the influence of biasing voltages
is analysed by carrying out TCAD simulations. Six combinations of voltages have been used and
are listed in table 2. In all cases, the voltage applied to contact A is equal to 0V, the voltage applied
to node C is equal to +200V, and the duration of the pulse applied to node B is 1 ns, as shown in
figure 2b. The current is always recorded at node C.

As shown in figure 5a and 5b, the current height depends solely on the pulse voltage Vtrans,B,
which can be seen by comparing the current signals of combinations 4 and 6. Combination 3 shows
no current pulse, as the barrier blocks the electron injection. In case of combination 5, we observe
a significant change of the shape of the pulse. This is because the injected charge is high enough to
locally modify the electric field of the diode during the drift (see figure 5c, where the Y component
of the electric field during the drift is shown when the electron cloud is located at position 150 µm).

A similar result is obtained by comparing the injected chargeQin and the potential barrier height
ΦB,0 (considering figure 4, it is defined as the difference between the maximum of the conduction
band edge potential and its value at position 0 µm) at time t = 0 ns (i.e. during the voltage pulse)
between the combinations as listed in table 3.
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Figure 4. Plots of the conduction band edge potential and injected electron density (a) before the voltage
injection pulse and (b) during the pulse. The voltage applied to the p-type doped areas generates a barrier in
front of the n-type doped well. When the voltage pulse is applied, the barrier is lowered and electrons can be
injected inside the device bulk.

Values reported in table 3 suggest that a higher potential barrier during the voltage pulse leads
to a lower density of injected electrons per unit volume, while the height of the barrier before the
pulse does not seem to be relevant. It can be assumed that injection of electrons inside the silicon
bulk from the n-type doped “injector” occurs mainly through thermionic emission. To show this, a
new series of simulations is performed, whose results are showed in figure 6, and then compared
with the analytical formula for thermionic emission, in equation (3.1) [14]:

J = A∗T2e
−φB
kT (3.1)

where J is the emission current density, k and A∗ are the Boltzmann and Richardson constants, T is
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Figure 5. TCT signal currents of the first six combinations, in which the arrows show the combination of
positive voltages Vbias,B and Vtrans,B, following this notation: (Vbias,B, Vtrans,B) (a), (b), and Y component of
the electric field profile in case of combination 5, before injection and during the drift (c).

Table 2. List of voltage combinations applied at node B in TCAD simulations.

Combination Vbias,B (V) Vtrans,B (V)

1 +4 +3

2 +5 +4

3 +7 +6

4 +4 +2

5 +7 +1

6 +6 +2

Table 3. Comparison between injected electrons density and potential barrier height. ΦB,−t is the potential
barrier height before the voltage pulse, ΦB,0 is the Potential barrier height during the pulse, at 0 ns, Qin is the
injected charge.

Combination ΦB,−t (eV) ΦB,0 (eV) Qin (C)

1 0.665 0.371 1.82 × 10−17

2 1.086 0.665 2.64 × 10−20

3 2.090 1.568 2.60 × 10−20

4 0.665 0.315 2.94 × 10−16

5 2.091 0.306 6.83 × 10−16

6 1.568 0.315 2.90 × 10−16

the temperature and ΦB is the height of the potential barrier. If injection proceeds from thermionic
emission, the current densities should scale exponentially with the values of the potential barriers.
In figure 6a, it is possible to observe this behaviour. The same is observed for the analytical
expression, shown in figure 6a. An important difference between the two curves for the highest
value of the potential barrier is observed. In this case, the emission current should be smaller than
the reverse bias current value obtained in TCAD simulations, which is the value shown in figure.
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Figure 6. (a) Comparison between TCAD and the thermionic emission formula of current densities, and (b)
injection charge versus applied pulse voltage, i.e. the positive voltage applied to node B during the pulse.

The similar behaviour of the two currents supports the hypothesis that thermionic emission
can describe the physical mechanism for charge injection. Figure 6b represents the dependence of
the injected charge with respect to the pulse applied at node B (while voltage levels for nodes A
and C are kept the same, respectively 0V and +200V). Since the barrier height at node B is not
proportional to the applied voltage, the dependence of the injected charge density with voltage is
not exponential.

3.2 Electrical versus optical excitation

The next step in the study of el-TCT is to perform a qualitative comparison between the TCT signals
obtained with light and electrical excitation techniques on a standard diode and an el-TCT device.
The physics settings for the TCAD simulations are the same as for the previous study, adding for the
light injection the “generation from monochromatic source” at the top of the diode, and “complex
refractive index”. The optical solver used is Optical Beam [13, pp. 590–591]. Except for the n-type
injector implant, the simulated structures share the same technological parameters, therefore, in
case of the diode the p-type doping is Gaussian. Concerning the simulation parameters, the voltage
difference applied between opposite p-type and n-type doped layers (nodes C and A in figure 2)
is fixed to +200V (positive on node C and 0V on node A). Other parameters such as the voltage
at node B and the parameters of light injection such as the pulse duration, the pulse bias and the
intensity of light are listed in table 4. In case of el-TCT device, light is injected from the top,
between the contacts A and B, to simulate the masking of the aluminium contacts. The pulse length
is 1 ns. Note that these parameters are tuned to obtain concordance between transient current for
optical and el-TCT as shown in figure 7, which does not hamper the formal analysis.

According to the numerical simulations, removing the n-type injector does not affect the electric
field profile inside the silicon bulk (see figure 7b, where the Y component of the electric field is
taken at the centre of the devices), which is a prerequisite to compare both methods. In case of
el-TCT, a positive electric field is observed from 0 to 5 µm. This is due to the doping of the n-type
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Table 4. Parameters of simulations of el-TCT and light injection TCT. λ is the laser wavelength, I is the laser
intensity, t is the pulse time width, Vbulk is the reverse bias voltage.

Electrical injection Light injection

Vbias,C (V) Vbias,B (V) Vtrans,B (V) λ (nm) I (mW/cm2) t (ps) Vbulk (V)

+200 +4 +3 660 1 50 +200

Figure 7. Comparison between TCAD simulations of light injection TCT and el-TCT. The left plot (a) shows
a comparison between light injection TCT on a standard diode and on a device for el-TCT, and electrical
injection on an el-TCT device. The right plot (b) shows the profile of the Y component of the electric field
at the centre of a standard diode compared to the one at the centre of an el-TCT device.

implant, and does not cause any hole accumulation since holes quickly recombine due to the high
n-type doping of the injector. Similarly, the transient currents (see figure 7a) reveal that electrical
and light injection TCT are consistent, providing evidence that the concept of el-TCT is meaningful.
It is possible to observe peaks in case of light injection between 0 and 2 ns. They are due to the
fact that holes are also generated and immediately collected in case of light injection. For electrical
injection, only electrons are injected. Moreover, the curve corresponding to the light injection in
the diode is smaller than the others between 0 and 2 ns. This is due to the Gaussian profile of the
p-type doped silicon, which generates a slow increase of the electric field before the PN junction.

4 Devices and experimental characterization

4.1 Devices and measurement setup

Based on numerical simulations, a device was designed and fabricated at the Center of Micro-
nanotechnology at EPFL (CMi), to demonstrate the proof of concept. The device consists of a
matrix of n-type doped wells surrounded by a p-type doped silicon, which represent respectively
contacts A and B in figure 2. The substrate is a 4-inch n-type silicon wafer and constitutes the
“i” region of the PiN diode. In order to achieve a large depletion region, the silicon wafer has a
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nominal resistivity greater than 5000 Ω · cm, which corresponds to a doping concentration smaller
than 1012 cm−3 (similar to the one used in TCAD simulations). The fabrication process flow is
summarized in the following lines while more details are given in appendix A. The front side of
a silicon wafer is initially implanted with boron (dose 1015 cm−2 and energy 30 keV) through a
photoresist mask in order to define the p-type doped regions. Next, an n-type phosphorus implant
(dose 1016 cm−2 and energy 30 keV) defines the “injectors” wells through an SiO2 hard mask. The
back side is doped by diffusion of phosphorus (in a POCl3 atmosphere during 15min at 1100◦C).
All contacts are obtained by structuring sputtered aluminium. At the end of the process, spreading
resistance profiling (SRP) [15] measurements are performed, showing a bulk doping concentration
of 3× 1012 cm−3. This difference from the nominal resistivity value before processing could be due
to high temperature steps during the processing that can e.g. lead to thermal donor generation [16].
Figure 8 shows the top view and cross section of the designed diodes (figure 8a) as well as an optical
microscope picture of the top of the fabricated devices (figure 8b).

Figure 8. (a) Top view of the layout and cross sections in the vertical (XS1) and horizontal (XS2) directions
and (b) optical microscope picture of the fabricated device top side.

The circuit used for the el-TCT measurements is shown in figure 9. Concerning the device,
the Bulk contact represents the contact to the strongly doped n-type back implant, the n-type
contact represents the n-type doped well and the p-type contact represents the p-type doped silicon.
The signal generator Picosecond Pulse Labs (model 10,050A) is used as pulse generator. The
DC bias is delivered through a bias-tee (Picosecond Pulse Labs model 5531) also used to send
the transient current signal to the oscilloscope Agilent DSO9254A (from the Bulk contact). The
voltage generator (Keithley 2410) is used to supply the DC high voltage. Attenuators and a signal
inverting transformer (Phillips Scientific model 460) are used to shape the signal. The input voltage
offset is controlled by using a voltage generator (Agilent E3631A) connected to the signal, before
the connection to the n-type contact, through a bias-tee (Mini-Circuits ZFBT-6GW).
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Figure 9. Schematic of the circuit used for the measurement.

In case of light injection, a 50 ps pulse laser (wavelength 660 nm), with a spot diameter of
10 µm positioned in the middle of the device (i.e. shining in the centre of the n-type wells matrix
shown in figure 8b). The n-type contact is biased at a value close to the offset voltage used for
electrical injection (+4.1V), and the TCT signal is amplified using the CIVIDEC C2HVBroadband
Amplifier (gain 40 dB, bandwidth 2GHz), connected on the back side of the device. The measured
capacitance of the device is 3.54 pF at 100V, 3.04 pF at 120V and 2.64 pF at 140V.

5 Transient current measurements and analysis

The electrical pulse which is applied to the n-type doped well (node B in figure 2) is shown in
figure 10a. The overall pulse duration is about 1 ns during which the voltage changes abruptly from
+3.75V to +0.2V. The transient current generated by the drift of the injected carriers is shown
in figure 10b for different back side voltages. It is possible to observe a small distortion at 12 ns.
This is due to a parasitic signal inside the circuit for voltage pulse generation, since it is possible to
observe the same feature on the injection pulse in figure 10a. Another parasitic pulse is observed at
25 ns, which however is out of the time window of interest for the TCT measurement in figure 10b.
Increasing the voltage between nodes A and C (VAC) modifies the shape of the transient current.
Up to 2 ns after the electrical pulse, the current increases. This could be due to the increase in the
electric field in the lightly doped region, as observed in the TCAD simulations of optical TCT on
standard diode in figure 7b, but also due to the finite rise time of the read-out circuit. After 10 ns,
it is possible to observe a signal that fades, since the device is not fully depleted.

In order to compare el-TCT with light induced TCT, the normalized transient currents obtained
from bothmethods are shown in figure 10b (VAC are listed in the legend for different measurements),
where the reverse PiN diode biases are kept the same for optical and electrical injection methods.
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The normalization has been performed by introducing a constant N (the same for all measurements),
according to equation (5.1).

i (t)el−TCT = Ni (t)lightinjection . (5.1)

Figure 10. (a) Voltage pulse applied to the n-type doped wells with positive sign and (b) comparison between
TCT signals obtained by light and electrical injection.

Both methods lead to similar shapes of TCT curves (in both cases the time between the rising
and decaying of the currents is close to 10 ns), even if the difference between curves obtained
from optical TCT is small (a similar behavior observed in TCAD simulations in figure 11b). This
confirms that electrical and light injection methods yield equivalent results. The signal-to-noise
ratio can be improved by using a dedicated board in which generation of the signal and readout are
performed close to the device.

A last validation of the el-TCT comes from TCAD simulations. A modified version of the
structure presented in figure 2 (where the parameter S and the bulk doping profile are used as
matching parameters, since the doping profile at the end of the fabrication process is different
from the nominal one) was used to carry out numerical simulations of el-TCT. The best matching
between TCAD and measurements was obtained for a bulk doping of 3 × 1012 cm−3 (as the one
measured with SRP at the end of the process) and an S parameter equal to 0 µm (meaning that in this
simulations the regions PW and NW are not spaced). A comparison between the simulated and the
measured el-TCT signals is presented in figure 11a (see VAC in the legend). An overall agreement
with experiments can also be observed for light injection TCT in figure 11b.

This supports the hypothesis that the signal measured after electrical injection can be attributed
to the drift of the electrons injected in the low doped silicon. The injected charge can be controlled
by the voltage applied to the n-type doped wells and observed as integral of transient current in
time-induced charge. This analysis has been carried out both for experimental data and TCAD
simulations. The results presented in figure 12 (the value of the peak voltage is the absolute value)
reveal a dependence on the Vtrans,B, similar to the behaviour shown in figure 6b.
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Figure 11. Comparison between TCAD simulations and experimental data of TCT signal obtained by
electrical (a) and light (b) injection.

Figure 12. Measured injected charge as a function the voltage applied to node B during the pulse.

6 Conclusion

A new method of carrier injection for TCT characterization, called el-TCT and relying on the
concept of electrical charge injection in PiN diodes has been proposed, simulated with TCAD and
demonstrated experimentally. The fabricated device structures for el-TCT validated the feasibility
to use the electrical charge injection method for device characterization. This new concept allows
the integration of a charge injection mechanism into an operational device like e.g. photon or
particle detectors. Such modified devices no longer need complex external excitation sources
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(alpha particles, lasers, etc.) to perform TCT. The co-integration of el-TCT with active sensors,
where injection and detection can be implemented concurrently, should pave the way to in-situ
characterization of solid-state particle or photon detectors.

Acknowledgments

This work was partially performed in the framework of the RD50 collaboration. The authors wish
to thank B. Schmidt, E. Sicking and P. Martinengo of CERN for their precious help in the review of
this work. The authors are also grateful to the Solid State Detectors team at CERN for their support
during the measurements campaign, in particular to J. Gonzalez and M.C. Vignali, to the staff of
the CMi cleanroom at EPFL for their help during the fabrication of the devices, and to the reviewer
for the precious help for the improvement of the quality of this work.

A Detailed process flow for fabrication of devices for el-TCT

Table 5 summarises the process flow for the fabrication of el-TCT devices. It has been performed
at the CMi at the École Polytechnique Fédérale de Lausanne (EPFL). The following machines
and services have been used: ACS200 Gen3 for automatic coating and development, Heidelberg
VPG200 for direct i-line (355–365 nm) laser writing lithography with 5mm head, IBS (Ion Beam
Service) for ion implantation, Tepla GIGAbatch for photoresist oxygen plasma stripping, Pfeiffer
SPIDER600 for sputtering, SPTS APS dielectric etcher for dry etching of SiO2, Disco DAG810
for wafer grinding, Steag Mecapol E460 for chemical mechanical polishing (CMP), Centrotherm
furnaces for POCl3 doping, STS multiplex for Al dry etching, Alliance Concept DP650 for Al
sputtering.
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Table 5. Process flow for the fabrication of devices for el-TCT.

Step Process Parameters
1 Photolithography Photoresist: AZ ECI 3027, thickness 4 µm

2 Boron ion implantation Dose 1015 cm−3, Energy 30 keV

3 Photoresist stripping First plasma oxygen, then remover microposit 1165

4 SiO2 sputtering Thickness 2 µm

5 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 µm

6 SiO2 etching Reactive ion etching

7 Photoresist stripping First plasma oxygen, then remover microposit 1165

8 Phosphorus ion implantation Dose 1016 cm−3, Energy 30 keV

9 Photoresist coating Photoresist: AZ ECI 3027, thickness 4 µm

10 Back side wafer thinning Grinding and CMP, final thickness 320 µm

11 Photoresist stripping Remover microposit 1165

12 SiO2 etching BHF diluted in water 7:1

13 SiO2 sputtering Thickness 2 µm

14 Phosphorus doping Furnace with POCl3 atmosphere during 15min at 1100◦C

15 SiO2 etching BHF diluted in water 7:1

16 SiO2 sputtering Thickness 400 nm

17 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 µm

18 SiO2 etching Reactive ion etching

19 Photoresist stripping First plasma oxygen, then remover microposit 1165

20 Al with 1% of Si sputtering Thickness 300 nm

21 Photolithography Photoresist: AZ ECI 3007, thickness 1.5 µm

22 Al with 1% of Si etching Reactive ion etching

23 Photoresist stripping First plasma oxygen, then remover microposit 1165

24 Photolithography Photoresist: AZ ECI 3027, thickness 4 µm

25 Al with 1% of Si sputtering Thickness 300 nm

26 Photoresist stripping Remover microposit 1165

27 Dicing
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