Top quark production measurements in ATLAS and CMS SUSY 2018

Olga Bessidskaia Bylund

Bergische Universität Wuppertal

On behalf of the ATLAS and CMS Collaborations

25th of July 2018

Presented measurements at 13 TeV

- tW production, including the interference with $t\bar{t}$
- Production in the t-channel
- $t\bar{t}Z$ and $t\bar{t}W$ production and constraints on effective operators
- $t\bar{t}b\bar{b}$ measurement
- tZq production
- FCNC constraints from t o Zq decays

tW measurement by CMS at 35.9 $\text{ fb}^{-1}(1)$

- Selection: opposite sign charge (OS) dilepton in the $e\mu$ channel.
- 3 categories: signal-enriched 1j1b; background-enriched 2j1b, 2j2b.
- Maximum likelihood fit performed to the distribution of BDT discriminants in 1j1b and 2j1b, and to the 2nd leading jet $p_{\rm T}$ in 2j2b.
- Main systematic uncertainties: luminosity, pileup, jet energy scale, lepton efficiencies.

arXiv:1805.07399

tW measurement by CMS at 35.9 $\,{ m fb}^{-1}$ (2)

• $\sigma_{tW} = 63.1 \pm 1.8(\text{stat}) \pm 6.4(\text{syst}) \pm 2.1(\text{lumi})$ pb. Precision: 11 %. • SM prediction: 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb.

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS

July 25 2018 4 / 23

tW differential measurement by ATLAS, 36.1 ${ m fb}^{-1}$

- Selection: two OS leptons and exactly one *b*-tagged jet (1b1j).
- Cuts are imposed to reduce backgrounds, especially Z+jets.
- BDTs are trained and a cut on the BDT output (> 0.3) is applied to get a region enriched in tW.
 Eur. Phys. J. C 78 (2018) 186
- Six unfolded differential distributions are presented.
- The distributions are normalised to the fiducial cross section.
- Main uncertainties include statistical and the modelling of $t\bar{t}$ and tW.

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS

tW-*tt* interference

Ambiguity when modelling tW at NLO in QCD: overlap with $t\bar{t}$.

Methods for addressing overlap with $t\bar{t}$

- Diagram Removal (DR): remove overlapping diagrams completely.
- DR2: set the amplitudes squared of overlapping diagrams to zero. This retains an interference term with $t\bar{t}$.
- Diagram Subtraction (DS): subtract overlapping part at cross section level, using momentum reshuffling. Gauge invariant by construction.
- Abandon the distinction between $t\bar{t}$ and tW. Instead simulate (and measure) WbWb at NLO in QCD (implementation in Powheg).

tW- $t\bar{t}$ interference at ATLAS with 36.1 ${ m fb}^{-1}$

- The WbWb (bb4l) prediction has overall good agreement with data. Not available for all decay modes.
- DR prediction: nominal for single top analyses. DS: usually applied as a systematic variation.
- Further studies have been suggested for DR2, treating the top decays in different ways.

t channel production at CMS with $35.9\,{ m fb}^{-1}$

- Selection: one charged lepton and 2-3 jets. Split by # jets and *b*-jets.
- A multivariate discriminator for background reduction is applied.

Results

- $\sigma_t = 136.3 \pm 1.1 (\text{stat}) \pm 20.0 (\text{syst}) \text{pb} (15\%),$ $\sigma_{\bar{t}} = 82.7 \pm 1.1 (\text{stat}) \pm 13.0 (\text{syst}) \text{pb} (16\%).$
- $R_{t-ch} = 1.65 \pm 0.02(\text{stat}) \pm 0.04(\text{syst}) (2.7 \%).$
- Good agreement found with most pdf sets.
- $|f_{LV}V_{tb}| = 1.00 \pm 0.05$ (exp) ± 0.02 (theo). f_{LV} is anomalous form factor (=1 in SM).
- Main uncertainty from PS-scale for σ_t , $\sigma_{\bar{t}}$.

ttV measurement by ATLAS at $3.2\,{\rm fb}^{-1}$

Motivation: study tZ coupling, constrain backgrounds to BSM searches.

- Selection: 2 leptons of same sign charge (SS, targeting tt
 W), or 3 or 4 leptons (targeting tt
 Z).
- Cuts imposed on number of jets and *b*-jets and on $m_{\ell^+\ell^-}$.
- Main backgrounds: fake leptons (2LSS), WZ (3L) and ZZ (4L).

• Eur. Phys. J. C77 (2017) 40

•
$$\sigma_{t\bar{t}Z}^{th} = 0.84 \text{ pb} \pm 12\%; 3.4\sigma.$$

• $\sigma^{th}_{t\bar{t}W} = 0.60 \text{ pb} \pm 12\%$; 1.0σ .

Results

- $\sigma_{t\bar{t}Z} = 0.92 \pm 0.29 (\text{stat.}) \pm 0.10 (\text{syst.}) \text{ pb}; 3.9\sigma.$ Precision: 33%.
- $\sigma_{t\bar{t}W} = 1.50 \pm 0.72 (\text{stat.}) \pm 0.33 (\text{syst.}) \text{ pb}; 2.2\sigma.$ Precision: 53%.

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS

July 25 2018 9 / 23

ttV measurement by CMS at $35.9\,{ m fb}^{-1}$ (1)

Targeting $t\bar{t}Z$:

- Signal regions: 3L, 4L. Split further by # jets and *b*-jets.
- $m_{\ell^+\ell^-} \sim m_Z$ is required.
- Main backgrounds: WZ and ZZ (simulated, verified in CRs).
- Main systematics: scale, trigger and *b*-tagging.

Targeting $t\bar{t}W$:

- Signal regions: SS. Split further by # jets and *b*-jets.
- Non-prompt lepton (NPL) background evaluated by data-driven method.
- MVA training employed.
- Main systematics: trigger, NPL, background $t(\bar{t}) + X$ modelling.

Results <i>tTZ</i>	Results $t\bar{t}W$
$\begin{split} \sigma_{t\bar{t}Z} &= 0.99^{+0.09}_{-0.08}(\text{st})^{+0.12}_{-0.10}(\text{syst})\text{pb,} \\ \mu &= 1.17^{+0.11}_{-0.10}(\text{st})^{+0.14}_{-0.12}(\text{syst})^{+0.11}_{-0.12}(\text{th}). \\ \text{Significance well above } 5\sigma. \\ \text{Precision: } 15\%. \end{split}$	$\begin{split} \sigma_{t\bar{t}W} &= 0.77^{+0.12}_{-0.11}(\text{st})^{+0.13}_{-0.12}(\text{syst})\text{pb,} \\ \mu &= 1.23^{+0.19}_{-0.18}(\text{st})^{+0.20}_{-0.18}(\text{syst})^{+0.13}_{-0.12}(\text{th}). \\ \text{Significance: } 5.3\sigma \ (4.5\sigma \text{ expected}). \\ \text{Precision: } 23\%. \end{split}$

▶ arXiv:1711.02547

ttV measurement by CMS at $35.9 \, {\rm fb}^{-1}$ (2)

$tar{t}bar{b}$ measurement by ATLAS at 36.1 ${ m fb}^{-1}$

Results

- SHEPRA 2.2 $t\bar{t}b\bar{b}$ NLO prediction is lower than data (but within unc).
- All predictions where additional *b*-jets come from PS undershoot the data. Only SHERPA 2.2 $t\bar{t}$ (NLO) desribes the $N_{b\text{-jets}}$ spectrum.

12 / 23

• Unfolded differential distributions are shown, precision: 10-30%. Olga Bessidskaia Bylund (Wuppertal) Top guark production, ATLAS & CMS July 25 2018

tZq production at CMS, 35.9 fb⁻¹ (1)

- *tZq* production sensitive to the *tZ* and the triple gauge couplings.
- BSM models with FCNCs could affect production through t → Zq decays.

Selection

Preselection: 3 charged final state leptons, of which 2 are OS and same flavour (SF) with $|m_{\ell^+\ell^-} - m_Z| < 15 \text{ GeV}$. Three regions:

- 1 b-jet signal region: targets tZq. 2-3 jets, of which 1 b-tagged.
- CRs with 0 or ≥ 2 *b*-tagged jets, to constrain the *WZ* and $t\bar{t}Z$.

Fit strategy

- Binned maximum-likelihood fit to the distributions in the BDT discriminators in the 2 *b*-jets and 1 *b*-jet regions.
- Fit to the m_T^W distribution in the 0 *b*-jet region.
- $\bullet~$ MEM info included in training \rightarrow 20% higher expected significance.

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS

tZq production at CMS, 35.9 fb⁻¹ (2)

Results

- $\sigma_{tq\ell^+\ell^-} = 123^{+33}_{-31}(\text{stat})^{+29}_{-23}(\text{syst})$ fb. Precision: 36 %.
- Evidence for tZq production at 3.7 σ (3.1 σ expected).

•
$$\mu = 1.31^{+0.35}_{-0.33}(\text{stat})^{+0.31}_{-0.25}(\text{syst}).$$

tZq production at ATLAS, 36.1 ${ m fb}^{-1}$

- SR: 3 charged leptons, one *b*-tagged jet, an additional jet, $|m_{\ell^+\ell^-} - m_Z| < 10 \text{ GeV}, m_T(\ell, \nu) > 20 \text{ GeV}.$ CRs for $t\bar{t}$ and diboson.
- Signal generated at LO, scaled to NLO, $\sigma_{tZq}^{th} = 800^{+6.1\%}_{-7.4\%}$ fb.
- A NN is trained. Main variables: $|\eta|$ and p_{T} of the untagged jet, m_t .

Results

- $\sigma_{tZq} = 600 \pm 170 (\text{stat.}) \pm 140 (\text{syst.})$ fb. Precision: 37 %.
- Evidence for tZq production with significance: 4.2 σ , expected: 5.4 σ .

Source	Uncertainty [%]		
tZq radiation	±10.8		
Jets	± 4.6		
b-tagging	± 2.9		
MC statistics	± 2.8		
tZq PDF	± 2.2		
Luminosity	±2.1		
Leptons	± 2.1		
$E_{\mathrm{T}}^{\mathrm{miss}}$	± 0.3		

Physics Letters B 780 (2018) p 557

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS

FCNC

Flavour changing neutral currents

- Not present at tree level in the Standard Model.
- Suppressed in loop processes by the unitarity of the CKM matrix.
- SM top FCNC decays are experimentally unobservable.

FCNCs from BSM

- At tree level: two higgs-doublet models, heavy vector-like quarks.
- Loop-induced enhancements: two-Higgs-doublet models, MSSM, R-parity-violating SUSY, warped extra dimensions, composite Higgs.

FCNC $t \rightarrow Zq$ search by ATLAS, 36.1 fb⁻¹

▶ arXiV:1803.09923

- $t\overline{t}$ production followed by $t \to Zq$ of one of the tops.
- Selection: 3 charged leptons, ≥ 2 jets, of which ≥ 1 is *b*-tagged and $E_T^{miss} > 20 \text{ GeV}.$
- Main backgrounds: diboson, $t\bar{t}Z$ and tZ.
- Event reconstruction performed using χ^2 minimisation.
- Main uncertainties on signal yields: event modelling and jets.

Results

•
$$\mathcal{B}(t \rightarrow Zc) < 2.4 \cdot 10^{-4}$$
, expected $3.2 \cdot 10^{-4}$.

- $\mathcal{B}(t \rightarrow Zu) < 1.7 \cdot 10^{-4}$, expected $2.4 \cdot 10^{-4}$.
- These are the most stringent limits to date.

Table 1: Maximum allowed FCNC $t \rightarrow qZ$ (q = u, c) branching ratios predicted by several models [3–10].

Model:	SM	QS	2HDM	FC 2HDM	MSSM	RPV SUSY	RS	EMF
$\mathcal{B}(t \to qZ)$:	10^{-14}	10^{-4}	10 ⁻⁶	10^{-10}	10 ⁻⁷	10 ⁻⁶	10^{-5}	10 ⁻⁶

Summary and conclusions

- Some recent highlights ATLAS and CMS top quark production measurements have been shown.
- The SM predictions for signle top production in the tW and t channels have been tested. From R_{t-ch} , pdfs are constrained.
- Background processes for SUSY and other BSM searches have been measured.
- Limits on EFT coefficients have been placed using $t\bar{t}V$ measurements.
- Systematical uncertainties limit the precision of several analyses.
- $t\bar{t}b\bar{b}$ has been measured, putting QCD predictions to a test.
- Measurements of single top production in association with a Z boson have been performed and used to place limits on FCNCs.
- All measurements presented here are in agreement with the SM.
- The *ttbb* measurement suggests that improvements can be made to the modelling of the of the *b*-jets.

Backup

Uncertainties for ATLAS tW differential analysis

E(b) bin [GeV] (1/ σ) d σ /dx [GeV ⁻¹]	[25, 60] 0.00438	[60, 100] 0.00613	[10 0.0	00, 135] 00474	[135, 175] 0.00252	[175, 500] 0.00103
Stat. uncertainty	25	20	28		37	9.3
Total syst. uncertainty	33	28	34		37	16
Total uncertainty	41	34	44		53	18
$m(\ell_1 b)$ bin [GeV] (1/ σ) d σ /dx [GeV ⁻¹]	[0, 60] 0.000191	[60, 100] 0.00428	[100, 150] 0.00806	[150, 200] 0.00333	[200, 250] 0.00153	[250, 400] 0.00114
Stat. uncertainty	130	21	12	22	32	10
Total syst. uncertainty	39	22	13	24	46	28
Total uncertainty	140	30	18	33	56	29

Constraints on pdfs from CMS t-channel measurement

Wilson coefficient	Best fit [TeV ⁻²]	68% CL [TeV ⁻²]	95% CL [TeV ⁻²]
$\bar{c}_{\rm uW}/\Lambda^2$	1.7	[-2.4, -0.5] and $[0.4, 2.4]$	[-2.9, 2.9]
$ \bar{c}_{\rm H}/\Lambda^2 - 16.8~{ m TeV^{-2}} $	15.6	[0,23.0]	[0,28.5]
$\left \widetilde{c}_{3\mathrm{G}}/\Lambda^2\right $	0.5	[0,0.7]	[0,0.9]
\bar{c}_{3G}/Λ^2	-0.4	[-0.6, 0.1] and $[0.4, 0.7]$	[-0.7, 1.0]
$\bar{c}_{\rm uG}/\Lambda^2$	0.2	[0, 0.3]	[-1.0, -0.9] and $[-0.3, 0.4]$
$ \bar{c}_{\rm uB}/\Lambda^2 $	1.6	[0, 2.2]	[0,2.7]
$\bar{c}_{\rm Hu}/\Lambda^2$	-9.3	[-10.3, -8.0] and $[0, 2.1]$	[-11.1, -6.5] and [-1.6, 3.0]
\bar{c}_{2G}/Λ^2	0.4	[-0.9, -0.3] and [-0.1, 0.6]	[-1.1, 0.8]

Uncertainties on the $t\bar{t}b\bar{b}$ inclusive measurements

	Channel	analysis	me	asured cro	ss-section	[fb]
	lepton + jets	$\sigma_{tt+\geq 1b}$	245	50 ± 40 (st	at) ± 690 ((syst)
	lepton + jets	$\sigma_{tt+\geq 2b}$	35	59 ± 11 (st	at) ± 61 (syst)
	eμ	$\sigma_{tt+\geq 1b}$	18	31 ± 5 (st	at) ± 24 (syst)
	eμ	$\sigma_{tt+\geq 2b}$	2	27 ± 3 (st	at) ± 7 (syst)
			Eid	ucial croce i	action phase	cnace
Source			e	uenai eross u	lepton	+ iets
			> 34	> 4h	>51 > 3h	> 6i > 4h
		une	c. (%)	unc. $(\%)$	2 3J, 2 30 unc. (%)	207, 240 unc. (%)
Data sta	tistics		2.7	9.0	1.7	3.0
Lumino	sitv		2.1	2.1	2.3	2.3
Jet			2.6	4.3	3.6	7.2
b-taggir	ıg		4.5	5.2	17	8.6
Lepton	0		0.9	0.8	0.8	0.9
Pileup			2.1	3.5	1.6	1.3
tīc fit va	ariation		5.9	11	-	-
Non-tī l	okg		0.8	2.0	1.7	1.8
Detecto	r+background tota	l syst.	8.5	14	18	12
Parton s	hower		9.0	6.5	12	6.3
Generat	or		0.2	18	16	8.7
ISR/FS	R		4.0	3.9	6.2	2.9
PDF			0.6	0.4	0.3	0.1
tīV/tīH	r		0.7	1.4	2.2	0.3
MC san	nple statistics		1.8	5.3	1.2	4.3
tī mode	lling total syst.		10	20	21	12
Total sy	st.		13	24	28	17
Total			13	26	28	17

Olga Bessidskaia Bylund (Wuppertal)

Top quark production, ATLAS & CMS