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1 Introduction

Hadronic jets play a central role in collider physics as proxies of the hard quarks and

gluons produced in short-distance interactions. A precise theoretical understanding of jet

properties is often key to establishing measurements which can either further confirm the

predictions of the Standard Model at higher accuracy, or identify deviations that could hint

at New Physics. Progress in QCD calculations involving jets has been impressive in the

last years, boosted by the demands of the LHC experimental program. Jet properties are

typically studied using two complementary tools: analytic resummation and Monte Carlo

parton showers. The latter offer a fully exclusive description of the final state, enabling

the user to perform any measurement, but their formal accuracy is currently limited to

leading-logarithmic order.1 Corrections to the traditional parton shower method have been

considered lately, e.g. by incorporating additional information about interference effects [2–

4] and higher-order splitting functions [5–8]. On the other hand, with an analytic approach

one can often achieve higher logarithmic resummations, and obtain uncertainty estimates

that can be validated by comparing different orders. However, this approach is traditionally

limited to single differential measurements.

Inspired by ref. [9], we recently took the first step towards a precise and more dif-

ferential characterization of jets by constructing an effective field theory (called SCET+)

and using it to derive a factorization formula [10], which enables the simultaneous resum-

mation of two independent observables to higher logarithmic accuracy. This opens up the

possibility of performing multivariate analyses, including correlations with controlled the-

ory uncertainties. Applications of our framework are particularly relevant in the context

of jet substructure studies (see e.g. ref. [11] for a recent review), where a more detailed

characterization of the QCD radiation pattern within a jet is exploited to obtain crucial

information about the hard scattering process, thereby providing innovative ways to search

for New Physics. This generally involves multi-differential cross sections, with several in-

dependent measurements performed on a single jet and the possibility to exploit shared

information content among these observables. Furthermore, several of the most powerful

discriminants of quark- vs. gluon-initiated jets or of QCD jets vs. boosted hadronically

decaying heavy particles are formed by taking ratios of two observables, as is done for

N -subjettinesses [12, 13], energy-energy-correlation functions [14, 15] and planar flow [16].

These are typically not infrared- and collinear-safe [17] but still Sudakov safe, meaning

that they can nevertheless be properly defined and calculated by marginalizing the corre-

sponding resummed double differential cross section [18].

As a first step in understanding multi-differential cross sections beyond next-to-leading

logarithmic (NLL) accuracy, we demonstrate in this paper how to exploit our theoretical

framework for the case of the simultaneous measurement of two event shapes for e+e−

collisions in the dijet limit, where all-order resummations are essential to obtain reliable

theory predictions. In order to avoid complications related to non-global logarithms [19],

we restrict ourselves to event-based observables and postpone the case of jet-based mea-

surements at NNLL to a future publication. Our focus here is on the family of infrared and

1See ref. [1] for a recent discussion of the logarithmic accuracy of parton showers.
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collinear safe angularities [20], which generalize the classic event-shape variables thrust and

broadening, and characterize the energy distribution of final-state particles as function of

the angle with respect to some axis. Calculations of single angularities with respect to the

thrust axis were carried out at NLL accuracy in refs. [20–23]. Recently these observables

have been analyzed up to NNLL, including next-to-next-leading fixed-order (NNLO) correc-

tions [24], for the purpose of a precision determination of αs(mZ) from LEP data, which will

provide complementary information to analogous precision fits based on event shapes like

thrust [25, 26] and C-parameter [27]. NNLL+NLO accuracy for angularities has also been

reached using the ARES method in [28, 30], while the NNLL resummation of jet broadening

in the framework of SCET was achieved in [29]. Furthermore, (generalized) angularities

measured on individual jets are useful tools to investigate jet substructure [16, 31, 32].

In this paper we go beyond state-of-the-art NLL accuracy for the jointly resummed

cross section of two angularities, and use SCET+ to achieve NNLL precision throughout

the phase space. We match to SCETI theories that describe the phase-space boundaries

to maintain NNLL accuracy there, and to the fixed-order QCD result at NLO to obtain

a reliable description of the cross section beyond the dijet limit. We also correct typos in

expressions for the necessary one-loop ingredients that have been derived elsewhere. In our

numerical analysis, theoretical uncertainties are provided by suitable “profile functions”

which we design to produce scale variations that smoothly interpolate between the distinct

kinematic regions where resummations must be handled differently. We also investigate

nonperturbative corrections, and compare the results of our numerical analysis to the

parton shower of Pythia 8.2 [33].

By projecting our double differential cross section, we obtain predictions for the cross

section differential in the ratio of two angularities, which cannot be determined from a

fixed-order calculation. Furthermore, we analyze single angularity distributions up to

NNLL+NLO and investigate their logarithmic structure by comparing the fixed-order ex-

pansions from our resummed distributions against numerical results from Event2, for an-

gularities calculated with respect to the thrust axis and winner-take-all (WTA) axis [34, 35].

Our analysis demonstrates that for the WTA axis the same factorization formulae can be

used for the whole range of angularities, even for those measurements that would be sen-

sitive to recoil effects from soft radiation if the thrust axis was used.

The paper is organized as follows: section 2 describes in detail our theoretical frame-

work and the analytic input for our numerical analysis. After reviewing the factorization for

the double differential angularity distribution, we collect all relevant fixed-order ingredients

(correcting typos in the literature) and anomalous dimensions. We describe in detail our

scale choices and procedure to estimate the perturbative uncertainty. In section 3 we show

numerical results for single and double differential angularity distributions at NNLL+NLO

accuracy, as well as for the ratio of two angularities. We conclude in section 4.

– 3 –
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2 Framework

2.1 Angularities

The angularities eα are a one-parameter family of global e+e− event shapes, defined as [20]

eα =
1

Q

∑
i

Ei(sin θi)
2−α(1− | cos θi|)α−1 , (2.1)

where Q is the center-of-mass energy. The sum runs over all particles i, where Ei denotes

its energy and θi its angle with respect to an appropriately chosen axis. Smaller values of

angularities correspond to more collimated radiation, where the parameter α determines

the weight of the angle. Our convention for α is such that for small angles,

(sin θi)
2−α(1− | cos θi|)α−1 ≈ 21−α θαi , (2.2)

i.e. α = 2 corresponds to thrust [36] and α = 1 to (total) broadening [37, 38] when

calculated with respect to the thrust axis.

For angularities with α & 2, the direction of the thrust axis is insensitive to (recoil by)

soft radiation, but as α → 1, and certainly for α ≤ 1, this effect cannot be ignored [39].

Thus we find it convenient to use an axis that is recoil-insensitive [35]. This is accomplished

by clustering the event with exclusive kT [40], which splits the event into two jets, using the

WTA recombination scheme [34, 41].2 The angle θi in eq. (2.2) will be taken with respect

to the axis of the jet the particle belongs to, so there is no global axis for the event.

In our previous publication [10], we focussed on jet-based angularities [16, 31]. How-

ever, since the correlation between soft radiation inside and outside the jet makes these

observables theoretically more complicated, introducing non-global logarithms [19], we shall

limit ourselves here to event-based angularities.

2.2 Power counting and modes for double angularity measurements

We calculate the e+e− → 2 jets cross section differential in two angularities eα and eβ
taking into account the fact that the phase space is characterized by three different regions

(figure 1), corresponding to

Regime 1 : eβ ∼ eα , Regime 2 : eβ � eα � e
α/β
β , Regime 3 : eα ∼ eα/ββ , (2.3)

each one with its own factorization theorem that enables the resummation of logarithms

of eα and eβ . Regime 1 and 3 correspond to the boundaries and were discussed in ref. [9],

while we obtained the factorization theorem for regime 2 describing the bulk of the phase

space in ref. [10].

We will briefly review how the regimes in eq. (2.3) arise, and present the factorization

theorems in the next section. The relevant modes (degrees of freedom) in the framework of

Soft-Collinear Effective Theory (SCET) [43–46] are summarized in table 1. In SCET, the

2One can also run e.g. anti-kT [42] in exclusive mode with WTA recombination scheme. At the accuracy

we are working, there is no difference, and this is corroborated by both Pythia and Event2. Alternatively,

the broadening axis [35] can be used but this is more complicated to implement.
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Figure 1. The phase space for the simultaneous measurement of eα and eβ and the various regimes

of Soft-Collinear Effective Theory.

Regime 1 Regime 2 Regime 3

Mode eβ ∼ eα eβ� eα� e
α/β
β eα∼ eα/ββ

n-coll. (1,e
2/β
β ,e

1/β
β ) (1,e

2/β
β ,e

1/β
β ) (1,e

2/α
α ,e

1/α
α )

n̄-coll. (e
2/β
β ,1,e

1/β
β ) (e

2/β
β ,1,e

1/β
β ) (e

2/α
α ,1,e

1/α
α )

n-csoft
(
(e−βα eαβ)1/(α−β),(e2−β

α eα−2
β )1/(α−β),(e1−β

α eα−1
β )1/(α−β)

)
n̄-csoft

(
(e2−β
α eα−2

β )1/(α−β),(e−βα eαβ)1/(α−β),(e1−β
α eα−1

β )1/(α−β)
)

soft (eβ ,eβ ,eβ) (eα,eα,eα) (eα,eα,eα)

Table 1. The parametric size of the light-cone components of the momenta (p−, p+, pµ⊥)/Q of the

various degrees of freedom in SCET.

real radiation in the two-jet region is either collinear or soft. The corresponding momenta

have the following parametric scaling

pµn ∼ Q(1, λ2
c , λc) , pµn̄ ∼ Q(λ2

c , 1, λc) , pµs ∼ Q(λs, λs, λs) , (2.4)

in terms of light-cone coordinates

pµ = (p−, p+, pµ⊥) = p−
nµ

2
+ p+ n̄

µ

2
+ pµ⊥ . (2.5)

Here nµ and n̄µ are light-like vectors along the axes used to define the angularities in

eq. (2.2), and n · n̄ = 2.

The scaling of λc and λs in eq. (2.4) is fixed by the measurement: the parametric size

of the contribution of collinear or soft radiation to the angularities simplifies to

eα ∼ λαc + λs , eβ ∼ λβc + λs . (2.6)

– 5 –
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Assuming α > β for definiteness, this implies λc ∼ e
1/β
β and λs ∼ eα. A consistent theory

is obtained if λαc ∼ λs or λβc ∼ λs, which correspond to regime 3 and 1 in eq. (2.3). In

regime 2 there is an additional collinear-soft mode, whose power counting

pµn,cs ∼ Q
(
λ−cs, λ

+
cs, (λ

−
csλ

+
cs)

1/2
)
, pµn̄,cs ∼ Q

(
λ+
cs, λ

−
cs, (λ

−
csλ

+
cs)

1/2
)
, (2.7)

is uniquely fixed by requiring that it contributes to both eα and eβ ,

eαQ ∼ λ−cs(λ+
cs/λ

−
cs)

α/2 , eβ Q ∼ λ−cs(λ+
cs/λ

−
cs)

β/2 (2.8)

when λ+
cs < λ−cs. This leads to

λ−cs ∼ (e−βα eαβ)1/(α−β) , λ+
cs ∼ (e2−β

α eα−2
β )1/(α−β) , (2.9)

and λ−cs ↔ λ+
cs for the collinear-soft mode in the other direction. These extensions of SCET

have been named SCET+ [10, 47–49]. As one approaches regime 1 and 3 from regime 2,

the collinear-soft mode merges with the soft mode or the collinear mode, respectively.

2.3 Factorization

Before presenting the factorization theorems for the various regimes, we want to point out

that these all describe the full cross section up to power corrections,

d2σ

deα deβ
=

d2σ1

deα deβ

[
1 +O

(
e

min(2/β,1)
β

)]
,

d2σ

deα deβ
=

d2σ2

deα deβ

{
1 +O

[(
eβ

e
β/α
α

)αmin(2/α,1)
α−β

,

(
eα
eβ

)βmin(2/β,1)
α−β

]}
,

d2σ

deα deβ
=

d2σ3

deα deβ

[
1 +O

(
emin(2/α,1)
α

)]
. (2.10)

Regime 2 resums the most logarithms but also involves two expansions. Starting from

regime 2 and approaching either of the phase space boundaries, one of the power corrections

becomes of order one and the other smoothly matches onto the power correction for regime

1 or 3, respectively. We will discuss how to combine these formulae to obtain predictions

throughout phase space in section 2.8.

In regime 1, the power counting in eqs. (2.3) and (2.6) implies that collinear and soft

radiation both contribute to eβ but only soft radiation contributes to eα. This leads to the

following factorization theorem [9],

d2σ1

deα deβ
= σ̂0H(Q2, µ)

∫
d(Qβenβ) J(Qβenβ , µ)

∫
d(Qβen̄β) J(Qβen̄β , µ)

×
∫

d(Qesα) d(Qβesβ)S(Qesα, Q
βesβ , µ) δ(eα − esα) δ(eβ − enβ − en̄β − esβ) . (2.11)

Here, σ̂0 denotes the Born cross section, the hard function H contains hard virtual correc-

tions, the jet functions J describe the contribution of collinear radiation to eβ , and the soft

function S accounts for the contribution of soft radiation to eα and eβ . Their expressions

– 6 –
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at one loop are collected in section 2.4. The delta functions simply sum the various con-

tributions, since angularities are additive. This is basically the factorization theorem for a

single angularity eβ [22, 50], with a soft function that is differential in eα too.

Similarly, in regime 3 only collinear radiation contributes to eβ , but collinear and soft

radiation contributes to eα, leading to [9]3

d2σ3

deαdeβ
= σ̂0H(Q2,µ)

∫
d(Qenα)d(Qβenβ)J(Qenα,Q

βenβ ,µ)

∫
d(Qen̄α)d(Qβen̄β)J(Qen̄α,Q

βen̄β ,µ)

×
∫

d(Qesα)S(Qesα,µ)δ(eα−enα−en̄α−esα)δ(eβ−enβ−en̄β) . (2.12)

This is the factorization theorem for eα but with double differential jet functions.

Finally, the factorization theorem for regime 2 is given by [10]

d2σ2

deα deβ
= σ̂0H(Q2, µ)

∫
d(Qβenβ) J(Qβenβ , µ)

∫
d(Qensα ) d(Qβensβ ) S (Qensα , Q

βensβ , µ)

×
∫

d(Qβen̄β) J(Qβen̄β , µ)

∫
d(Qen̄sα ) d(Qβen̄sβ ) S (Qen̄sα , Q

βen̄sβ , µ) (2.13)

×
∫

d(Qesα)S(Qesα, µ) δ(eα − ensα − en̄sα − esα) δ(eβ − enβ − en̄β − ensβ − en̄sβ ) ,

where the collinear-soft function S accounts for the contribution of collinear-soft radiation

to eα and eβ . The jet functions J are the same as in eq. (2.11) and the soft function S is

the same as in eq. (2.12).

Expanding σ1 and σ3 in the SCET+ regime described by σ2 (when resummation is

turned off), we obtain the following consistency relations4

J(Qeα, Q
βeβ , µ) =

∫
d(Qβenβ) J(Qβenβ , µ)

∫
d(Qensα ) d(Qβensβ ) S (Qensα , Q

βensβ , µ) (2.14)

× δ(eα − ensα ) δ(eβ − enβ − en̄β)

{
1 +O

[(
eβ

e
β/α
α

) α
α−β
]}

,

S(Qeα, Q
βeβ , µ) =

∫
d(Qensα ) d(Qβensβ ) S (Qensα , Q

βensβ , µ)

∫
d(Qen̄sα ) d(Qβen̄sβ )

×S (Qen̄sα , Q
βen̄sβ , µ)

∫
d(Qesα)S(Qesα, µ)

× δ(eβ − ensβ − en̄sβ ) δ(eα − ensα − en̄sα − esα)

{
1 +O

[(
eα
eβ

)p ]}
.

We have verified these relation at one-loop order using the expressions in section 2.4. In

the second case, the power corrections turn out to vanish at this order, so we could not

determine the exponent p > 0.

3This setup was already considered in ref. [51] for initial-state radiation in pp → 0 jets with α = 2 and

β = 1.
4The power corrections to this equation are smaller than in eq. (2.10), because the former describes the

power corrections of regime 2 with respect to 1 and 3, whereas the latter also contains the power corrections

with respect to the full cross section.

– 7 –
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2.4 Fixed-order ingredients

In this section we collect all fixed-order ingredients needed for our numerical analysis, some

of which we calculated ourselves. We use the perturbative expansion

F =
∑
n

(
αs(µ)

4π

)n
F (n) , (2.15)

where F = H,J, S,S , and give F (0) and F (1). The following shorthand notation for plus

distributions is used

Ln(x) ≡
[

lnn x

x

]
+

. (2.16)

These functions have been computed before. In our independent calculations, however, we

found some typos in the literature concerning the double differential jet and soft functions,

which we correct here. All one-loop ingredients are presented in the form we implemented

in our numerical analysis, and are written in such a way to make it straightforward to carry

out the convolutions appearing in formulae for the factorized cross section.

2.4.1 Hard function

The hard function entering all aforementioned factorization theorems encodes virtual cor-

rections in the qq̄- production at the hard scale Q, and is given by the square of the Wilson

coefficient in the matching of QCD onto SCET currents [52, 53],

H(0)(Q2, µ) = 1 ,

H(1)(Q2, µ) = 2CF

(
− ln2 Q

2

µ2
+ 3 ln

Q2

µ2
− 8 +

7π2

6

)
. (2.17)

2.4.2 Jet functions

The single differential jet function in eqs. (2.11) and (2.13) is [35]

J (0)(Qβeβ , µ) = δ(Qβeβ) ,

J (1)(Qβeβ , µ) =
6CF

β(β − 1)

{
4

3

1

µβ
L1

(
Qβeβ
µβ

)
+ (1− β)

1

µβ
L0

(
Qβeβ
µβ

)
+

[
1− 19

6
β +

13

6
β2

+ π2

(
− 1

9
+
β

3
− β2

4

)
+ (1− β) ln 2

]
δ(Qβeβ)

}
. (2.18)

Note that the constant terms differ from those obtained in ref. [22] because we employ the

WTA axis. For angularities with α & 2, this is the only difference between using the thrust

axis or the WTA axis in the factorization formula.5

5This is a consequence of consistency: since the hard and soft functions are insensitive to such axis

choice, this cannot affect the anomalous dimensions and thus logarithmic terms.
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The double differential jet function in eq. (2.12) is given by [9]6

J (0)(Qeα,Q
βeβ ,µ) = δ(Qeα)δ(Qβeβ) ,

J (1)(Qeα,Q
βeβ ,µ) =

4CF
Qβ+1

d

deβ

d

deα

(
1

α(α−1)
ln2 eα+

1

24α(α−1)

[
6α ln

Q2

µ2

(
α ln

Q2

µ2
+3(1−α)

)
+6(α−1)(13α−6−6ln2)−(2−3α)2π2

]
+θ

(
2
α−β
β e

α
β

β −eα
)

1

2α(α−1)

(
2α ln

Q2

µ2
+3(1−α)

)
lneα

+θ

(
eα−2

α−β
β e

α
β

β

)
1

6αβ(α−β)(α−1)
e

−β
α−β
α

{
−6(α−1)β2 e

β
α−β
α ln2 eα

+(α−1)

[
(α−β)2

(
18e

α
α−β
β +(π2−9−9ln2)e

β
α−β
α

)
−9α(α−β)e

β
α−β
α lneβ

−6α2 e
β

α−β
α ln2 eβ

]
+12αβ

[
(α−1) lneβ+

α−β
2

ln
Q2

µ2

]
e

β
α−β
α lneα

−12(α−1)(α−β)2 e
β

α−β
α Li2

(
e

−β
α−β
α e

α
α−β
β

)})
. (2.19)

In principle one can perform the derivatives, but we find it more convenient to work the

cumulative distributions to avoid complicated plus distributions. Note that we can perform

the necessary convolutions using cumulative distributions, as discussed in section 2.5.3.

Integrating the double differential jet function over eβ yields the single differential jet

function of eα [51] ∫
d(Qβeβ) J (1)(Qβeβ , Qeα, µ) = Qα−1 J (1)(Qαeα, µ) . (2.20)

This is obvious from comparing eq. (2.11) with the factorization theorem for a single

angularity eα, as the only difference is that the double differential jet function is replaced

by this single differential jet function.

2.4.3 Soft functions

The soft function encodes the effects of soft radiation, which is described by a matrix

element of eikonal Wilson lines (along the two outgoing quarks) on which the appropriate

measurement is performed. The soft function for a single angularity in eqs. (2.12) and (2.12)

is given by [22]7

S(0)(Qeα, µ) = δ(Qeα) ,

S(1)(Qeα, µ) =
CF
α− 1

[
− 16

µ
L1

(
Qeα
µ

)
+
π2

3
δ(Qeα)

]
. (2.21)

6We have calculated this independently, as eqs. (A.6) through (A.9) and (A.14) of ref. [9] contain typos.
7Note that our convention for α differs from ref. [22] by α→ 2− α.
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For the double differential soft function in eq. (2.11) one obtains [9]6

S(0)(Qeα, Q
βeβ , µ) = δ(Qeα)δ(Qβeβ) ,

S(1)(Qeα, Q
βeβ , µ) = CF

{[
− 16

(β − 1)

1

µβ
L1

(
Qβeβ
µβ

)
+ 8 ln

Q2

µ2

1

µβ
L0

(
Qβeβ
µβ

)
+

(
−2(β − 1) ln2 Q

2

µ2
+

π2

3(β − 1)

)
δ(Qβeβ)

]
δ(Qeα)

− 8

α− β
d

d(Qeα)

d

d(Qβeβ)
θ(eα)θ(eβ − eα)

[
ln
Qeα
µ
− ln

Qβeβ
µβ

+
1

2
(β − 1) ln

Q2

µ2

]2}
. (2.22)

Note that this expression is more complicated because we chose to write it in terms of Qβeβ
instead of Qeβ . In particular, the first two lines of the one-loop expression correspond

directly to the single differential soft function in eq. (2.21), but for eβ .

Integrating the double differential soft function over eα produces the single differential

soft function of eβ [10],∫
d(Qeα)S(1)(Qβeβ , Qeα, µ) = Q1−βS(1)(Qeβ , µ) . (2.23)

This is obvious from comparing eq. (2.11) with the factorization theorem for a single

angularity eβ , as the only difference is that the double differential soft function is replaced

by this single differential soft function.

2.4.4 Collinear-soft function

Finally, the collinear-soft function that enters in eq. (2.13) is given by [54]

S (0)(Qeα,Q
βeβ ,µ) = δ(Qeα)δ(Qβeβ) , (2.24)

S (1)(Qeα,Q
βeβ ,µ) =CF

{(
− 8

β−1
− 8

α−β

)
δ(Qeα)

1

µβ
L1

(
Qβeβ
µβ

)
+

(
8

α−1
− 8

α−β

)
δ(Qβeβ)

1

µ
L1

(
Qeα
µ

)
+

8

α−β
1

µ
L0

(
Qeα
µ

)
1

µβ
L0

(
Qβeβ
µβ

)
+

4(α−1)

α−β
ln
Q2

µ2
δ(Qeα)

1

µβ
L0

(
Qβeβ
µβ

)
−4(β−1)

α−β
ln
Q2

µ2
δ(Qβeβ)

1

µ
L0

(
Qeα
µ

)
+

[
π2(α−β)

6(α−1)(β−1)
− (α−1)(β−1)

α−β
ln2 Q

2

µ2

]
δ(Qeα)δ(Qβeβ)

}
.

This is the simplest double differential function, as it contains pure logarithms. To see that

it involves a single scale, it is the easiest to consider the double cumulative distribution,

which only involves logarithms of eβ−1
α e1−α

β (Q/µ)β−α.

2.5 Resummation

The factorization theorems enable the resummation of large logarithms of eα and eβ through

renormalization group (RG) evolution, since each ingredient is only sensitive to a single
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scale. By evaluating the ingredients at their natural scale, where they contain no large

logarithms, and evolving them to a common scale, these logarithms get exponentiated. In

this section we give the form of anomalous dimensions and evolution kernels, with explicit

expressions provided in appendix A. We also discuss how to perform convolutions with

cumulative distributions.

2.5.1 Anomalous dimensions

The RG equation of the hard function is

µ
d

dµ
H(Q2, µ) = γH(Q2, µ)H(Q2, µ) ,

γH(Q2, µ) = 2Γcusp(αs) ln
Q2

µ2
+ γH(αs) . (2.25)

Here Γcusp is the cusp anomalous dimension [55], and γH(αs) the non-cusp contribution.

Similarly, for the jet functions

µ
d

dµ
J(Qβeβ , µ) =

∫ eβ

0
d(Qβe′β) γJ(Qβeβ −Qβe′β , µ) J(Qβe′β , µ) ,

µ
d

dµ
J(Qeα, Q

βeβ , µ) =

∫ eβ

0
d(Qβe′β) γJ(Qβeβ −Qβe′β , µ) J(Qeα, Q

βe′β , µ) ,

γJ(Qβeβ , µ) = − 2

β − 1
Γcusp(αs)

1

µβ
L0

(
Qβeβ
µβ

)
+ γJ(αs, β) δ(Qβeβ) , (2.26)

for the soft functions

µ
d

dµ
S(Qeα, µ) =

∫ eα

0
d(Qe′α) γS(Qeα −Qe′α, µ)S(Qe′α, µ) ,

µ
d

dµ
S(Qeα, Q

βeβ , µ) =

∫ eα

0
d(Qe′α) γS(Qeα −Qe′α, µ)S(Qe′α, Q

βeβ , µ) ,

γS(Qeα, µ) =
4

α− 1
Γcusp(αs)

1

µ
L0

(
Qeα
µ

)
+ γS(αs, α) δ(Qeα) , (2.27)

and for the collinear-soft function

µ
d

dµ
S (Qeα,Q

βeβ ,µ) =

∫ eα

0
d(Qe′α)

×
∫ eβ

0
d(Qβe′β)γS (Qeα−Qe′α,Qβeβ−Qβe′β ,µ)S (Qe′α,Q

βeβ ,µ),

γS (Qeα,Q
βeβ ,µ) = Γcusp(αs)

[
− 2

α−1

1

µ
L0

(
Qeα
µ

)
δ(Qβeβ)+

2

β−1
δ(Qeα)

1

µβ
L0

(
Qβeβ
µβ

)
− ln

Q2

µ2
δ(Qeα)δ(Qβeβ)

]
+γS (αs,α,β)δ(Qeα)δ(Qβeβ) . (2.28)

Using these expressions, one can verify that the cross sections in eq. (2.11), (2.12)

and (2.13) are µ-independent up to the order that we are working, if the following relations

hold

γH(αs) + 2γJ(αs, α) + γS(αs, α) = 0 ,

γH(αs) + 2γJ(αs, β) + 2γS (αs, α, β) + γS(αs, α) = 0 . (2.29)
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We have checked this equation at one-loop order, and use it to extract the two-loop non-cusp

anomalous dimensions, taking the known results for the hard function and soft function

to fix all the others. We stress that an essential ingredient to achieve NNLL accuracy in

our analysis is provided by the novel calculation of the two-loop soft anomalous dimension

in [56]. Cusp and non-cusp contributions to the anomalous dimensions are collected in

appendix A.

2.5.2 Evolution equations

For the hard function, the solution to RG equation in eq. (2.25) is given by

H(µ) = H(µ0) exp
[
KH(µ, µ0)

](µ0

Q

)ωH(µ,µ0)

. (2.30)

Here KH and ωH are given by

K(µ, µ0) = −4KΓ(µ, µ0) +KγH (µ, µ0) , ωH(µ, µ0) = −4 ηΓ(µ, µ0) , (2.31)

where γH in the subscript denotes the non-cusp anomalous dimension and

KΓ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γcusp(αs)

∫ αs

αs(µ0)

dα′s
β(α′s)

, ηΓ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γcusp(αs) ,

KγF (µ, µ0) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

γF (αs) . (2.32)

These integrals can be performed analytically in a perturbative expansion, see appendix A.

Similarly for the jet and soft function (F = J, S),

F (tF , µ) =

∫
dt′FUF (tF − t′F , µ, µ0)F (t′F , µ0) , (2.33)

where tJ = Qβeβ , tS = Qeα. The evolution kernel UF is given by

UF (tF , µ, µ0) =
exp [KF (µ, µ0) + γEωF (µ, µ0)]

Γ[1− ωF (µ, µ0)]

[
−ωF (µ, µ0)

µjF0
L−ωF (µ,µ0)

(
tF

µjF0

)
+ δ(tF )

]
.

(2.34)

where jJ = β and jS = 1. We use the plus distribution

Lη(x) ≡
[
θ(x)

x1−η

]
+

(2.35)

and

KJ(µ, µ0) =
2β

β − 1
KΓ(µ, µ0) +KγJ (µ, µ0) , ωJ(µ, µ0) =

2

β − 1
ηΓ(µ, µ0) ,

KS(µ, µ0) =
4

1− α
KΓ(µ, µ0) +KγS (µ, µ0) , ωS(µ, µ0) =

4

1− α
ηΓ(µ, µ0) . (2.36)

We do not need the evolution kernel for the collinear-soft function, as we choose the

collinear-soft scale as the endpoint of our evolution.

– 12 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
8

2.5.3 Convolutions with cumulative distributions

The most complicated step in our numerical evaluations is the convolution of the evolution

kernel in eq. (2.34) with the one-loop double differential jet and soft functions in eqs. (2.19)

and (2.22). To avoid subtleties with plus functions, we perform these convolutions using

cumulants, as follows. For the cumulative distributions F and G, if we want to perform

the convolution of F ′ and G′ and take the cumulant of the result, we can rewrite∫ yc

0
dy

∫ y

0
dxF ′(x)G′(y − x) =

∫ yc

0
dx

∫ yc−x

0
dy F ′(x)G′(y) =

∫ yc

0
dxF ′(x)G(yc − x)

= F (yc)G(yc) +

∫ yc

0
dxF ′(x)[G(yc − x)−G(yc)] . (2.37)

Note that since G(yc − x) − G(yc) vanishes for x → 0, the final integral does not require

a plus prescription for F ′(x). In our case it is convenient to take G to be the cumulant of

the double differential jet or soft function, so its derivative is never needed.

2.6 The next-to-leading order cross section

In this section we first present the calculation of the double angularity cross section at

NLO. We subsequently decompose this result into a singular and nonsingular component.

By adding the latter to our resummed cross section, the matching at NLO is achieved. We

also give the nonsingular contribution for single angularity measurements.

2.6.1 Calculation

Since the virtual corrections are already included in our factorization theorems, we only

need the real contribution to calculate the double differential cross section at O(αs). The

final state consists of three massless partons, which can be characterized by their energy

fractions xi in the center of mass frame, normalized to x1 + x2 + x3 = 2. Assuming x1 ≥
x2 ≥ x3, partons 2 and 3 get clustered together into one jet by exclusive kT algorithm [57],

because the angle θ23 is smaller than θ12 and θ13. The other jet then only consists of parton

1. Due to the WTA recombination scheme, the jet axes are along the momenta of particles

1 and 2, so that the angularity is determined by the energy fraction x3 and the angle θ23,

eα =
1

2
x3 (1− cos2 θ23)1−α/2(1− | cos θ23|)α−1 , cos θ23 =

2(x1 − 1)

x2x3
+ 1 . (2.38)

The cross section is then calculated numerically using

d2σ

dxq dxq̄
= σ̂0

αsCF
2π

x2
q + x2

q̄

(1− xq)(1− xq̄)
+O(α2

s) , (2.39)

for xq, x̄q < 1. Specifically, we sample logarithmically in 1 − xq and 1− xq̄, using a cutoff

that is outside our plot ranges.

Our result is shown in figure 3 for three pairs of angularities with exponents (α, β).

From the double differential jet and soft function in eqs. (2.19) and (2.22), we see that in

the resummation regime the phase-space boundaries are

eβ ≥ eα ≥ 2
α−β
β e

α
β

β , (2.40)
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Figure 2. The full NLO (red solid), the NLO singular (blue dashed) and nonsingular (green dotted)

cross sections, for four angularities β = 0.5, 1.2, 2 and 3.

at one-loop order. Note that the lower boundary is slightly shifted compared to the canon-

ical expression in eq. (2.3). The upper boundary eβ ≥ eα corresponds to cos θ23 = 0 and

not to one of the phase-space boundaries (x1 = x2 or x1 = 2− 2x2).

At NNLO, the phase-space boundaries in the resummation regime are

eβ ≥ eα ≥ e
α
β

β . (2.41)

The lower boundary follows from considering two one-loop jet functions, whose contribution

eαi , eβi to the respective hemispheres each satisfies eq. (2.40).8

2.6.2 Fixed-order nonsingular

We start by showing the nonsingular cross section for a single angularity in figure 2, for

four representative angularity exponents β = 0.5, 1.2, 2 and 3. Here Q = 1000 GeV.9 The

full NLO cross section is normalized to 1. The singular and nonsingular cross sections are

rescaled by the same amount as the full NLO. For small values of the angularities, the

singular contribution to the cross section dominates and the nonsingular cross section is

8Contributions from a tree-level jet function combined with a two-loop jet function also satisfy eq. (2.41).
9All plots in this paper are for Q = 1000 GeV, unless another Q value is explicitly specified.
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Figure 3. The full NLO and NLO nonsingular cross sections, for three pairs of angularities (α, β) =

(2, 0.5), (2, 1.2) and (3, 2).

power suppressed, demonstrating the validity of the factorization theorem at this order.10

On the other hand, at large values of the angularity, the singular and nonsingular contri-

butions become equal in size, and matching to the NLO is important to correctly describe

the cross section in this region. Indeed beyond the endpoint of the distribution, where

the cross section vanishes, the singular and nonsingular are exactly equal and opposite in

sign. Thus the resummation must be turned off in this region through an appropriate scale

choice (see section 2.7.1) to maintain this cancellation. The bump in the cross section in

the fixed order region arises because we use the WTA axis rather than the thrust axis.

(This bump corresponds to the Sudakov shoulder observed in ref. [28].)

Moving on to two angularities, figure 3 shows the total NLO cross sections and the

corresponding NLO nonsingular for (α, β) = (2, 0.5), (2, 1.2) and (3, 2). The singular cross

section is not shown separately as its shape can be derived by comparing the total NLO

with the NLO nonsingular cross section. It happens to be constant in the SCET+ region

in this double-logarithmic plot. As expected, the nonsingular is relevant in the fixed-order

region of phase-space, where the angularities are large. The feature which we observe in the

fixed-order region is the two-dimensional analogue of the bump we saw for one angularity.

It occurs for the WTA axis, where regions in phase space in which two particles carry the

same energy fractions (x1 = x2 or x2 = x3) lead to those sharp edges.

10The noise in the nonsingular at small values of the angularity is due to the limited statistics of Monte

Carlo integration, and is irrelevant for our final results.
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2.7 Scales and uncertainties

In this section we specify the central scale choices used to achieve resummation, and de-

scribe in detail the scale variations used to estimate the perturbative uncertainty. Since the

spectra we are dealing with have distinct kinematic regions where resummations must be

handled differently, we use angularity-dependent soft and jet scales given by “profile func-

tions”, a method previously applied to e.g. the thrust event shape [26] and the B → Xsγ

spectrum [58]. We start with the single angularity distribution and then extend our discus-

sion to the case of two angularities, introducing profile functions depending simultaneously

on both eα and eβ . The hard scale is µH = Q and will not be varied to estimate the

resummation uncertainties.

2.7.1 Single angularity

The canonical scales for the single-eβ resummation are

µcan
J = Qe

1/β
β , log10(µcan

J /Q) = 1/β Lβ

µcan
S = Qeβ , log10(µcan

S /Q) = Lβ (2.42)

with Lβ ≡ log10 eβ . Given these expressions, we find it convenient — in particular in view

of the case of two angularities discussed later — to construct profile functions in terms of

the logarithms of the angularities, rather than the angularities themselves.

For the central value of our predictions we take

log10(µJ/Q) = 1/β Lβ × h
(
Lβ , t1, t3

)
,

log10(µS/Q) = Lβ × h
(
Lβ , t1, t3

)
. (2.43)

The function

h(t, t1, t3) =


1 t ≤ t1 ,

− (t− t3)2

(t1 − t3)3
(2t− 3t1 + t3) t1 ≤ t ≤ t3 ,

0 t ≥ t3 .

(2.44)

smoothly connects the canonical region t ≤ t1 to the fixed-order region t ≥ t3 using a cubic

polynomial.

For t1 we take the value of eβ where the NLO nonsingular cross section is 10% of the

NLO singular cross section (see figure 2). This leads to

(β, t1) = (0.5,−0.795) , (1.2,−0.82) , (2,−0.90) , (3,−0.98) . (2.45)

For the t3 parameter, we take the point where the NLO singular vanishes, which is

t3 = −0.33 (2.46)
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for all angularities. To simplify our scale choices in the double differential case, we do

not introduce a profile to handle the transition to the nonperturbative regime but instead

freeze αs below 2 GeV to avoid the Landau pole.11

We now consider a range of scale variations to estimate the perturbative uncertainty.

(i) Fixed-order uncertainty: we simultaneously vary all scales µi, including µH , by a fac-

tor of 2 or 1/2. This variation smoothly transitions into the fixed-order uncertainty in

the region where the resummation is turned off, since there only a single scale remains.

(ii) Resummation uncertainty: following refs. [59, 60], we vary the jet and soft scale

according to

log10(µvary
J /Q) = (1/β − b)

[
β log10(µJ/Q) + a fvary(Lβ , t1, t3)

]
,

log10(µvary
S /Q) = log10(µS/Q) + a fvary(Lβ , t1, t3) (2.47)

where we take the following values for the parameters a and b

(a,b) = (min(β,1),0) , (−min(β,1),0) ,

(
0,

(β−1)

3β

)
,

(
0,−(β−1)

3β

)
, (2.48)

and

fvary(t, t1, t3) = log10 2× h(t, t1, t3) . (2.49)

This form of fvary corresponds to a factor 2 variation in the canonical region but no

variation in the fixed-order region, where we are not allowed to vary µH , µJ and µS
independently of each other, and a smooth transition in between.

For a = b = 0, eq. (2.47) reproduces our central scale choice. Scale variations with

a 6= 0 and b = 0 preserve the canonical relation(
µJ
µH

)β
=
µS
µH

. (2.50)

We choose the size of these variations in eq. (2.48) such that the smallest scale varies

by a factor of 2 or 1/2 in the canonical region.12 Setting a = 0 and b 6= 0 does not

preserve eq. (2.50). We also impose that these variations vanish for β → 1, since

µS and µJ coincide in this limit, and agree with the choice for thrust in ref. [59].

Furthermore, the deviations from eq. (2.50) for β > 1 are required to be of the same

size as the deviations from (
µS
µH

)1/β

=
µJ
µH

(2.51)

for β < 1.

11Alternatively we could have constructed the profiles as a direct extension of those for thrust in ref. [59]

to other values of β, i.e. µJ = Qfrun(t)1/β , µS = Qfrun(t), with frun in ref. [59]. In this case the transition

to fixed order would be done in eβ instead of log10 eβ , two quadratics instead of a cubic are used in the

transition region, and the transition to the nonperturbative regime is also handled by frun. We have checked

that the difference between these profile choices is very small (compared to our uncertainties).
12For β < 1 the smallest scale is the jet scale.
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log10(µcan
J /Q) log10(µcan

S /Q) log10(µcan
S /Q)

1 1/βLβ Lβ

2 1/βLβ (1− β)/(α− β)Lα + (α− 1)/(α− β)Lβ Lα

3 1/αLα Lα

Table 2. Canonical scales for the measurement of two angularities in the three regions, with

Lα ≡ log10 eα and Lβ ≡ log10 eβ .

(iii) Variations of the transition points: since there is also a certain amount of arbitrari-

ness in choosing the transition points t1 and t3, these get varied as well (but only one

at a time). For t1 we consider the following alternatives to eq. (2.45)

(β, t1) = (0.5,−0.645) , (1.2,−0.700) , (2,−0.820) , (3,−0.98) ,

(β, t1) = (0.5,−0.975) , (1.2,−0.98) , (2,−0.98) , (3,−1.06) , (2.52)

depending on β. These values correspond to the points where the NLO nonsingular

is 20% and 5% of NLO singular, respectively. The parameter t3 is alternately set

(β, t3) = (0.5,−0.405) , (1.2,−0.5) , (2,−0.5) , (3,−0.5) , (2.53)

This corresponds to the point where the total NLO cross section vanishes.

Our final uncertainty band is obtained by adding the fixed-order uncertainty in quadrature

to the resummation uncertainty, which is obtained by taking the envelope of the a and b

variations above, and the variations of the transition points. The resummation uncertainty

is dominated by the a and b variations, whereas the uncertainty from the variations of

the transition points is rather small (but still contributes to the envelope in parts of the

transition region).

2.7.2 Two angularities

Next we consider the case where two angularities are measured. We will first construct

running scales for the central value of our prediction, using the canonical values of the

scales in the three regimes listed in table 2 as a starting point. Although in regime 1

µS ∼ eαQ ∼ eβQ, we choose µS ∼ eβQ as our canonical scale because the resummation in

this regime is governed by eβ (and conversely the jet scale in regime 3 involves eα). The

collinear-soft scale merges with the soft scale in region 1 and with the jet scale in region 3.

We take for the jet and soft scale

log10

µJ
Q

= g

[
Lβ ,

1

β
,

1

α
Lα, Lα + t̃R3

[
log10

(
2(β−α)/αeβ/αα

)
− Lα

]
, log10

(
2(β−α)/αeβ/αα

)]
× h
[
min(Lα, Lβ), t̃1, t̃3

]
,

log10

µS
Q

= g

[
Lα, 1, Lβ , log10

(
2(α−β)/βe

α/β
β

)
+ t̃R1

[
Lβ − log10

(
2(α−β)/βe

α/β
β

)]
, Lβ

]
× h
[
min(Lα, Lβ), t̃1, t̃3

]
, (2.54)
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and we fix the collinear-soft scale using the canonical relation

log10

µS

Q
=

1− β
α− β

log10

µS
Q

+
(α− 1)β

α− β
log10

µJ
Q
. (2.55)

The transition between the SCET regions is handled by the function g,

g(x,a,b,x1,x2) =


ax x≤x1 ,

b− (x−x2)2

(x1−x2)3
[a(xx1 +xx2−2x2

1)+b(−2x+3x1−x2)] x1≤x≤x2 ,

b x≥x2 .

(2.56)

In the intermediate region, x1 ≤ x ≤ x2, g is given by the cubic polynomial that is

continuous and has a continuous derivative. The first three arguments of g in eq. (2.54)

directly follow from the canonical scales in table 2. The transition points x1 were chosen as

a fraction t̃R1/R3 of the total distance (in logarithmic space) between the two phase-space

boundaries in eq. (2.40). For the central profiles we choose t̃R1 = 0.8 and t̃R3 = 0.95,

which corresponds roughly to the region where the nonsingular terms (from the boundary

regimes) are 10% of the singular one. The transition points x2 were chosen at the phase-

space boundary. For example, for µS we start the transition at

ln eα − log10

(
2(α−β)/βe

α/β
β

)
= t̃R1

[
log10 eβ − log10

(
2(α−β)/βe

α/β
β

)]
, (2.57)

and end at eα = eβ . With the definition above, the profile scales remain constant at

their canonical regime 3 values, beyond the NLO phase-space boundary, such that the eα
resummation is turned off here. This implies in particular that also the NLL results know

about the NLO phase-space boundary. We will add a comment below, how our results

change if the canonical (instead of NLO) phase-space boundary would have been used in

the profile scales.

The transition to the fixed-order region is controlled through the function h in

eq. (2.44). Due to the argument of h in eq. (2.54), the fixed-order region

min(Lα, Lβ) ≥ t̃3 (2.58)

has a square shape. We have checked that other choices have minimal impact on the result.

The transition points are taken from the single angularity case: for t̃1 we take the minimum

(which corresponds to a larger transition region) of t1 for the single angularities eα and eβ
from eq. (2.45), and t̃3 = t3 = −0.33.

As for the single angularity spectrum, several scale variations are taken into account.

(i) Fixed-order uncertainty: we simultaneously vary all scales µi by a factor of 2 or 1/2.
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(ii) Resummation uncertainty: extending the one-dimensional case, jet, collinear-soft and

soft scales are varied according to

log10

µvary
J

Q
= (1−hJ)(1/α−b(α))

[
α log10

µJ
Q

+a(α)fvary(Lα, t̃1, t̃3)

]
+hJ(1/β−b(β))

[
β log10

µJ
Q

+a(β)fvary(Lβ , t̃1, t̃3)

]
,

log10

µvary
S

Q
= (1−hS)

[
log10

µS
Q

+a(β)fvary(Lβ , t̃1, t̃3)

]
+(1−hJ)(1/α−b(α))

[
α log10

µJ
Q

+a(α)fvary(Lα, t̃1, t̃3)

]
+hS hJ

{
log10

µS

Q
+

(1−β)

α−β
a(α)fvary(Lα, t̃1, t̃3)

+
(α−1)

α−β
a(β)fvary(Lβ , t̃1, t̃3)

}
,

log10

µvary
S

Q
= log10

µS
Q

+hSa(α)fvary(Lα, t̃1, t̃3)+(1−hS)a(β)fvary(Lβ , t̃1, t̃3) , (2.59)

with a(α) = ±min(α, 1), b(α) = ±(α − 1)/(3α), as in the single angularity case in

eq. (2.48). The transitions are governed by the functions

hS = h

[
Lα, log10

(
2(α−β)/βe

α/β
β

)
+ t̃R1

[
Lβ − log10

(
2(α−β)/βe

α/β
β

)]
, Lβ

]
,

hJ = h

[
Lβ , Lα + t̃R3

[
log10

(
2(β−α)/αeβ/αα

)
− Lα

]
, log10

(
2(β−α)/αeβ/αα

)]
(2.60)

which have the property that hJ = 1 in regime 1 and 2, and 0 in regime 3, and hS = 1

in regime 2 and 3, and 0 in regime 1. Thus the scale variations in regime 1 and 3 in

eq. (2.59) are the usual single angularity ones. In these regimes the collinear-soft scale

is not independent and thus needs to be varied in tandem with the soft or jet scale

it has merged with. In the intermediate regime we have used eq. (2.55) to determine

the collinear-soft scale, but setting b = 0 there. This is necessary, because otherwise

µS is varied by much more than a factor of 2 when the angularity exponents α and

β are close to each other.

(iii) Variations of the transition points: we vary t̃1, using the maximal and the minimal

value of the t1 variations of the two single angularities considered in section 2.7.1.

Similarly, for t̃3 we use the variation of each of the single angularities. To vary the

transition between the boundary theories, we vary t̃R1/R3 by taking t̃R1 = 0.7, 0.9

or t̃R3 = 0.9. These values are motivated by looking at the contour where the

nonsingular terms are 10% of the singular one (focusing on the resummation region).

As in the one-dimensional case, the total uncertainty is obtained by adding the fixed-order

uncertainty in quadrature to the envelope of the resummation variations and the variations

of the transition points.
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2.7.3 Differential vs. cumulant scale setting

We implement our choice of scales at the differential level, i.e. we calculate d2σ/(deα deβ)

using scales evaluated at eα and eβ . An alternative is to use cumulant scale setting,

Σ(ecα, e
c
β) =

∫ ecα

0
deα

∫ ecβ

0
deβ

d2σ

deα deβ
, (2.61)

evaluating the scales at ecα and ecβ . Differentiating this introduces derivatives of the scales,

d2Σ

deα deβ
=

d2σ

deα deβ
+
∑
i

d2Σ

d lnµi deβ

d lnµi
deα

+
∑
j

d2Σ

deα d lnµj

d lnµj
deβ

+
∑
i,j

d2Σ

d lnµi d lnµj

d lnµi
deα

d lnµj
deβ

. (2.62)

For the unprimed orders in table 3, such as NNLL, differential scale setting does not capture

all the logarithms, as discussed in detail in e.g. ref. [23]. However, our scales in sections 2.7.1

and 2.7.2 undergo fairly rapid changes in transition regions, leading to artefacts from the

terms involving the derivatives of scales, when using the cumulant scale setting.

We investigate this issue by supplementing our cross section with differential scale

setting with the additional terms on the right-hand side of eq. (2.62). By using the canon-

ical scales to determine the scale derivates d ln µi,j/deα,β in these terms, we maintain the

required formal accuracy while avoiding artefacts from derivatives of our profile scales

encountered with cumulative scale setting. For example, in region 2

d lnµJ
deα

= 0 ,
d lnµJ

deβ
=

1

βeβ
d lnµS

deα
=

1− β
(α− β)eα

,
d lnµS

deβ
=

α− 1

(α− β)eβ
d lnµS

deα
=

1

eα
,

d lnµS
deβ

= 0 . (2.63)

In figure 4 we compare the standard differential scale setting (left panel) and cumulative

scale setting in eq. (2.61) (right panel) to the alternative procedure we just described

(middle panel). The cumulative scale setting leads to clear artefacts in the transition to

fixed-order and to the boundaries of phase space, which are due to the derivatives of profiles

scales in eq. (2.62), which undergo a rapid transition. For example, the boundary of the

box in eq. (2.58) is clearly visible. Our alternative approach avoid these artefacts, by using

canonical scales in the derivatives of scales. However, the alternative approach has a major

disadvantage: since the canonical scales do not turn off properly in the fixed-order region,

the singular-nonsingular cancellation is spoiled there. Thus we are left with using standard

differential scale setting in the results presented in section 3, even though not all logarithms

are captured.

2.8 Matching

Given that we have a different factorization theorem for each of the regions of phase space,

we would like to obtain an expression for the cross section which is valid everywhere. This
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Fixed-order Non-cusp Cusp Beta

LL tree - 1-loop 1-loop

NLL tree 1-loop 2-loop 2-loop

NLL′ 1-loop 1-loop 2-loop 2-loop

NNLL 1-loop 2-loop 3-loop 3-loop

NNLL′ 2-loop 2-loop 3-loop 3-loop

Table 3. Perturbative ingredients needed at different orders in resummed perturbation theory.

The columns correspond to the loop order of the fixed-order ingredients, the non-cusp and cusp

anomalous dimensions, and the QCD beta function.

Figure 4. NNLL cross section with differential scale setting (left), with differential scale setting

plus extra NNLL terms in eq. (2.62) evaluated using canonical scales (center) and with cumulative

scale setting (right).

is achieved by matching the cross section predictions from the various regions [61]

σ = σ2(µR2
J , µR2

S , µR2
S )

+
[
σ1(µR2

J , µR1
S )− σ2(µR2

J , µR1
S , µR1

S )
]

+
[
σ3(µR3

J , µR2
S )− σ2(µR3

J , µR2
S , µR3

J )
]

+
[
σFO(µFO)− σ1(µFO, µFO)− σ3(µFO, µFO) + σ2(µFO, µFO, µFO)

]
, (2.64)

where each of the cross sections is differential in eα and eβ . The first line describes the cross

section for regime 2, using the scales which are appropriate for this regime. The second

line ensures that in regime 1 we reproduce the correct cross section. This is achieved by

including the nonsingular contribution obtained by adding the cross section of regime 1

and subtracting the one of regime 2 evaluated at the scales of regime 1 (i.e. the overlap).

Note that in regime 1, the R2 scales merge into the R1 scales, such that the second term on

the second line cancels against the first line. This procedure is similar to the construction

of the fixed-order nonsingular when a single type of logarithm is resummed. Similarly, the

third line describes the nonsingular correction from the regime 3 boundary of phase space.
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Figure 5. NNLL cross section in regime 2 (left) and nonsingular corrections from regimes 1 (center)

and 3 (right), corresponding to the second and third line of eq. (2.64).

The last line corresponds to the fixed-order nonsingular, shown in figure 3 above. A smooth

transition between the regimes is achieved by the profile scales discussed in section 2.7.

In figure 5 we show the contributions (besides the fixed-order nonsingular, already

discussed in section 2.6.2) which make up the total NNLL cross section.13 As shown in

the left panel, in the bulk of the phase space the cross section is already captured by the

regime 2 cross section. The nonsingulars from regimes 1 and 3 correct the regime 2 cross

section close to the phase space boundaries and cause the cross section to vanish outside

the boundaries.

2.9 Nonperturbative effects

We have also studied the effect of nonperturbative corrections, which we first discuss for

single angularities before extending to the double angularity cross section. We restrict to

eα with α > 1 because only in this case does the soft function capture the (dominant)

nonperturbative corrections. We can factorize the soft function [58, 62, 63]

S(Qeα, µ) =

∫
dQe′α S

pert(Qeα −Qe′α, µ)F (Qe′α) (2.65)

into its perturbative contribution Spert and nonperturbative contribution F . F is domi-

nated by momenta of the order Qe′α . ΛQCD, and its integral must be one, since nonpertur-

bative effects do not change the total cross section. Expanding eq. (2.65) for Qeα � ΛQCD,

S(Qeα, µ) = Spert(Qeα − Ωα, µ)

[
1 +O

(
Λ2

QCD

Q2e2
α

)]
, Ωα =

∫
dQe′αQe

′
α F (Qe′α) , (2.66)

where the leading nonperturbative correction is characterized by the parameter Ωα, with

a calculable dependence on α [64–67]14

Ωα =
2

α− 1
Ω . (2.67)

13The total NNLL cross section will be shown and discussed later, but can also already be seen in the

left panel of figure 4. However, note the different color range.
14As is clear from our definition in eq. (2.2), hadron-mass effects are treated in the E-scheme. Eq. (2.67)

therefore still holds when accounting for hadron mass effects [67].
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Figure 6. The leading nonperturbative parameter Ωα extracted from Pythia.

We take Ω = 0.323 GeV with 16% uncertainty [26]. Since a shift is rather crude, we

implement nonperturbative effects in our analysis using the following functional form for

the nonperturbative contribution F in eq. (2.65)15

F (Qeα) =
4Qeα
Ω2
α

e−2Qeα/Ωα , (2.68)

which is normalized and has the first moment required by eq. (2.66).

We have tested eq. (2.67) using Pythia, applying two methods to extract Ωα.

Method 1: Ωα is obtained by taking the difference of the first moment of Pythia cross

sections at hadron- and parton-level,

Ωα ≈ Q
∫

deα eα

(
dσhadr

deα
− dσpart

deα

)
. (2.69)

This follows directly from eq. (2.65) and the definition of Ωα in eq. (2.66), but it assumes

that the convolution in eq. (2.65) is also valid for the nonsingular cross section. The

resulting distribution for Ωα, shown in figure 6, approximately exhibits the α-dependence

of eq. (2.67). However, it clearly breaks down for large values of α, where Ωα becomes

negative. One possible explanation is that the above assumption on the nonsingular cross

section is not justified. We have therefore attempted to extract Ωα in a second way.

Method 2: we performed the convolution of the parton-level Pythia prediction with

eq. (2.68) and determined Ωα by minimizing the distance between the resulting distribu-

tion and Pythia’s prediction at hadron level.16 This also approximately exhibits the α-

dependence in eq. (2.67), but now overshoots it for large values of α. Note that this method

also relies on the assumption that eq. (2.65) extends to the nonsingular cross section.

15In the jet mass study of ref. [68], this form captured the dominant features of the hadronization model

of Pythia rather well.
16As distance measure, we considered both the integral of the absolute difference and the integral of the

difference squared, obtaining very similar results.
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Moving on to two angularities, in regime 2 and 3 the nonperturbative effects for eα
arise from the soft function S(Qeα, µ) discussed above. In regime 1, we encounter the

double differential soft function, which can be factorized in a way similar to eq. (2.65)

S(Qeα, Qeβ , µ) =

∫
dQe′α dQe′β S

pert(Qeα −Qe′α, Qeβ −Qe′β , µ)F (Qe′α, Qe
′
β) . (2.70)

The leading nonperturbative corrections take on a particularly simple form

S(Qeα, Qeβ , µ) = Spert(Qeα − Ωα, Qeβ − Ωβ , µ)

[
1 +O

(
Λ2

QCD

Q2e2
α

,
Λ2

QCD

Q2e2
β

)]
, (2.71)

since nonperturbative correlations vanish at this order. In our numerical analysis we set

F (Qeα, Qeβ) = F (Qeα)F (Qeβ)Fcor(Qeα, Qeβ) , (2.72)

where the effect of nonperturbative correlations are encoded in

Fcor(k1, k2) = 1 + c

(
k1k2 −

Ω2 k
2
1

3Ω1
− Ω1 k

2
2

3Ω2

)
. (2.73)

Fcor was imposed to be a polynomial of degree 2 in k1 and k2 that introduces correlations

such that F in eq. (2.72) remains normalized and produces the first moments required

by eq. (2.71). We explored correlations by varying the size of the correlation parameter

c ∼ 1/Λ2
QCD.

In regime 2 and 3 the nonperturbative effects involving eβ are suppressed because

Qeβ � Qeα. We will nevertheless use eq. (2.72) in these regimes as well. For the leading

nonperturbative correction, this seems reasonable from the point of view of continuity. The

cross section for the ratio of angularities is particularly interesting, because nonperturbative

corrections contribute to any value of the ratio, since this integrates over a line that goes

through (eα, eβ) = (0, 0).

3 Results

3.1 Single angularity

We start by presenting results for the cross section of a single angularity eβ in figure 7.

Shown are our predictions at NLL, NNLL and NNLL+NLO order (defined in table 3) for

angularity exponents β = 0.5, 1.2, 2, 3 with Q = 1000 GeV. The bands show the perturba-

tive uncertainty estimated by varying the profile scales, as described in section 2.7.1. Our

predictions for the central curves are normalized to 1.17 The variations are not normalized

to 1, but rescaled by the same amount as the corresponding central curve. As expected,

the uncertainty bands reduce at higher orders, and overlap between the different orders

over most of the range. The one exception is the NNLL vs. NNLL+NLO in the fixed-order

region. This is not surprising, because in this region the matching with NLO cannot be

17For β = 0.5 we normalize the region log10 eβ ≥ −1.3, to avoid a large effect from the negative cross

section in the nonperturbative region.

– 25 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
8

Figure 7. Results for the NLL, NNLL and NNLL+NLO cross sections with uncertainties for four

angularities β = 0.5, 1.2, 2 and 3 (all normalized relative to the full NLO cross section).

neglected. The Sudakov shoulder [69] that features in the spectrum at large values of eβ
comes from the matching with NLO and is due to our choice of using the WTA axis, as

observed already in section 2.6.2. We checked that the separation between the Sudakov

shoulder and the peak of the distribution decreases for smaller values of β but for β = 0.5

and Q = 1 TeV it is sufficiently large to preserve the reliability of our matched result, in

agreement with the discussion in ref. [28]. Interestingly, for smaller values β the range of

eβ values gets squeezed, such that there is a fairly rapid transition from nonperturbative

region at small eβ to the fixed-order region at large eβ .

In figure 8 we show our NNLL+NLO result for β = 1.2 and 3 with and without

nonperturbative corrections, included using the procedure described in section 2.9. We

compare these to Pythia with and without hadronization. We also show the ratio with

NNLL+NLO to make it easier to distinguish these curves. The effect of hadronization on

our perturbative prediction is very similar to the difference between Pythia at the parton

and hadron level. The curves are not the same, but this difference is already present before

including nonperturbative effects. Pythia smooths the Sudakov shoulder by taking into

account additional resummation effects.
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Figure 8. NNLL+NLO without and with nonperturbative effects, compared to Pythia at parton

and hadron level, for β = 1.2 (left) and β = 3 (right). The bottom row shows the ratio with the

NNLL+NLO cross section.

Figure 9. NNLL+NLO without and with nonperturbative effect, compared to Pythia at parton

and hadron level for Q = 91.2 GeV and β = 3. The band provides an estimate of the nonperturbative

uncertainty, as described in the text, which is sizable due to the smaller value of Q.
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Figure 10. Difference between the NLO and NNLO terms for the single angularity cross section

calculated by Event2 and our singular results. For β = 1.2 with the thrust axis, the absence of a

plateau is due to recoil effects.

The corresponding plot for Q = 91.2 GeV is shown in figure 9. Here we added also

a nonperturbative uncertainty band, which was obtained by varying Ω within its uncer-

tainty [26] and adding in quadrature the envelope of the variations obtained by considering

F̃ (Qeα, a) =
(Qeα)a

Γ(1 + a)

(
1 + a

Ωα

)1+a

e−(1+a)Qeα/Ωα (3.1)

with a = 1, 2, 3 and 4. F̃ (Qeα, 1) coincides with F (Qeα) in eq. (2.68). These alternative

functional forms F̃ are all normalized and have the same leading nonperturbative correc-

tion, thus probing the effect of subleading nonperturbative effects. Indeed, the uncertainty

band in figure 9 grows significantly at small values of the angularity, because of the sensi-

tivity to the shape of F̃ and not just its first moment. For Q = 1000 GeV this uncertainty

is very small, which is why we do not show the corresponding plot.

3.2 Single angularity distributions from Event2

To test the factorization framework, especially for the WTA axis choice, we compared

the fixed-order expansions from our resummed single differential cross sections against

numerical results from the Event2 generator [70]. For this purpose, we ran Event2 with
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nf = 5 and an infrared cutoff ρ = 10−10 and generated one trillion events. To be explicit

about what is compared here, we write the expansion of the cross section as

1

σ̂0

dσ

d log10 eβ
=
αs
2π
A(log10 eβ) +

(αs
2π

)2
B(log10 eβ) +O(α3

s). (3.2)

In figure 10, we plot the difference between the Event2 output and our singular contri-

butions to the NLO and NNLO coefficients A and B for angularity exponents β = 1.2 and

2. Here we consider both the thrust axis and the WTA axis. Assuming that recoil effects

can be ignored, the only difference at this order can be traced back to the constant in the

(cumulative) one-loop jet function, which for the thrust axis was calculated in ref. [22].

In appendix B we collect our (N)NLO singular results for A and B for several angularity

exponents and both axis choices. The (N)NLO coefficients can also be determined using

the approach of ref. [30], and agree with our results.18 For the WTA case, the difference

between Event2 and our singular cross section goes clearly to zero at small values of

the angularity (within statistical uncertainty) for both β = 1.2 and 2, at variance with

the thrust axis case for β = 1.2 where power-suppressed terms become numerically large

due to recoil effects. Interestingly, the turn off of the nonsingular contribution takes place

substantially faster for the WTA axis.

At very small values of eβ , the comparison breaks down due to infrared cutoff effects

in Event2. More specifically, Event2 regulates infrared divergences by cutting on the

invariant mass of pairs of partons, (pi + pj)
2 > ρQ2. By applying this prescription to the

SCET modes for the single angularity distribution,

(pcoll + pcoll)
2 ∼ e2/β

β Q2 , (pcoll + psoft)
2 ∼ eβQ2 , (psoft + psoft)

2 ∼ e2
βQ

2 , (3.3)

we conclude that Event2 is expected to deliver reliable results for values of eβ down

to about ρmin(β/2,1) at NLO, and about ρmin(β/2,1/2) at NNLO. The further restriction at

NNLO stems from the fact that at this order two soft emissions arise. We stress that this

is simply an order-of-magnitude estimate, and judging from our numerical results, the true

cutoff seems to be somewhat higher.

3.3 Two angularities

In figure 11 we show our results for the normalized cross section differential in the angular-

ities eα and eβ at NLL and NNLL+NLO order, compared to Pythia (parton level), where

we again take Q = 1000 GeV. The difference between the NLL and NNLL+NLO is not

very large, except in the fixed-order region. However, as is clear from our one dimensional

plots, the uncertainties at NLL are pretty large. Indeed, the only reason that the cross

section vanishes at NLL at the NLO phase-space boundaries is simply due to our choice

of profile scales. If we would have turned off our profile scales at the canonical boundary

instead, the peak region of the NLL cross section would be broader and extend (slightly)

over the NLO phase-space boundary (dashed line). As discussed in section 2.6.2, the sharp

feature that the NNLL+NLO cross section exhibits in the fixed-order region is analogous

18We are grateful to Pier Monni for providing this check before the publication of ref. [28].
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Figure 11. The NLL (top), NNLL+NLO (middle) and Pythia (bottom) cross section for three

pairs of angularities (α, β) = (2, 0.5) (left), (2, 1.2) (middle) and (3,2) (right).

to the bump of the single differential distributions, and is due to our choice of using the

WTA axis. For (α, β) = (2, 0.5) the peak of the distribution is close to the phase-space

boundary corresponding to regime 3, while for the other angularity combinations it sits

more in the middle between regime 1 and 3.

Comparing our results to Pythia, we see that the Pythia cross section is closer to our

NNLL+NLO than NLL cross section. There are however notable differences: in Pythia

there is no sharp feature in the fixed-order region. Although it is expected that this would

be somewhat washed out in Pythia, it is surprising that there is no visible remnant (the

corresponding bump for the one-dimensional distribution is still noticeable for Pythia in
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Figure 12. The NLL, NNLL and NNLL+NLO cross section for the ratio of two angularities for

(α, β) = (2, 0.5), (2, 1.2) and (3, 2) (all normalized relative to the full NLO cross section), compared

to parton-level predictions from Pythia.

figure 7). The largest difference between the Pythia and the NNLL+NLO distribution is

for (α, β) = (2, 0.5). In agreement with the discussion in ref. [28], Pythia results, which

take into account effects around the Sudakov shoulder, extend outside the NLO phase-space

boundary in eq. (2.40). That there are large differences in this case is not so surprising, be-

cause we have already seen that for β = 0.5 the resummation region gets squeezed such that

there is a quick transition between the fixed-order region and the nonperturbative region.

3.4 Ratio of angularities

Our results for the cross section differential in the ratio of two angularities r = eα/eβ
are shown in figure 12 for angularity exponents (α, β) = (2,0.5), (2,1.2) and (3,2) and

Q = 1000 GeV. These are obtained from projecting the cross section differential in two

angularities through19

dσ

dr
=

∫
deα deβ

dσ

deα deβ
δ

(
r − eα

eβ

)
. (3.4)

The uncertainties are taken from the scale variations for the two-dimensional distributions

using the procedure outlined in section 2.7.2. As for the single angularity distributions, we

have normalized the central curve, and rescaled the scale variations with the same factor.

However, note that unlike for the single angularity case, the resummation region can con-

tribute to all values of r. It is reassuring to see that the uncertainties decrease at higher or-

ders, and the uncertainty bands overlap. The reason that the uncertainty is so large (α, β) =

(2, 0.5), is that the peak is close to the region 3 boundary, so almost all r values are affected

by large resummation uncertainties (see figure 11). Given how close the central curves are,

compared to the size of the uncertainty bands, our estimate is probably quite conservative.

The nonperturbative effect on the cross section differential in r is shown in figure 13 for

(α, β) = (3, 2). Referring to section 2.9 for the notation, the uncertainty band here includes

both the c-variation (within -2 to 2),20 the variation of Ω within its uncertainty of 16%

19For the NNLL+NLO cross section, it is important to obtain the NLO nonsingular before performing

the projection, since projecting the NLO first would yield a divergent result.
20We determined a reasonable range in c by applying our procedure for including nonperturbative effects

on Pythia parton level predictions and comparing to Pythia at hadron level.
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Figure 13. Distribution for the ratio of two angularities from the NNLL+NLO cross section with

and without nonperturbative effects, for (α, β) = (3, 2), compared to Pythia at parton and hadron

level for Q = 1000 GeV (left) and Q = 91.2 GeV (right). The band indicates the uncertainty from

nonperturbative effects, as described in the text.

and of F̃ (with a = 1, 2, 3, 4) as described for the single angularity case. We constructed a

separate envelope for each of them and added these three uncertainties in quadrature. For

Q = 1000 GeV, the correlations probed by c dominate the uncertainty. For Q = 91.2 GeV,

the subleading nonperturbative corrections estimated by varying a are the largest instead,

for log10 r < −0.5. Compared to the single angularity distribution in figure 9, the band is

sizable over the whole plot range, because nonperturbative effects contribute to all values

of the ratio.

4 Conclusions

In this paper we presented our calculation of the cross section for e+e− → hadrons differ-

ential in two angularities. We simultaneously resummed the logarithms of each angularity,

employing the SCET+ framework we developed in ref. [10]. The resummation was per-

formed at NNLL accuracy and matched to NLO, thereby obtaining a prediction that is valid

throughout the phase space. By using exclusive kT clustering with the WTA recombina-

tion scheme, we could ignore the issue of recoil. We performed a detailed numerical study,

assessed the perturbative uncertainties through variations of each of the various scales

entering factorization, and studied the impact of the leading nonperturbative corrections.

The one-loop matching with the full QCD calculation shows that our SCET+ fac-

torization correctly captures the singular limit at this order. We extended this check for

the factorization theorem of a single angularity to O(α2
s) by using Event2, and found

agreement. We also showed that the effect of recoil can not be ignored for the angularity

exponent β = 1.2, highlighting the advantage of the WTA axis. In the fixed-order region

the cross section has a Sudakov shoulder. This arises because the position of the WTA

axis can change abruptly depending on the precise momentum configuration, as we are no

longer in the dijet region.
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We have tested the perturbative convergence of our resummed calculation, finding

that the uncertainty bands at higher orders become smaller and (mostly) overlap with

those at lower orders. For the double angularity distribution, Pythia seems closer to

our NNLL+NLO prediction than our NLL prediction, though the Sudakov shoulder in

our predictions that arises in the fixed-order region is washed out. Of course a benefit

of our calculation is that it provides an estimate of the perturbative uncertainty, and

is systematically improvable. We point out that reaching NNLL+NNLO accuracy for the

double differential cross section to match the precision for the single-angularity case, would

require the calculation of the two-loop double differential jet and soft function, which we

expect to be quite intricate, based on the complexity of the two-loop double-differential

beam function calculation [71].

We also considered the cross section differential in the ratio of two angularities, which

is not infrared safe but still Sudakov safe. This is interesting to investigate because many

jet substructure observables are also Sudakov-safe ratio observables, for which calculations

have typically been restricted to NLL accuracy (with the exception of the ratio τ
(2)
2,1 of 2-

to 1-subjettiness with angular exponent 2 for signal events [72]). Since the resummation

region contributes to most of the plot range for the angularity ratio, the uncertainty on the

cross section is larger than for the single angularity measurement, but still reasonable. As

may be expected, nonperturbative corrections similarly play a more important role. We

expect these features to carry over to other Sudakov-safe ratio observables.

In this paper we restricted ourselves to two-jet production in e+e− collisions to have

a clean theoretical setup, but it is our goal to extend this analysis to the measurement of

(multiple) angularities of jets in LHC collisions at NNLL+NLO. One concrete application

is the simultaneous extraction of αs and the quark/gluon fraction performed in ref. [73].

Also, only very few jet substructure observables have been calculated at this accuracy so far.

Our framework allows us to reliably account for correlations between jet observables, and

demonstrates the feasibility of performing higher-order resummation for more differential

measurements.
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A Renormalization group evolution

The integrals KΓ, ηΓ and KγF that enter in the evolution kernels, and were defined in

eq. (2.32), can be performed analytically in a perturbative expansion. Up to NNLL order

their expressions are given by

KΓ(µ,µ0) =− Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− lnr

)
+

(
Γ1

Γ0
− β1

β0

)
(1−r+lnr)+

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(
1−r2

2
+lnr

)
+

(
β1Γ1

β0Γ0
− β

2
1

β2
0

)
(1−r+r lnr)

−
(

Γ2

Γ0
− β1Γ1

β0Γ0

)
(1−r)2

2

]}
,

ηΓ(µ,µ0) =− Γ0

2β0

[
lnr+

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r−1)+

α2
s(µ0)

16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2−1

2

]
,

KγF (µ,µ0) =−
γF,0
2β0

[
lnr+

αs(µ0)

4π

(
γF,1
γF,0
− β1

β0

)
(r−1)

]
, (A.1)

where r = αs(µ)/αs(µ0). The running coupling is given by the three-loop expression

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

(
lnX

X
+

1

X
− 1

)]
, (A.2)

with X = 1 + αs(µ0)β0 ln(µ/µ0)/(2π).

The coefficients of the cusp anomalous dimension that enter in eq. (A.1) are [74]

Γ0 = 4CF ,

Γ1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]
,

Γ2 = 4CF

[(
245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+

(
−55

3
+ 16ζ3

)
CF TF nf −

16

27
T 2
F n

2
f

]
, (A.3)

and for the β function they are given by [75, 76]

β0 =
11

3
CA −

4

3
TF nf ,

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TF nf , (A.4)

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(
11

9
CF +

79

54
CA

)
4T 2

F n
2
f .

The coefficients for the non-cusp anomalous dimension for the hard function are [52, 53]

γH,0 = −12CF ,

γH,1 = −2CF

[(
82

9
− 52ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(
65

9
+ π2

)
β0

]
, (A.5)
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and for the soft function [56, 77, 78]

γqS,0 = 0 ,

γqS,1 =
2

α− 1
CFCA

[
− 808

27
+

11π2

9
+ 28ζ3 −

∫ 1

0
dx

∫ 1

0
dy ln

(
(x2−α + xy)(x+ x2−αy)

x2−α(1 + xy)(x+ y)

)
×

32x2(1 + xy + y2)
(
x(1 + y2) + (x+ y)(1 + xy)

)
y(1− x2)(x+ y)2(1 + xy)2

]
+

2

α− 1
CFTFnf

[
224

27
− 4π2

9

−
∫ 1

0
dx

∫ 1

0
dy ln

(
(x2−α + xy)(x+ x2−αy)

x2−α(1 + xy)(x+ y)

)
64x2(1 + y2)

(1− x2)(x+ y)2(1 + xy)2

]
. (A.6)

The other non-cusp anomalous dimensions follow from eq. (2.29).

B NLO and NNLO singular terms in the single angularity distribution

The fixed-order single angularity distribution can be written as

1

σ̂0

dσ

dLβ
=
αs
2π
A(Lβ) +

(αs
2π

)2
B(Lβ) +O(α3

s) (B.1)

for Lβ ≡ log10(eβ). Our resummed results allow us to derive the singular contributions

to the A(Lβ) and B(Lβ) coefficients for angularities with respect to the WTA axis. In

particular, for the angularity exponents considered in our plots,

Asing(L3) = CF (−4.60517− 14.1384L3)

Bsing(L3) = CACF (k3 − 16.4093L3 + 79.5785L2
3)

+ C2
F (m3 +mL

3 L3 + 97.6646L2
3 + 99.9471L3

3)

+ CF TF nf (n3 + 10.9965L3 − 28.9377L2
3)

Asing(L2) = CF (−6.90776− 21.2076L2)

Bsing(L2) = CACF (k2 − 14.8938L2 + 134.289L2
2)

+ C2
F (m2 +mL

2 L2 + 219.745L2
2 + 224.881L3

2)

+ CF TF nf (n2 + 12.9602L2 − 48.8323L2
2)

Asing(L1.2) = CF (−11.5129− 35.346L1.2)

Bsing(L1.2) = CACF (k1.2 + 7.57742L1.2 + 273.551L2
1.2)

+ C2
F (m1.2 +mL

1.2 L1.2 + 610.404L2
1.2 + 624.669L3

1.2)

+ CF TF nf (n1.2 + 9.81833L1.2 − 99.4732L2
1.2)

Asing(L0.5) = CF (−27.631− 84.8304L0.5)

Bsing(L0.5) = CACF (k0.5 + 290.35L0.5 + 1074.31L2
0.5)

+ C2
F (m0.5 +mL

0.5 L0.5 + 3515.92L2
0.5 + 3598.1L3

0.5)

+ CF TF nf (n0.5 − 75.4048L0.5 − 390.658L2
0.5) , (B.2)
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where the remaining coefficients for the three color structures at NNLO are

k3 = −0.152521 , m3 = −11.043 , mL
3 = −48.1211 , n3 = 7.72881 ,

k2 = −6.20299 , m2 = −12.8324 , mL
2 = −90.1385 , n2 = 7.8759 ,

k1.2 = −6.01464 , m1.2 = −8.94722 , mL
1.2 = −210.087 , n1.2 = 8.5379 ,

k0.5 = 58.1583 , m0.5 = 83.024 , mL
0.5 = −1007.0 , n0.5 = −4.34318 . (B.3)

In our comparison against Event2, we also analyzed angularities with respect to the thrust

axis, with exponents β = 1.2, 2, 3. The corresponding NLO coefficients Athr
sing(Lβ) coincide

with the ones calculated with respect to the WTA axis. Differences first appear at NNLO

and are due to the non-logarithmic terms in the one-loop cumulative jet function, which

for the thrust axis can be obtained from ref. [22]. Thus in the NNLO coefficients Bthr
sing(Lβ)

the only changes are

kthr
3 = −11.4406 , mthr

3 = −29.5143 , mL, thr
3 = −104.83 , nthr

3 = 11.8336 ,

kthr
2 = −16.2048 , mthr

2 = −29.199 , mL, thr
2 = −140.386 , nthr

2 = 11.5129 ,

kthr
1.2 = 133.46 , mthr

1.2 = 219.284 , mL, thr
1.2 = 490.607 , nthr

1.2 = −42.18 . (B.4)

For the thrust case, the coefficients Athr
sing(L2) and Bthr

sing(L2) agree with the well-known

results from the literature (see e.g. ref. [25]).
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