EXPERIENCE WITH SHIFTER ASSISTANT

AN INTELLIGENT TOOL TO HELP OPERATIONS IN ATLAS TRIGGER-DAQ SYSTEM

Andrei Kazarov (NRC "Kurchatov institute" - PNPI Gatchina / CERN)
CHEP 2018, Sofia, Bulgaria

Content

- ATLAS detector and Trigger-DAQ system
- ATLAS Operations and challenges
- Technology: Complex Event Processing, ESPER engine
- Shifter Assistant: architecture
- Examples of SA directives
- Developing, debugging and validating the directives
- Conclusions

ATLAS Trigger and Data Acquisition system

- ATLAS: General purpose detector on LHC with wide physics search goals
- Trigger-DAQ system
 - buffers, transfers, selects, builds ATLAS events
 - decreasing the event rate from 40MHz of LHC collision rate down to 100kHz (level-1 trigger, h/w based)
 - high-level trigger selects interesting events decreasing the rate further down to 3kHz of recorded (1.5MB) events
 - s/w based, runs on a farm of commercial PCs
- Complex distributed computing system
 - 2500 computer nodes (including 2000 nodes of HLT farm), Ethernet network
 - 60000 supervised applications (including 47000 HLT processing tasks), coherently performing data acquisition, event selection, control, configuration and monitoring tasks

ATLAS Operations

- system is operated by crew of shifters (7), assisted by experts-on-call (O(10))
- dedicated tools provided to the operators, helping them to control and monitor the system
- maintain high run efficiency (low dead-time) is the primary goal for the operations
 - focus on minimalizing the impact of human errors
- run efficiency **93.7%** in 2018 (as of June 5th) out of 97.8% achievable efficiency

Challenges

- system complexity and heterogeneity
- likely error conditions from custom and commodity hardware and software
- long development and maintenance time
 - decades of operations
 - need to preserve expert knowledge
- lots of operational data to analyze
 - ~1M messages per 10-20 hours of a typical physics run
 - O(10⁵) operational parameters, rapidly changing (rates up to 200kHz)

Solutions

- automate routine actions, problem diagnosis, operational data analysis
- add intelligence to the controls: collect, store and reuse expert knowledge about the system behavior

Shifter Assistant: intelligent operational monitoring

- aim is to automate complex operational monitoring and problem diagnosis
- apply expert knowledge to streams of operational data (operational monitoring events and messages)
 - leverage on Complex Event Processing (CEP) technology, implemented in ESPER (next slide)
- assess system health, monitor and analyze system parameters trends
- detect and diagnose misbehaviors
 - diagnosis is based on detection of error patterns, correlation of events
 - does not launch additional tests
 - does not make any recovery actions (responsibility of another component)
- focuses on important (requiring immediate action from the shifters, otherwise data or data quality loss is possible) messages and events, which otherwise can be missed by the shift crew
- implements check-list like reminders, instruct shifters about imminent actions
- produces operator-friendly alerts, including a message and an action to be taken by the operator
- configurable, fully integrated in DAQ controls & monitoring framework
- removed the need of one full time 24h/7d shifter (DAQ monitoring) in the Control Room

Technology: Complex Event Processing engine: ESPER by **EsperTech**

- A framework to process events and discover complex patterns among streams of events
 - aim is to allow "detecting situations"
 - formalizing it with declarative EPL language
- Used in financial analysis, business process management, network monitoring
- can be seen as a mixture of Data Base Management System and Rule Engines:
 - applies independent SQL-like queries ("rules" or "directives") to the streams of events as they come (in real-time manner)

```
select ... from ... where ... group by ... having ...
```

- rich set of available processing functions (including time-based)
 - selection (filtering), aggregation, correlation, grouping, time/size data windows
 - patterns, contexts
- ESPER: implementation of CEP technology (java) from ESPERTECH
 - a lot of applications and customers: http://www.espertech.com/customers/
- available as a library (GPL), allowing integration with DAQ framework
 - high-performant, scalable, multi-threaded: a single application can process O(10^5) updates/sec
- also used in another knowledge-base TDAQ application CHIP (expert-system like engine for automation of control actions in TDAQ)

SA architecture

SA web application

- every desk in ATLAS Control room has a dedicated tab ("domain")
 - focus on alerts only relevant for this desk
- alerts must be acknowledged after the action is taken
 - helps to track shifters activity by remote experts
- available anywhere, in the control room and outside (for experts)
- pop-up notification on new alerts available in browsers (smart phones)

SA knowledge base ("directives")

- Presently SA KB includes 290 directives, about of 2300 lines of EPL code
 - quite compact KB, not difficult to maintain
- Directives are grouped by domains corresponding to ACR desks: Run Control, Shift Leader, Trigger, ID, Calorimeters, Muons, Luminosity
- New directives are being added regularly
 - to address new issues (until a proper fix is developed) and to help operators to react quickly
 - most of the directives can be developed in few minutes, some may take hours
 - directives validation may be more difficult
- About 10 experts from different groups/domains in total were involved in development of directives
 - some were providing knowledge for an EPL engineer who developed EPL code
 - some where writing or changing EPL code
- Short overview of developed directives see backup slide 16

EPL code example

detect when ATLAS is not running in Physics mode within 5 minutes after Stable Beams declared by LHC, i.e. a pattern when an event is NOT followed by another event within 5 minutes:

pattern followed-by operator

see 2 more examples in backup slides

SA directive configuration schema

- SA Directives are maintained using standard TDAQ configuration tools and the DB editor
- Changes in KB (e.g. adding of new directives or modifying the loaded ones) can be applied dynamically, without interruption of SA engine (zero down-time)

SA Replay

- Debugging and validating the directives is not trivial (especially for very rare conditions)
- SA Replay a web application uses archives of operational monitoring data for **re-playing** the conditions of a particular run
- User can select a RN & time interval
- User provides set of directives to replay
- Alerts are re-created in historical timeline, as if they would have happened

child-monitors	AAL.TDAQ.RunControl	Aug. 23, 2017, 2:41 p.m. (1503492066399)	child-monitors	Number of child monitors is too high in the Global monitoring chain. This may break event sampling.	Check with DQ desk and if there is a problem with historgrams, restart Global Monitoring segment.	WARNING
ChipRecovery	AAL.COM	Aug. 23, 2017, 2:48 p.m. (1503492519000)	ChipRecovery	Recovery [REMOVAL, REMOVAL,] for component(s) [Appl_PixelRCD-IBL/ROD_I1_S20, Appl_PixelRCD-IBL/ROD_I1_S20,] status: [_NEW, DONE,]		INFORMATION

Summary

- Taking data with the ATLAS Detector is complex and constantly evolving challenge
- TDAQ is responsible for maintaining high data taking efficiency and requires intelligent operational monitoring tools to help human shifters
- Shifter Assistant plays an important role in daily operations, applying the expert knowledge to the streams of operational data and detecting system misbehaviors
- A performant & scalable application, matching TDAQ needs: applies set of 290 rules to the operational stream of data of $(0(10^5))$ updates/secs in real-time manner
- SA knowledge base is developed and maintained by TDAQ and subsystem experts on daily basis, addressing new issues
- SA Replay is an important application for validation of SA directives
- Greatly reduced the operational load on the collaboration, with decreased dependence on experts and removal of one control room shift task

Backup

- list of directives in SA KB
- examples of directives with EPL code

KB of "directives": overview

- Run Control and Data Flow:
 - monitor errors in vital infrastructure applications (not directly supervised by operators)
 - constantly increasing memory consumption by an application
 - detect misconfigurations early
 - missing parts of configuration
 - wrong Run parameters in physics mode
 - high permanent average dead time (data loss) > 3%
 - detect HLT farm saturation and lack of processing power
 - detect busy from DAQ and determine backpressure sources (HLT processing, data collection, data recording)
 - unbalanced SFO farm (a small farm of storage nodes for recording selected events on disk)
 - SFO disk space occupation
 - overloaded Read-Out system, high occupancy of detector readout links
 - host unreachable, network switch port failures

■ Trigger

- unreasonable physics event rates in different trigger streams
- wrong trigger configuration (LHC bunch grouping scheme) at the end of LHC injection

Shift Leader

- ATLAS not in RUNNING state at LHC injection
- no data is taken in 5 minutes of stable beams (SMS also sent to Run Manager)

ATLAS Detectors

- misconfiguration (wrong tag in Pixel Infrastructure)
- Suggest restart of a LAr detector readout after 2+ processing elements were removed in the current run
- Luminosity ratio is outside of allowed range

EPL (Event Processing Language) examples

detect misconfiguration of a detector after a calibration run

when ATLAS is in CONFIGURED state

select * from

PartitionState(partitionName in ('ATLAS'), state = 'CONFIGURED', inerror = false) as ATLAS_state unidirectional,

method:ISReader.getEventByName("PixelInfr",
 "PixelRunParams.DataTakingConfig-ModCfgTag") as pixel_tag,

method:ConfigReader.isSegmentEnabled("ATLAS", "Pixel") as Pixel_enabled

where pixel_tag.attributes("value").string = 'PIT_MOD_STANDBY' and

Pixel_enabled.boolean = true

configuration of Pixel

does not match physics

and Pixel detector is enabled in ATLAS

EPL examples II:

detect misbehaving element (among many), producing wrong results and requiring restart

original stream + filtering

create new stream of std.dev. of a parameter in a sliding window of 20 secs

insert into EbEventsStdDev
select

stddev(rack_info.attributes("EbEvents").long)/avg(rack_info.attributes("EbEven ts").long) as eb_rate_dev_relative

from ISEvent(partitionName="ATLAS", type="DCM", name regexp "DF_IS:HLT.DefMIG-IS:.*:tpu-rack-.*.info").win:time(20 sec) as rack_info

group by name

having avg(rack_info.attributes("EbEvents").long) > 0 output first every 30 sec

in a sliding window of 20 secs

aggregating: group by name

```
select *,
min(eb_rate_dev_relative) as min_dev,count(*) as evcount
from EbEventsStdDev.win:time(180 sec) where eb_rate_dev_relative > 0.6
group by Rack having count(*) > 3
output first every 5 min
```

from the new stream, select Racks which produce wrong results for longer then 1.5 min

EXAMPLE OF A SA DIRECTIVE IN DB EDITOR

