
1Running Coupling in SU(3) Yang-Mills TheoryUlli Wol� a �aCERN TH-Division, CH-1211 Geneva 23, SwitzerlandWe report about our ongoing computation of running coupling constants in asymptotically free theories usingthe recursive �nite size scaling technique. The latest results for the SU(3) Yang-Mills theory are presented.1. INTRODUCTIONIn nonperturbative evaluations of asymptoti-cally free theories all input parameters can be�xed by matching low energy physical quanti-ties, like the mass spectrum in QCD, with ex-periment. A physical renormalized coupling con-stant at high energy is then a computable num-ber. If such a computation is achieved with suf-�cient precision for some suitable coupling �(q),then the connection with the whole perturbativesector of the theory can be made by expandingin powers of �(q). One has then established alink between the high and low energy sectors. Ofcourse, with only a few perturbative orders avail-able, it is essential to use a non-pathological �(q)and to control its values over an adequate range ofhigh energies. It is important to understand thatsuch a computation of absolute numbers for �(q)| even at large q where it evolves perturbativelywith q | is a nonperturbative problem. As we�x parameters at low energy, we have to specifyq as a dimensionless multiple of some low energyquantity like a mass m or the string tension inthe quenched theory. The di�culty of such a cal-culation is mainly due to the fact that the ratioof scales q=m should be large, at least O(10). Inaddition, at least with conventional approaches(see below), the lattice spacing a and system sizeL have to be remote of either m or q.A straightforward idea to compute the couplingin pure gauge theory is to proceed via the staticquark-antiquark force F (r). While it saturatesto the string tension (the only free parameter) atlarge distance, r2F (r) can also be used as a physi-�Address after april 1, 1994: FB Physik, Humboldt Uni-versit�at, Invalidenstr. 110, D-10099 Berlin, Germany

cal running coupling constant at small separationr. This requires control of the force from short tolong distance in one simulation with a � r � Lholding for the whole range of physical r involved.With L=a always limited to feasible lattice sizeslike 32 or 48, compromises on the above condi-tions have to be accepted, and it is hardly possibleto vary all scale ratios signi�cantly to check forthe stability of the results. State of the art calcu-lations along these lines are reported in [1,2]. Ithas to be noted that the highest physical energiesr�1 that can be reached here are below about2 GeV, if one only stays a factor 2 : : :3 awayfrom the cuto� energy. Cuto� e�ects are cor-rected semi-empirically using the lattice Coulombpropagator. While these are di�cult and carefulsimulations, we �nd it somewhat hard to assessthe systematic errors in a completely convincingfashion.An alternative attempt to derive the couplingin QCD has been pioneered by the Fermilab group[3]. Here, in a quenched simulation, the spin av-eraged 1P-1S charmonium splitting is determinedon a physically large lattice. Although this is anice experimentally known scale with little sen-sitivity to the quark masses, also other massescould in principle be used here to set the scale.The point relevant in the present context is, thatthey extract from such a simulation the bare lat-tice coupling g0 together with the correspondinglattice spacing a in GeV. A perturbative methodis then used to relate g0 to a physical couplingat a scale of the order of the cuto�. The scaleproblem is clearly alleviated in comparison to thequark force method, as e�ectively the cuto� a�1is identi�ed with the high energy physical scale.



2The problem is now to convert reliably from thenon-universal unphysical lattice-coupling g0 to aphysical continuum one like �s(q = �=a) withone non-trivial perturbative expansion coe�cient(presently) known. In [4] it is shown that a largenumber of numerically known quantities, Wilsonloops for instance, are well approximated by theso-called improved perturbation theory. This isused in [3], with the average plaquette as the keyinput parameter to implement improved pertur-bation theory. Again, one may feel that therecould be a problem with estimating the error inthe conversion.In the following section I recall the recursive�nite size method and present the latest resultsobtained.2. RUNNING COUPLING BY RECUR-SIVE FINITE SIZE SCALINGThe ideas and techniques behind this approachwere presented in detail in L�uscher's talk in Am-sterdam [5], and we content ourselves here witha brief reminder. The freedom which couplingto compute is exploited by choosing �(q) =�g2(L)=4�; q = 1=L, a coupling that runs with theboxsize L. It's de�nition is based on an abelianbackground �eld that is induced through nontriv-ial boundary conditions [6]. A physical change inthe free energy with a variation of the �eld leadsto the coupling �g2(L). The de�nition for generalL is independent of perturbation theory, and atsmall L we expect �g to be a smooth perturbativecoupling. As in the Fermilab approach one ofthe scales unavoidable in numerical treatments isused for physics here to eliminate one large scaleratio. We think, however, that L has the advan-tage over a of �nite size e�ects being universal.A further characteristic of the method is tobreak the problem into several steps. In each stepof a series of simulations we numerically answerthe question: Given �g2(L) = u, with u some num-ber like 1.234 implicitly de�ning the scale L, whatis �g2(2L)? This result equals the value of the stepscaling function,�(2; u) = lima!0�(2; u; a=L); (1)where � refers to a sequence of �nite lattice real-

izations with decreasing a that are to be extrapo-lated to the universal continuum function �. Thevalues, for which � is determined are tuned suchthat we can iterate �(2; �(2; :::)) and thus recur-sively get � for scale factors larger than two. Ineach individual step we only have to deal withscales a and L, and we use all the available L=ato determine and extrapolate the cuto� depen-dence. All our results for � in the pure SU(3)gauge theory [7] are shown in Fig. 1.
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Σ(2,1.243,a/L)Figure 1. Extrapolation of the step scaling func-tion to the continuum.Obviously there is very little cuto� dependence,which is probably due to our use of a 1-loop O(a)improved Wilson action. The extrapolation tothe continuum, which on theoretical grounds isexpected to be roughly linear in a=L for our back-ground �eld, presents no problem. Iterating theextrapolated values we gain information about�(s; 1:243) with s � 2; 4; 8; 16;24 [In the last stepwe used a factor 3/2 instead of 2, and the precises values di�er slightly from these integers as thereare small mismatches in the iteration, which areeasily taken into account. Moreover, all numbershave statistical errors. We omit these details in



3this text, they can be found in [7] and are in-cluded in all �gures]. The largest coupling oc-curring is �g2(smaxL) = 3:48 with smax � 24 and�g2(L) = 1:24. We expect smaxL = Lmax to be inthe range of nonperturbative scales. Its preciserelation to such a scale has to be determined inthe last step.3. PHYSICAL SCALE AND COUPLINGRather than setting the scale through the stringtension, we use the recently proposed [8] unit oflength r0 de�ned from the interquark force byr20F (r0) = 1:65: (2)If the force is identi�ed with the one used in char-monium potential calculations, then r0 � 0:5 fmis suggested. Advantages of r0 over the stringtension are discussed in [8]. On the basis of po-tential data from the literature, Lmax=r0 assumesthe value 0.674(50) after extrapolating a! 0 [7].Our results are summarized in Fig. 2. The pertur-
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Figure 2. Values of the running coupling togetherwith perturbative evolution to 1-loop (dotted)and 2-loop (dashed), and a �t (solid).bative evolutions start from the smallest couplingand the �t is made with an e�ective 3-loop term.The error in the overall scale, which correspondsto a horizontal shift of all points and curves in thesemi-logarithmic plot, is not included in Fig. 2.

At this point we have learned that �g2(L =0:027(3)r0) = 1:243. It remains to pass from our�nite volume coupling to �s which by conventionrefers to the MS-scheme. At q = L�1 we shouldbe well in the perturbative regime and can usethe 1-loop formula [7]�MS(q) = �(q) + 1:2556 �(q)2 +O(�(q)3): (3)The �nal result at the highest energy is now�MS(q) = 0:1108(23)(10) at q = 37 r�10 ; (4)which corresponds to about 15 GeV. The seconderror is the estimated e�ect of missing higher or-ders in (3) and should be eventually eliminatedby a 2-loop calculation, while the �rst one com-bines all other errors. As is obvious from Fig. 2,apart from computing (4) we have demonstratedthat perturbative formulas should be trustworthyto evolve �(q) to yet higher energies. The desiredlink between low and high energy has thus beenconstructed. We plan to extend the method todynamical fermions in the future.REFERENCES1. C. Michael, Nucl. Phys. B (Proc. Suppl.) 30(1993) 5092. G. S. Bali and K. Schilling, Nucl. Phys. B(Proc. Suppl.) 30 (1993) 513 and K. Schilling,this volume3. A. X. El-Khadra, G. Hockney, A. S. Kron-feld and P. B. Mackenzie, Phys. Rev. Lett. 69(1992) 729 and A. El-Khadra, this volume, C.Davies, this volume4. G. P. Lepage and P. B. Mackenzie, Fermi-lab preprint 91/355-T (1992), hep-lat 9209022and C. Bernard, this volume5. M. L�uscher, R. Narayanan, R. Sommer, P.Weisz and U. Wol�, Nucl. Phys. B (Proc.Suppl.) 30 (1993) 1396. M. L�uscher, R. Narayanan, P. Weisz and U.Wol�, Nucl. Phys. B384 (1992) 1687. M. L�uscher, R. Sommer, P. Weisz and U.Wol�, DESY 93-114 (1993), hep-lat 9309005,to app. in Nucl. Phys. B8. R. Sommer, DESY 93-062 (1993), hep-lat9310022, to app. in Nucl. Phys. B


