Search for Higgs boson production in association with a pair of top quarks with the ATLAS detector

ICHEP, Seoul, 4-11 July 2018

based on Phys. Rev. D 97 (2018) 072016 and arXiv:1806.00425

Motivation

- Top quark is heaviest particle in the Standard Model.
- Fermions acquire mass via Higgs mechanism through Yukawa couplings.
- •ttH provides the possibility to observe directly if the Higgs boson couples to the top quark
- Excellent performance from LHC and ATLAS in Run II
 ttH(bb) analysis uses 36.1fb⁻¹, data from 2015 and 2016
- •Combination uses up to 79.8fb⁻¹, data from 2015, 2016 and 2017
- More data still to be collected in 2018

Strategy and challenges

- Exploiting H→ bb final state owing to high branching fraction
- Up to 4 b-jets in final state from tt-decay and Higgs decay.
- Very challenging analysis:
 - Low efficiency to reconstruct all particles.
 - Ambiguity to match origin from from 4 b-jets correctly.
 - Large background from tt+jets

Many regions with different composition in $tt+\geq 1b$, $tt+\geq 1c$, tt+light, ttH

Categorisation:

one or two leptons (e, mu)
b-tag score of jets exploiting 4 different efficiencies

- 10 signal and 9 control regions
- Overcoming ambiguity in matching b-jets:
- Reconstruction BDT, likelihood discriminant and matrix element method

Separation between ttH and background:

Classification BDT exploiting event information

- •tt+ \geq 1b, tt+ \geq 1c normalisations free floating in binned profile likelihood fit
- Result is compatible with SM prediction

Background Modelling & systematic uncertainties

$g \rightarrow b / t$	U
	$t\bar{t}$
	В
000000000 ×	<i>b</i> -
6000	Je
$q \overline{0}^{0}$	$tar{t}$
	$t ar{t}$
	тт

- ttbb is irreducible background to ttH(bb)
- Nominal prediction at NLO from tt+jets in 5flavor scheme from Powheg+Pythia8
- Reweighting of tt+≥1b sub-components to ttbb prediction at NLO from Sherpa+OpenLoops (4-flavor scheme)
- precise and accurate modelling challenging

Uncertainty source	$\Delta \mu$	
• $t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

Combination with other channels

- ttH(bb) analysis is part of larger effort to establish the ttH process
 Performing combination with other ttH analysis, such as ttH Multilepton, ttH(4l), ttH(γγ)
- •ttH(bb) analysis, despite large H→ bb branching ratio, has limited sensitivity due to systematic uncertainties
- Combination result mainly driven by $ttH(\gamma\gamma)$ and ttH Multilepton analyses despite low branching fraction but pure in S/B

Analysis	Integrated	$t\overline{t}H$ cross	Obs.	Exp.
	luminosity $[fb^{-1}]$	section [fb]	sign.	sign.
$H \to \gamma \gamma$	79.8	$710 {}^{+210}_{-190}$ (stat.) ${}^{+120}_{-90}$ (syst.)	4.1σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	4.1σ	2.8σ
$H \to b \overline{b}$	36.1	$400 {}^{+150}_{-140}$ (stat.) ± 270 (syst.)	1.4σ	1.6σ
$H \to Z Z^* \to 4\ell$	79.8	< 900 (68% CL)	0σ	1.2σ
Combined (13 TeV)	36.1 - 79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1-79.8		6.3σ	5.1σ

Observation of $t\bar{t}H$ with 6.3 σ (obs.) and 5.1 σ (exp.) significance!

Tim Wolf (Nikhef) for the ATLAS Collaboration

<u>tim.wolf@nikhef.nl</u>

