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Abstract
We show how an event topology classification based on deep learning could be used to improve the purity of data samples 
selected in real time at the Large Hadron Collider. We consider different data representations, on which different kinds of 
multi-class classifiers are trained. Both raw data and high-level features are utilized. In the considered examples, a filter 
based on the classifier’s score can be trained to retain ∼ 99% of the interesting events and reduce the false-positive rate by 
more than one order of magnitude. By operating such a filter as part of the online event selection infrastructure of the LHC 
experiments, one could benefit from a more flexible and inclusive selection strategy while reducing the amount of down-
stream resources wasted in processing false positives. The saved resources could translate into a reduction of the detector 
operation cost or into an effective increase of storage and processing capabilities, which could be reinvested to extend the 
physics reach of the LHC experiments.

Keywords Trigger · Deep learning · Topology classification · LHC

Introduction

The CERN Large Hadron Collider (LHC) collides protons 
every 25 ns. Each collision can result in any of hundreds 
of physics processes. The total data volume exceeds by far 
what the experiments could record. This is why the incom-
ing data flow is typically filtered through a set of rule-based 
algorithms, designed to retain only events with particular 
signatures (e.g., the presence of a high-energy particle of 
some kind). Such a system, commonly referred to as trig-
ger, consists of hundreds of algorithms, each designed to 
accept events with a specific topology. The ATLAS [1] and 
CMS [2] trigger systems are based on this idea. In their cur-
rent implementation, given the throughput capability and the 
typical event size, these two experiments can write on disk 
∼ 1000 events/s. A few processes, e.g., QCD multijet pro-
duction, constitute the vast majority of the produced events. 

One is typically interested to select a fraction of these events 
for further studies. On the other hand, the main interest of 
the LHC experiments is related to selecting and studying the 
many rare processes which occur at the LHC. In a typical 
data flow, these events are overwhelmed by the large amount 
of QCD multijet events. The trigger system is put in place to 
make sure that the majority of these rare events are part of 
the stored ∼ 1000 events/s.

Trigger algorithms are typically designed to maximize the 
efficiency (i.e., the true-positive rate), resulting in a non-neg-
ligible false-positive rate and, consequently, in a substantial 
waste of resources at trigger level (i.e., data throughput that 
could have been used for other purposes) and downstream 
(i.e., storage disk, processing power, etc.).

The most commonly used selection rules are inclusive, 
i.e., more than one topology is selected by the same require-
ment. The so-called isolated-lepton triggers are a typical 
example of these kinds of algorithms. These triggers select 
events with a high-momentum electron or muon and no sur-
rounding energetic particle, a typical signature of an interest-
ing rare process, e.g., the production of a W boson decaying 
to a neutrino and an electron or muon. With such a require-
ment, one can simultaneously collect W bosons produced 
in the primary interaction (W events) or from the cascade 
decay of other particles, e.g., top quarks (mainly in tt̄ events 
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where a top quark–antiquark pair is produced). A sample 
selected this way is dominated by W events, but it retains a 
substantial ( > 10% ) contamination from QCD multijet. The 
tt̄ contribution is smaller than 1% . Events from tt̄ production 
are sometimes triggered by a set of dedicated lepton+jets 
algorithms, capable of using looser requirements on the 
lepton at the cost of introducing requirements on jets.1 Due 
to this additional complexity, the use of these triggers in 
a data analysis comes with additional complications. For 
instance, the applied jet requirements produce distortions on 
offline distributions of jet-related quantities. To avoid having 
this effect, any typical data analysis applies a tighter offline 
selection. This means that many of the selected events close 
to the online-selection threshold are discarded. This is not 
necessarily the most cost-effective way to retain an unbiased 
data set for offline analysis.

In this paper, we investigate the possibility of using 
machine learning to classify events based on their topol-
ogies, serving as an additional clean-up algorithm at the 
trigger level. Doing so, one could customize the trigger-
selection strategy on individual processes (depending on the 
physics goals) while keeping the selection loose and simple. 
As a benchmark case, we consider a stream of data selected 
by requiring the presence of one electron or muon with 
transverse momentum pT > 23 GeV 2 and a loose require-
ment on the isolation. Details on the applied selection can 
be found in Section “Data Set”.

The considered benchmark sample is dominated by direct 
W production, with a sizable contamination from QCD 
multijet events and a small contribution of tt̄ events. Other 
interesting processes (e.g., WW, WZ, and ZZ production) are 
usually selected with more exclusive and dedicated trigger 
algorithms (e.g., di-muon or di-electron triggers), or share 

the same kinematic properties of the two main interesting 
processes (W and tt̄ ). For the sake of simplicity, we ignore 
these sub-leading processes in our study, without compro-
mising the validity of our conclusions. Figure 1 shows the 
composition of a sample with one electron or muon within 
the defined acceptance ( pT > 22 GeV and pseudorapid-
ity |𝜂| = | − log[tan(𝜃∕2)]| < 2.6 , where � is the polar 
angle), before and after applying the trigger requirements 
( pT > 23 GeV and loose isolation).

Such a loose set of requirements would translate into 
an event acceptance rate of ∼ 690 Hz for a luminosity of 
2 × 1034 cm−2 s−1 , well beyond the currently allocated 
budget for these triggers (typically ∼ 200 Hz ). We suggest 
that, using the score of our topology classifier, one could 
tune the amount of each process to be stored for further 
analysis, within the boundaries of the allocated resources. 
For instance, one might be interested to retain all the tt̄ 
events and some fraction of W events, while rejecting the 
QCD multijet events. We envision two main applications: 
for a given total rate, one could loosen the baseline trigger 
requirements, increasing the acceptance efficiency at no cost. 
Or, for a given acceptance efficiency (true-positive rate), one 
could save resources by reducing the overall rate, rejecting 
the contribution of unwanted topologies (see Appendix A).

We consider several topology classifiers based on 
deep learning model architectures: fully connected deep 
neural networks (DNNs), convolutional neural net-
works (CNNs) [3], and recurrent neural networks such as 
Long–Short-Term-Memory networks (LSTMs) [4] and gated 
recurrent units (GRUs) [5]. We consider four different repre-
sentations of the collision events: (1) a set of physics-moti-
vated high-level features, (2) the raw image of the detector 
hits, (3) a sequence of particles, characterized by a limited 
set of basic features (energy, direction, etc.), and (4) an 
abstract representation of this list of particles as an image.

The paper is structured as follows. In the section “Data 
Set”, we describe the four data representations. In the sec-
tion “Model description”, we describe the corresponding 

Fig. 1  Relative composition of 
the isolated-lepton sample after 
the acceptance requirement 
(left) and the trigger selection 
(right), as described in the text

1 A jet is a spray of hadrons, typically originating from the hadroni-
zation of gluons and quarks produced in the proton collisions.
2 In this paper, we set units in such a way that c = ℏ = 1.
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classification models. Results are discussed in the section 
“Results”. In the section “Impact on other topologies”, we 
investigate the generalization properties of the four classi-
fiers to scenarios of other topologies. We study the robust-
ness of our classifiers against Monte Carlo simulation inac-
curacy with pseudo-data in section “Robustness study”. In 
the section “Related works”, we briefly discuss applications 
of machine learning algorithms to similar problems. Con-
clusions are given in section “Conclusions”. Appendix A 
describes a different scenario, in which the classifier is used 
to save resources by reducing the trigger acceptance rate, as 
opposed to using it to sustain a loose trigger selection that 
could otherwise require too many resources.

Data Set

Synthetic data corresponding to W, tt̄ , and QCD multijet 
production topologies are generated with 105 events per 
process ( 3 ⋅ 105 events in total) using the PYTHIA8 event 
generation library [6]. The setup of the proton-beam simula-
tion is loosely inspired by the LHC running configuration in 
2015–2016: two proton beams, each with 6.5 TeV, generate 
on average 20 proton–proton collisions per crossing follow-
ing a Poisson distribution.

Generated samples are processed with the DELPHES 
library [7], which applies a parametric model of a detec-
tor response. Detector performances are tuned to the CMS 
upgrade design foreseen for the High-Luminosity LHC [8], 
as implemented in the corresponding default card pro-
vided with DELPHES. We run the DELPHES particle flow 
(PF) algorithm, which combines the information from all 
the CMS detector components to derive a list of recon-
structed particles, the so-called PF candidates. For each 
particle, the algorithm returns the measured energy and 
flight direction. Each particle is associated to one of three 
classes: charged particles, photons, and neutral hadrons. 
Jets are clustered from the reconstructed PF candidates, 
using the FASTJET [9] implementation of the anti-kT jet 
algorithm [10], with jet-size parameter R = 0.4. The jet’s 
b-tagging efficiency is parameterized as a function of jet’s 
pT and � in the default DELPHES CMS upgrade design card. 
The parameterized b-tagging efficiency is shown to provide 
a reasonable agreement with CMS [7].

The basic event representation consists of a list of 
reconstructed PF candidates. For each candidate q, the 
following information is given: (1) the particle four-
momentum in Cartesian coordinates (E, px , py , pz ); (2) 
The particle three-momentum, computed from (1), in 
cylindrical coordinates: the transverse momentum pT , 
the pseudorapidity � , and the azimuthal angle � ; (3) The 
Cartesian coordinates ( xvtx , yvtx , zvtx ) of the particle point 
of origin. For all neutral particles, (0, 0, 0) is used in the 

absence of pointing information; (4) The electric charge; 
(5) The particle isolation with respect to charged particles 
(ChPFIso), photons (GammaPFIso), or neutral had-
rons (NeuPFIso). For each particle class, the isolation 
is quantified as follows:

where the sum extends over all the particles of the appropri-
ate class with angular distance 𝛥R =

√
(𝛥𝜂)2 + (𝛥𝜙)2 < 0.3 

from the particle q.
The particle identity is categorized via a one-hot-

encoded representation (isChPar, isNeuHad, isGamma), 
corresponding to a charged particle, a neutral hadron, or 
a photon. In addition, two boolean flags are stored (isEle 
and isMu) to identify if a given particle is an electron or 
a muon. In total, each particle is then described by 19 
features.

The trigger selection is emulated by requiring all the 
events to include one isolated electron or muon with trans-
verse momentum pT > 23 GeV and particle-based isolation 
����� + �������� + ������ < 0.45 . This baseline selec-
tion, which follows the typical requirements of an inclusive 
single-lepton trigger algorithm, accepts ≈ 100 QCD mul-
tijet events and ≈ 176 W events for every tt̄ event. Despite 
its large W and tt̄ efficiency, this trigger selection comes 
with a large cost in terms of QCD multijet events written 
on disk and processed offline. The cost is even larger if the 
main physics target is tt̄ events and the W contribution is 
seen as an additional source of background (e.g., in a high-
statistics scenario, with all measurements of W properties 
limited in precision by systematic uncertainties).

All particles are ranked in decreasing order of pT . For 
each event, the isolated lepton is the first entry of the list of 
particles. To avoid double counting of this isolated lepton 
� as a charged particle, each charged particle q is required 
to have 𝛥R(q,�) > 10−4 . In addition to the isolated lep-
ton, we consider the first 450 charged particles, the first 
150 photons, and the first 200 neutral hadrons. This corre-
sponds to a total of 801 particles per event, each character-
ized by the 19 features described above. The choice of the 
numbers of particles is made, such that, on average, only 
5% charged particles, 5% neutral hadrons, and 1% photons 
are ignored. Thanks to pT ordering by particle category, 
what we remove carries small information. In early stages 
of this work, we experimented with tighter cuts on particle 
multiplicity without observing substantial difference. We 
verified that the particles which we ignore have typical pT 
below 1 GeV. If fewer particles are found in the event, zero 
padding is used to guarantee a fixed length of the particle 
list across different events. The events are then stored as 

(1)��� =

∑
p≠q p

p

T

p
q

T

,
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NumPy arrays in a set of compressed HDF5 files. The 
data set is planned to be released on the CERN OpenData 
portal, accessible at opendata.cern.ch.

In addition to this raw-event representation, we provide 
a list of physics-motivated high-level features, computed 
from the full event (the HLF data set):

– The scalar sum, ST , of the pT of all the jets, leptons, and 
photons in the event with pT > 30 GeV and |𝜂| < 2.6.

– The missing transverse energy Emiss
T

 , defined as the 
absolute value of the missing transverse momentum, 
computed summing over the full list of reconstructed 
PF candidates: 

– The squared transverse mass, M2
T
 , of the isolated lepton 

� and the Emiss
T

 system, defined as follows: 

 with p�
T
 the transverse momentum of the lepton and �� 

the azimuthal separation between the lepton and � miss
T

 
vector.

– The azimuthal angle of the � miss
T

 vector, �miss.
– The number of jets entering the ST sum.
– The number of these jets identified as originating from 

a b quark.
– The isolated-lepton momentum, expressed in polar 

coordinates ( pT , � , �).
– The three isolation quantities (ChPFIso, NeuPFIso, 

GammaPFIso) for the isolated lepton.
– The lepton charge.
– The isEle flag for the isolated lepton.

(2)Emiss
T

=
|||�

miss
T

||| =
||||||
−
∑

q

�
q

T

||||||
.

(3)M2
T
= 2p�

T
Emiss
T

(1 − cos��)

The list of 801 particles is used to generate two visual repre-
sentations of the events: raw representation and abstract rep-
resentation. In the raw representation, the ( � , � ) plane cor-
responding to the detector acceptance is divided into a barrel 
region ( |𝜂| < 1.5 ), two end-cap regions ( 1.5 ≤ 𝜂 < 3.0 and 
−3.0 < 𝜂 ≤ −1.5 ), and two forward regions ( 3.0 ≤ 𝜂 < 5.0 
and −5.0 < 𝜂 ≤ −3.0 ). The barrel and end-cap regions of 
the electromagnetic calorimeter, as well as the end-cap of 
the hadronic calorimeter (HCAL), are binned in cells of size 
0.0187 × 0.0187 . The barrel region of the HCAL is binned 
with cells of size 0.087 × 0.087 . The forward regions are 
binned with cells of size 0.175 in � , while the dimension 
in � varies from 0.175 to 0.35. Each cell is filled with the 
scalar sum of the pT of the particles pointing to that cell. 
The three classes of particles (charged particles, photons, 
and neutral hadrons) are considered separately, resulting in 
three channels. An example is shown in Fig. 2 for a tt̄ event. 
This representation corresponds to the raw image recorded 
by the detector.

Recently, it was proposed to represent LHC collision 
events as abstract images where reconstructed physics 
objects (jets, in that case) are represented as geometric 
shapes whose size reflects the energy of the particle [11]. 
We generalize this abstract representation approach by 
applying it to the full list of particles. Each particle is repre-
sented as a unique geometric shape, centered at the particle’s 
(�,�) coordinates and with size proportional to its log pT . 
The geometric shapes are chosen as follow: (1) pentagons 
for the selected isolated electron or muon; (2) triangles for 
photons; (3) squares for charged particles; (4) hexagons for 
neutral hadrons. The images are digitized as arrays of size 
5 × 150 × 94 , where each of the first four channels contains 
a separated particle class, and the last channel contains the 
Emiss
T

 , represented as a circle. As an example, the abstract 
representation for the event in Fig. 2 is shown in Fig. 3.

Fig. 2  An example of a tt̄ event as the input of the raw-image classifier. Vertical and horizontal axes are the � and � coordinates, respectively, of 
the sub-detectors
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This abstract representation allows mitigating the sparsity 
problem of the raw images. On the other hand, there is no 
guarantee that the physics information is fully retained in 
this translation. As a result, there could be a reduction of 
discrimination power. This is one of the points that we aim 
to investigate in this study.

Model Description

In this section, we describe five types of multi-class classifi-
ers, trained on the four data representations described in the 
previous section. We start by considering a state-of-the art 
HEP application, based on the high-level features listed in 
section “Data Set”. We then consider a convolutional neural 
network taking as input the raw images. This model offers 
the baseline point of comparison for the classifier using the 
abstract images. To have a fair comparison between the two 
approaches, the same kind of network architecture is used for 
the two sets of images. Next, we consider recurrent neural 
networks based on LSTMs and GRUs, trained directly on the 
lists of 801 particles. Finally, we consider a classifier taking 
both the high-level features and the list of 801 particles as 
inputs, using a combination of recurrent neural networks and 
fully connected neural networks.

The CNNs are implemented in PyTorch  [12]. The 
recurrent neural networks and feed-forward neural net-
works are implemented in Keras [13] and trained using 
Theano [14] as a back-end. The Adam optimizer [15] is 
used to adapt the learning rate. The training is capped at 50 
epochs, and can be stopped early if there is no improvement 
in terms of validation loss after 8 epochs. Categorical cross 

entropy is used as the loss function. All trainings are per-
formed on a cluster of GeForce GTX 1080 GPUs. In an early 
stage of this work, experiments on the recurrent models were 
performed on the CSCS Piz Daint super computer, using the 
mpi-learn library [16] for multiple-GPU training.

High‑Level‑Feature Classifier

A fully connected feed-forward DNN based on a set of high-
level features (HLF classifier) is the closest approach to the 
currently used rule-based trigger algorithms. We train a 
model of this kind taking as input the 14 features contained 
in the HLF dataset (see section “Data Set”). The 14 features 
are normalized to take values between 0 and 1.

The final network configuration is the result of an opti-
mization process performed using the scikit-learn 
optimizer [17], which performs an exhaustive cross-vali-
dated grid search over a set of hyperparameters related to 
the network architecture and the training setup. The number 
of layers, the number of nodes in each layer, and the choice 
of optimizer have been considered in the scan. For a given 
number of layers, discrimination performances were found 
to be constant over the considered range of number of nodes 
per layer. We believe that this is a direct consequence of the 
simple problem at hand: even a relatively small networks 
achieve good classification performances. We then took the 
smallest network as the best compromise between perfor-
mance and architecture minimality.

The chosen architecture consists of three hidden layers 
with 50, 20, and 10 nodes, activated by rectified linear units 
(ReLU) [18]. The output layer consists of three nodes, acti-
vated by a softmax activation function.

Fig. 3  Example of a tt̄ event, represented as a five-channel abstract images of photons (top-left), charged hadrons (top-center), neutral hadrons 
(top-right), the isolated lepton (bottom-left), and the event Emiss

T
 (bottom-right)
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Raw‑Image Classifier

To classify events represented as raw calorimeter images 
(raw-image classifier), we use DenseNet-121, a model based 
on the Densely Connected Convolutional Network [19]. The 
DenseNet-121 architecture includes 4 dense blocks, each of 
which contains 6, 12, 24, and 16 dense layers, respectively. 
Each dense layer contains two 2D convolutional layers pre-
ceded by batch normalization layers. A dropout rate of 0.5 
is applied after each dense layer. Between two subsequent 
dense blocks is a transition layer consisting of a batch nor-
malization layer, a 2D convolutional layer, and an average 
pooling layer.

Abstract‑Image Classifier

We use the same DenseNet-121 architecture above to clas-
sify the abstract-image representation. We refer to this model 
as abstract-image classifier.

Particle‑Sequence Classifier

A particle-sequence classifier is trained using a recurrent 
network, taking as input the 801 candidates. To feed these 
particles into a recurrent network, particles are ordered 
according to their increasing or decreasing distance from 
the isolated lepton. Different physics-inspired metrics are 
considered to quantify the distance ( �R , �� , �� , kT [10], 
or anti-kT [20]). The best results are obtained using the �R 
decreasing distance ordering.

We use gated recurrent units (GRU) to aggregate the 
input sequence of particle flow candidate features into a 
fixed size encoding. The fixed encoding is fed into a fully 
connected layer with three softmax activated nodes. Input 
data are standardized, so that each feature has zero mean 
and unit standard deviation. The zero-padded entries in the 
particle sequence are skipped with the Masking layer. The 
best internal width of the recurrent layers was found to be 
50, determined by k-fold cross validation on a training set of 
210,000 events. We also considered using long–short-term 
memory networks (LSTM) to replace the GRU, but we found 
that the GRU architecture outperformed the LSTM architec-
ture for the same number of internal cells.

Inclusive Classifier

To inject some domain knowledge in the GRU classifier, we 
consider a modification of its architecture in which the 14 
features of the HLF data set are concatenated to the output 
of the GRU layer after some dropout (see Fig. 4). As for 
the other classifiers, the final output layer consists of three 

nodes, activated by a softmax activation function. We refer 
to this model as inclusive classifier.

Results

Each of the models presented in the previous section 
returns the probability of each event to be associated to a 
given topology: yQCD , yW , and ytt̄ . By applying a threshold 
requirement on yW or ytt̄ , one can define a W or a tt̄ classifier, 
respectively. By changing the threshold value, one can build 
the corresponding receiver-operating characteristic (ROC) 
curve. Figure 5 shows the comparison of the ROC curves 
for five classifiers: the DenseNets based on raw images and 
abstract images, the GRU using the list of particles, the DNN 
using the HLFs, and the inclusive classifier using both the 
HLFs and the list of particles. Results for both a tt̄ and W 
selectors are shown.

Acceptable results are obtained already with the raw-
image classifier. On the other hand, the use of abstract 
images allows us to reach better performances. A further 
improvement is observed for those models not using an 
image-based representation of the event. The fact that the 
HLF selectors perform so well does not come as a surprise, 
given a considerable amount of physics knowledge implic-
itly provided by the choice of the relevant features. On the 
other hand, the fact that the particle-sequence classifier 
reaches better performances compared to the HLF selec-
tor is remarkable, as is the further improvement observed 
by merging the two approaches in the inclusive classi-
fier. In some sense, the GRU layer is gaining a good part 
of the physics intuition that motivated the choice of the 

Fig. 4  Network architecture of the inclusive classifier
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HLF quantities, but not entirely. Figure 6 shows the Pear-
son correlation coefficients between the GRU scores ( ytt̄ 
and yW  ) and the HLF quantities. As one would expect, 
ytt̄ exhibits a stronger correlation with those features that 
quantify jet activity ( njets in Fig. 6), as well as with the 
b-jet multiplicity ( nb-jets ). On the contrary, W events shows 
an anti-correlation with respect to jet quantities, since the 
production of associated jets in W events is much more 
penalized than for tt̄ events. As expected, both scores are 
anti-correlated to the isolation quantities, which takes 
larger values for non-isolated leptons.

The performance of each of the five classifiers is sum-
marized in Table 1 in terms of false-positive rate (FPR) 
and trigger rate (TR) as a function of the true-positive rate 
(TPR). The best QCD rejection is obtained by the inclusive 
classifier, which can retain 99% of the tt̄ or W events with a 
false-positive rate of ∼ 5.2%.

The trigger baseline selection which we use in this study, 
looser than what is used nowadays in CMS, gives an over-
all trigger rate (i.e., summing electron and muon events) of 
∼ 690 Hz , more than a factor two larger than what is cur-
rently allocated. Using the 99% working points of the two 

classifiers, one would reduce the overall rate to ∼ 270 Hz 
(counting the overlap between the two triggers). This would 
be comparable to what is currently allocated for these trig-
gers, but with a looser selection, i.e., with a less severe bias 
on the offline analysis. In addition, the trigger efficiency 
(the TPR) is so high that the bias imposed on offline quanti-
ties is quite minimal. This is illustrated in Fig. 7, where the 
dependence of the TPR on the most relevant HLF quantities 
is shown. In our experience, any rule-based algorithm with 
the same target trigger rate would result in larger inefficien-
cies at small values of at least some of these quantities, e.g., 
the lepton pT . One should also consider that the principle of 
a topology classifier could be generalized to other physics 
cases, as well as to other uses (e.g., labels for fast reprocess-
ing or access to specific subsets of the triggered samples).

Figure 8 shows the TPR and FPR of the inclusive tt̄ selec-
tor when applying the 99% TPR working-point threshold, 
as a function of the number of vertices in the event, which 
quantifies the amount of pileup. The TPR is fairly insensi-
tive to PU until PU ∼ 35 , (the average PU recorded by the 
LHC in 2018), where the TPR drops to 97% . At the same 
time, the FPR increases mildly, resulting in a rate increase 

Fig. 5  ROC curves for the tt̄ 
(left) and W (right) selectors 
described in the paper

Fig. 6  Pearson correlation coef-
ficients between the ytt̄ (left) and 
yW (right) scores of the particle-
sequence classifier and the 14 
quantities of the HLF data set
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from ∼ 34 Hz (at the average PU value ∼ 20 ) to ∼ 48 Hz 
at PU ∼ 35 . In other words, the algorithm trained on 2016 

conditions would have been sustainable until 2018 with 
∼ 15% rate increase (with respect to the average value) or it 

Table 1  False-positive rate (FPR) and trigger rate (TR) at different values of the true-positive rate (TPR), for a tt̄ (top) and W selector

Rate values are estimated scaling the TPR and process-dependent FPR values by the acceptance and efficiency, assuming a leading-order (LO) 
production cross section and luminosity of 2 × 10

34
cm

−2
s
−1 . TR values should be taken only as suggestions of the actual rates, since the accu-

racy is limited by the use of LO cross sections and a parametric detector simulation

Raw-image (DenseNet) Abstract-image 
(DenseNet)

HLF (DNN) Particle-sequence (GRU) Inclusive (DNN+GRU)

tt̄ selector
   FPR @99% TPR 76.5 ± 0.2% 50.1 ± 0.2% 28.6 ± 0.2% 9.2 ± 0.1% 5.2 ± 0.1%

   FPR @95% TPR 41.3 ± 0.2% 15.7 ± 0.1% 6.1 ± 0.1% 1.7 ± 0.1% 0.7 ± 0.0%

   FPR @90% TPR 26.5 ± 0.2% 7.4 ± 0.1% 2.7 ± 0.1% 0.6 ± 0.0% 0.2 ± 0.0%

   TR @99% TPR 382.0 ± 0.9 Hz 250.9 ± 1.0 Hz 143.9 ± 0.9 Hz 48.1 ± 0.6 Hz 28.4 ± 0.4 Hz

   TR @95% TPR 207.8 ± 1.0 Hz 80.3 ± 0.7 Hz 32.4 ± 0.5 Hz 11.0 ± 0.3 Hz 6.0 ± 0.2 Hz

   TR @90% TPR 134.2 ± 0.9 Hz 39.0 ± 0.5 Hz 15.5 ± 0.3 Hz 5.2 ± 0.2 Hz 3.5 ± 0.1 Hz

W selector
   FPR @99% TPR 79.0 ± 0.2% 61.8 ± 0.2% 23.5 ± 0.2% 10.2 ± 0.1% 6.3 ± 0.1%

   FPR @95% TPR 60.5 ± 0.2% 36.0 ± 0.2% 9.7 ± 0.1% 3.7 ± 0.1% 1.8 ± 0.1%

   FPR @90% TPR 48.1 ± 0.2% 22.8 ± 0.2% 5.1 ± 0.1% 1.8 ± 0.1% 0.9 ± 0.0%

   TR @99% TPR 488.9 ± 0.3 Hz 462.3 ± 0.5 Hz 301.9 ± 0.6 Hz 268.2 ± 0.5 Hz 259.7 ± 0.4 Hz

   TR @95% TPR 454.5 ± 0.6 Hz 365.1 ± 0.8 Hz 259.2 ± 0.5 Hz 242.6 ± 0.4 Hz 238.0 ± 0.4 Hz

   TR @90% TPR 408.2 ± 0.8 Hz 301.8 ± 0.8 Hz 235.0 ± 0.5 Hz 225.4 ± 0.5 Hz 223.3 ± 0.5 Hz
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would have required a threshold adjustment along the way, a 
pretty standard operation when designing a trigger menu at 
the beginning of the year. We believe that, in view of these 
facts, the proposed algorithm would be as robust as many 
state-of-the-art algorithms operated at the LHC experiments.

Impact on Other Topologies

While reducing the resource consumption of standard phys-
ics analyses is the main motivation behind this study, it is 
important to evaluate the impact of the proposed classifiers 
on other kinds of topologies. For this purpose, we consider 
a handful of beyond-the-standard-model (BSM) scenarios, 
and we compute the TPR as a function of the most relevant 
kinematic quantities, similar to what was done in Fig. 7 for 
the standard topologies.

We consider the following BSM processes:

– A → H+W  : a heavy Higgs boson A with mass 425 GeV 
decaying to a charged Higgs boson H+ of mass 325 GeV 
and a W− boson. The H+ then decays to a W+H0 final 
state, where H0 is the 125 GeV Higgs boson, which we 
force to decay to a bottom quark–antiquark pair. This 
model, introduced in Ref. [21], generates a 2b2W topol-
ogy similar to that given by tt̄ events.

– High-mass A → H+W  : a high-mass variation of the pre-
vious model, in which the A and H+ masses are set to 
1025 GeV and 625 GeV, respectively.

– A → 4� : a light neutral scalar particle A with mass 
20 GeV, decaying to two neutral scalars of 5 GeV each, 
both decaying to muon pairs, for a total of four muons in 
the final state.

– W ′ resonance with mass 300 GeV, decaying inclusively 
with W-like couplings.

– Z′ resonance with mass 600 GeV, decaying to a pair of 
electrons or muons.

These events are filtered with the baseline selection 
described in section “Data Set”.

For each of these models, we consider the inclusive clas-
sifier and apply the 99%-TPR thresholds on ytt̄ and yW . We 
then consider the fraction of events passing at least one of 
the two selectors. Results are shown in Fig. 9 for the most 
relevant kinematic quantities. While the individual selectors 
might show local inefficiencies, the combination of the two 
trigger paths is perfectly capable of retaining any event with 
features different from that of a QCD multijet event. In this 
respect, the logical OR of our two exclusive topology clas-
sifiers is robust enough to also select a large spectrum of 
BSM topologies. On the other hand, one cannot guarantee 
that QCD-like topologies (e.g., a dark photon produced in jet 
showers and decaying to lepton pairs) would not be rejected, 
a limitation which also affects traditional inclusive trigger 
strategies.

Robustness Study

As the classifier is trained on Monte Carlo simulation sam-
ples, one needs to consider the discrepancy between Monte 
Carlo and real data when deploying the classifier in the trig-
ger. We investigate the robustness of our topology classifiers 
against this discrepancy by creating a pseudo-data sample, 
which attempts to emulate real data by adding a Gaussian 
noise to the particles’ momenta in the simulation samples. 
The Gaussian noise has mean of zero and standard devia-
tion of 10% of the variable’s values being applied. Figure 10 
shows some comparisons between the Monte Carlo samples 
and the pseudo-data with this Gaussian noise added.

We evaluate the performance of our fully trained inclu-
sive classifier on the new pseudo-data. Table 2 shows a 
slight reduction of signal efficiency: at the same background 
contamination rate of 5.2%, the signal efficiency reduces 
by only 1.4%. This demonstrates that our classifiers can be 
robust against some augmentation that mimics the discrep-
ancy between data and Monte Carlo simulation. A compre-
hensive study on full simulation and data in proper control 
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regions would be needed when deploying this classifier into 
production.

Related Works

Machine learning is traditionally used in high-energy phys-
ics as part of data analysis, and was an important ingre-
dient to the discovery of the Higgs boson, as discussed in 
[22]. Several classification algorithms have been studied in 
the context of LHC physics application, notably for jet tag-
ging [23–30] and event topology identification [11, 21, 31] 
using feed-forward neural networks, convolutional neural 
networks, or physics-inspired architectures. Lists of particles 
have been used to define jet and event classifiers starting 
from a list of reconstructed particle momenta [32–34]. These 
studies typically consider data analysis as the main use case, 
focusing on small FPR selections. This is the main difference 
with respect to this study, which focuses on the optimization 
of real-time data-taking procedure.

In parallel, machine learning techniques have also been 
used in online event selection. For example, the LHCb 
experiment used a decision-tree based approach for the 
high-level trigger in the first LHC run [35] and re-optimized 
it with MatrixNet algorithm for Run II [36]; ATLAS uses 
BDT in its multi-step tau trigger for Run II [37]; a BDT was 
also deployed on FPGA cards of the hardware-level trig-
ger of the CMS experiment [38]. These triggers are mainly 

based on high-level features related to specific parts of a 
collision event. We propose instead to define an algorithm 
that is based on a raw-event representation and considers the 
full-event collision at once. To our knowledge, this is the 
first demonstration of how a recurrent neural network could 
perform a successful inference on a full event and improve 
topology identification based on object-specific features.

In addition, traditional triggers based on machine learning 
run in tagging mode, i.e., are used to identify certain types 
of particles. Instead, we propose to use our topology classi-
fier in veto mode: the trigger algorithm running downstream 
would be a classic trigger with loose selection, which would 
normally be unsustainable due to high throughput. The 
topology classifier would subsequently remove a majority 
of background events, sustaining the trigger rate and saving 
downstream computing resources.

Note. After submitting this paper for review, the study 
presented in Ref. [39] showed how a topology classification 
based on full-event information can boost tagging efficiency 
or purity of a single-object trigger, or both, in the context of 
an offline analysis.

Conclusions

We show how deep neural networks can be used to train 
topology classifiers for LHC collision events, which could 
be used as a clean-up filter to select or reject specific event 
topologies in a trigger system. We consider several network 
architectures, applied to different representations of the same 
collision datasets.

The best results are obtained by combining a set of 
physics-motivated high-level features with the output of a 
GRU unit applied to a list of particle-level features. For the 
most difficult case, i.e., selecting rare tt̄ events, we show 
how a trigger based on this concept would retain 99% of the 
tt̄ events while reducing the FPR by more than ∼ 10 times.

Fig. 10  Distributions of the validation sample and pseudo-data. The pseudo-data are created by adding a Gaussian noise of mean zero and stand-
ard deviation of 10% to the validation sample’s particle momenta. The high-level features are then recomputed with the new list of particles

Table 2  Signal efficiency (TPR) at different values of the false-posi-
tive rate (FPR) for the inclusive classifier selecting tt̄ evaluated on the 
validation sample and the pseudo-data

FPR TPR on validation sample TPR on pseudo-data

5.2% 99.0 ± 0.1% 97.6 ± 0.1%

0.7% 95.0 ± 0.1% 90.9 ± 0.2%

0.2% 90.0 ± 0.2% 83.5 ± 0.2%
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The information given as input to the GRU, the abstract-
image CNN, and the raw-image CNN is the same, but coded 
differently. The difference in performance is then a combina-
tion of two effects: the encoding of this information in the 
input event representation and the way the network archi-
tecture exploits it. The DNN case is different. The DNN 
uses in principle less information. On the other hand, the 
list of HLFs given as input to the DNN is based on domain 
knowledge that the other networks have to learn by them-
selves. This is why the DNN model is very competitive 
despite using less information and why the inclusive clas-
sifier (GRU+DNN) improves on the GRU-based particle-
sequence classifier. Nevertheless, it is remarkable that the 
score of the particle-sequence classifier learns interesting 
correlation patterns with the HLF features, showing that 
(to some extent) the GRU is learning some of this domain 
knowledge.

We show that such a trigger would have a minimal impact 
on the main kinematic features of the event topologies under 
consideration. The effect of operating this topology classifier 
as a final filter of a given single-lepton trigger would result 
in small decrease of trigger efficiency by few percentage 
(depending on the TPR of the chosen working point). On the 
other hand, such a filter would allow for a looser selection, 
efficiently including non-isolated leptons with low pT with-
out downstream consequences in terms of computational 
power and storage. In addition, the logic OR of the tt̄ and 
W selections would also catch a broad class of new-physics 
topologies, on which the classifiers were not trained.

The advantages of running these types of algorithms 
come at the cost of computational resources to train the 
models. In our case, a single training of the inclusive classi-
fier took 4 h on a cluster consisting of 6 GeForce GTX 1080 
GPUs. Building a cluster of a few tens of GPUs of this kind, 
to be used as a training facility, is well within the budget of 
big-experiment computing projects. For this reason, dedi-
cated studies are ongoing to integrate train-on-demand ser-
vices in the computing infrastructures of LHC experiments 

[16] [40]. In view of the challenging trigger environment 
foreseen for the High-Luminosity LHC, it would be impor-
tant to test this trigger strategy as a way to preserve a good 
experimental reach with a substantial reduction of computa-
tional resources. In this respect, we look forward to the LHC 
Run III as an opportunity to experiment with this technique 
using full simulation and study its impacts on real-time event 
selection.
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Appendix A An Alternative Use Case

In this paper, we showed how one could use a topology clas-
sifier to keep the overall trigger rate under control while 
operating triggers with otherwise unsustainable loose 
selections. In this appendix, we discuss how topology clas-
sifiers could be used to save resources for a pre-defined 
baseline trigger selection by rejecting events associated to 
unwanted topologies. In this case, the main goal is not to 
reduce the impact of the online selection. Instead, we focus 

Fig. 11  ROC curves for the tt̄ 
(left) and W (right) selectors 
described in the paper, trained 
on a data set defined by a tighter 
baseline selection
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on reducing resource consumption downstream for a given 
trigger selection.

To this purpose, we consider a copy of the data set 
described in section “Data Set”, obtained tightening the 
pT threshold from 23 to 25 GeV and the isolation require-
ment from ��� < 0.45 to��� < 0.20 . Doing so, the sample 
composition changes as follow: 7.5% QCD; 92% W; 0.5% 
tt̄ . With such selections, the trigger acceptance rate would 
decrease from 690 Hz to 390 Hz, closer to what is currently 
allocated for these triggers in the CMS experiment.

Following the procedure described in sections “Model 
description” and “Results”, we train the same topology clas-
sifiers on this data set. The corresponding ROC curves are 
presented in Fig. 11 for a tt̄ and a W selector.

We then define a set of trigger filters applying a lower 
threshold to the normalized score of the classifier, choosing 
the threshold value that corresponds to a certain TPR value. 
The result is presented in Table 3, in terms of the FPR and 
the trigger rate.

The trigger baseline selection we use in this study, close 
to what is used nowadays in CMS for muons, gives an over-
all trigger rate (i.e., summing electron and muon events) of ∼ 
390 Hz (i.e., 190 Hz per lepton flavor). If one was willing to 
take (as an example) half the W events and all the tt̄ events, 
this number could be reduced to ∼ 200 Hz using the inclu-
sive selectors presented in this study (taking into account 
the partial overlap between the two triggers). A more clas-
sic approach would consist in prescaling the isolated-lepton 
triggers, i.e., randomly accepting half of the events. The 
effect on W events would be the same, but one would lose 
half of the tt̄ events while still writing 15 times more QCD 

than tt̄ events. In this respect, the strategy we propose would 
allow a more flexible and cost-effective strategy.
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