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Abstract: Jet production at hadron colliders is a benchmark process to probe the dynam-

ics of the strong interaction and the structure of the colliding hadrons. One of the most

basic jet production observables is the single jet inclusive cross section, which is obtained

by summing all jets that are observed in an event. Our recent computation of next-to-next-

to-leading order (NNLO) QCD contributions to single jet inclusive observables uncovered

large corrections in certain kinematical regions, which also resulted in a sizeable ambiguity

on the appropriate choice of renormalization and factorization scales. We now perform a

detailed investigation of the infrared sensitivity of the different ingredients to the single

jet inclusive cross section. We show that the contribution from the second jet, ordered

in transverse momentum pT, in the event is particularly sensitive to higher order effects

due to implicit restrictions on its kinematics. By investigating the second-jet transverse

momentum distribution, we identify large-scale cancellations between different kinemat-

ical event configurations, which are aggravated by certain types of scale choice. Taking

perturbative convergence and stability as selection criteria enables us to single out the

total partonic transverse energy ĤT and twice the individual jet transverse momentum

2 pT (with which ĤT coincides in Born kinematics) as the most appropriate scales in the

perturbative description of single jet inclusive production.
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1 Introduction

At hadron colliders, the factorised form of the inclusive cross section is given by,

dσ =
∑
i,j

∫ 1

0
dx1

∫ 1

0
dx2 fi(x1, µF) fj(x2, µF) dσ̂ij(αs(µR), µ2

R, µ
2
F) , (1.1)

where dσ̂ij is the parton-level scattering cross section for parton i to scatter off parton

j and the sum runs over the possible parton types i and j. The probability of finding

a parton of type i in the proton carrying a momentum fraction x is described by the

parton distribution function (PDF) fi(x)dx. By applying suitable cuts, one can study

more exclusive observables such as the transverse momentum distribution or the rapidity

distribution of the hard objects (jets or vector bosons, Higgs bosons or other new particles)
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produced in the hard scattering. In Eq. (1.1), one has to fix the renormalization scale µR for

the strong coupling αs(µR), and the mass factorization scale µF for the parton distribution

functions fi(x, µF).

In this paper we study jet production at hadron colliders, in particular the single jet

inclusive cross section in proton-proton collisions, dσ(p+p→ jet+X), which is obtained by

summing over all jets in the event. The observable is inclusive over all additional radiation

as no further kinematical constraints are imposed on the final state particles beyond the

requirement of observing at least a single jet. In this way, the full event can contain multiple

jets and all jets that lie in a given range of rapidity y and transverse momentum pT are

taken into account in determining the single jet inclusive cross section for that bin.

Large-pT jet production at hadron colliders has been studied in particle accelerators

over a period of many years by the UA1 [1] and UA2 [2] experiments at the Spp̄S collider

(
√
s = 546 GeV and 630 GeV) and by the CDF [3] and D0 [4] experiments at the Tevatron

(
√
s = 1.96 TeV). At the Large Hadron Collider (LHC) at CERN, the ALICE, ATLAS

and CMS collaborations have measured inclusive jet cross sections in proton-proton col-

lisions at centre-of-mass energies of
√
s = 2.76 TeV [5–7], 7 TeV [8, 9], 8 TeV [10, 11]

and 13 TeV [12, 13]. These precise measurements are crucial for understanding physics at

hadron colliders as jet cross sections provide valuable information about the strong cou-

pling constant αs, the non-perturbative structure of the proton encoded in the PDFs, and

probe the shortest distance scales that are experimentally attainable. More recently, jet

substructure techniques have been applied to understand the internal dynamics of QCD

jets in order to identify discriminator variables which can more easily disentangle jets orig-

inating in the QCD parton scattering process from those produced by the hadronic decay

of new heavy beyond-Standard-Model particles [14].

Hadron collider jet observables can be computed at a given fixed order in αs in per-

turbative QCD, by retaining the corresponding terms in the series expansion in αs for the

parton-level cross sections and the PDFs, as presented in Eq. (1.1). Next-to-leading-order

(NLO) QCD corrections to jet production at hadron colliders were computed in [15–17] and

later combined with a parton shower in [18, 19]. First-order corrections in the electroweak

(EW) coupling have been derived in [20, 21], and the combination of NLO QCD and EW

corrections was studied in [22]. A study of joint jet radius and threshold resummation

has been presented in [23]. Progress in next-to-next-to-leading-order (NNLO) QCD cal-

culations has been made over the past several years [24–27]. After the completion of the

first calculations of the gluons-only subprocess [28, 29], the complete leading-colour and

leading-NF NNLO QCD corrections to the single jet inclusive production [30] and to di-jet

production [31] were obtained recently.

The recent NNLO calculation provides new opportunities for QCD studies at hadron

colliders, it enables precise theoretical predictions for jet observables to be compared with

the wealth of experimental jet data which have similar precision. More formally, the

knowledge of three orders in the perturbative expansion in αs for these jet observables

provides a testing ground for the impact of the higher order corrections through the notion

of perturbative convergence and the reduction of theoretical scale uncertainties.

One issue which requires particular attention is the role of the renormalization and
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factorization scales in the theoretical predictions. At a formal level, the parameters µR

and µF are introduced as auxiliary quantities which allow meaningful predictions to be

calculated at each order in perturbation theory. As auxiliary quantities, an all-order pre-

diction would be independent of these parameters. However, truncating at fixed order

yields a residual dependence, formally of one order higher in the strong coupling. Varying

the numerical value of the scale (usually in an interval around a pre-defined central scale

choice) is frequently used to quantify the uncertainty on the theory prediction due to the

uncomputed higher orders. The huge dynamical range of jet production at the LHC and

the three available perturbative orders in the theoretical prediction provide the opportunity

to test thoroughly the commonly used arguments about scale dependence in perturbative

calculations.

For these reasons we have recently provided jet cross section predictions for the LHC

at NNLO using both the leading jet transverse momentum in an event µR = µF = pT,1 [30]

or each individual jet transverse momentum µR = µF = pT [32] as a central scale choice.

We have observed an overall reduction in the scale dependence of the prediction at NNLO

with respect to the NLO result with either of these scale choices. However, comparing the

two predictions (which are both based on well-motivated central scale choices) against each

other, we noticed a substantial difference in their quantitative behaviour [32], which can

be viewed as a further uncertainty on the theory prediction. It is therefore important to

arrive at a sensible central scale choice, which covers the range of jet kinematics accessible

at the LHC.

In this paper, we perform a detailed study of the perturbative behaviour of the in-

dividual contributions to the single jet inclusive production cross section for a given set

of sensibly chosen dynamical scales. In Section 2 we present the structure and the scale

dependence of the single jet inclusive cross section computed through to NNLO in QCD.

We discuss possible functional forms for the scale choice in terms of kinematical variables,

thereby carefully distinguishing scales which are based on individual jet kinematics (jet-

based) or on full event kinematics (event-based). Particular attention is paid to the effects

of the jet clustering algorithm and the jet resolution parameter on the kinematical variables

used in the different scale choices.

In Section 3 we subsequently perform a detailed investigation of the infrared sensitivity

of the different ingredients to the single jet inclusive cross section for the jet-based scale

choice µR = µF = pT and the event-based scale choice µR = µF = pT,1. It is the aim

of this section to identify the source of the different quantitative behaviour in the NNLO

predictions between the µR = µF = pT and µR = µF = pT,1 scale choices.

In Section 4 we analyse the behaviour of the perturbative expansion of the single jet

inclusive observable, for the different functional forms for the central scale choice established

in Section 2. This allows us to assess the perturbative stability and convergence properties

for each scale choice up to NNLO, thereby identifying the most appropriate candidates.

Subsequently we compare our predictions at NLO and NNLO to the available CMS 13 TeV

jet data for the first time in Section 5. Finally in Section 6 we present our conclusions.
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2 Renormalization and factorization scales in the single jet inclusive

cross section

When calculating jet cross sections to fixed order in perturbation theory (1.1), one has to

fix the renormalization scale µR for the strong coupling αs(µR), and the mass factorization

scale µF for the parton distribution functions fi(x, µF).

The behaviour of the coupling constant and parton distributions under scale variations

is determined by evolution equations. After fixing a central reference scale, all scale-

dependent terms of hard scattering cross sections can be inferred by expanding the solutions

of the evolution equations in powers of the strong coupling constant. These are collected in

Section 2.1 below. For processes involving massive particles (vector bosons, Higgs bosons or

top quarks), the particle mass provides a natural candidate for the central reference scale.

In contrast, no natural fixed scale is present in jet production processes, which involve

only massless objects at parton level. Consequently, the central scale for jet production

must be chosen dynamically, based on the kinematics of the final-state objects (jets or full

events) under consideration. Section 2.2 discusses different prescriptions for the central

scale in single jet inclusive production, based on the kinematics of each individual jet, or

of the whole event. These kinematical variables depend on the jet algorithm and the jet

resolution parameter. In Section 2.3 we define the individual jet contributions to the single

jet inclusive production cross section which are individually infrared safe only if they are

inclusive in the jet rapidity. Analysing the different possible final state configurations up

to NNLO, we finally discuss the impact of the jet resolution on the event properties and

on the scale choices in Section 2.4.

2.1 Scale dependent terms up to NNLO

2.1.1 Renormalization scale dependence

The renormalization group equation describing the running of αs as a function of the

renormalization scale µR reads:

µ2
R

dαs(µR)

dµ2
R

= −αs(µR)

[
β0

(
αs(µR)

2π

)
+ β1

(
αs(µR)

2π

)2

+ β2

(
αs(µR)

2π

)3

+O(α4
s )

]
,

(2.1)

with the MS-scheme coefficients [33, 34]

β0 =
11CA − 4TRNF

6
,

β1 =
17C2

A − 10CATRNF − 6CFTRNF

6
,

β2 =
1

432

(
2857C3

A + 108C2
FTRNF − 1230CFCATRNF − 2830C2

ATRNF

+264CFT
2
RN

2
F + 316CAT

2
RN

2
F

)
, (2.2)

where CA = 3, CF = 4/3, TR = 1/2 and NF is the number of light quark flavours.
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Using the solution of this equation, the coupling at a fixed scale µR0 can be truncated

in terms of the coupling at µR by introducing

LR = log

(
µ2

R

µ2
R0

)
(2.3)

as

αs(µR0) = αs(µR)

[
1 + β0LR

αs(µR)

2π
+
[
β2

0L
2
R + β1LR

](αs(µR)

2π

)2

+O(α3
s )

]
. (2.4)

The perturbative expansion of the single jet inclusive cross section starts at order α2
s .

In evaluating the expansion coefficients σ(n) = σ(n)(µR0), the renormalization scale is fixed

to a value µR0 (which can be dynamically evaluated event-by-event). Rescalings can then

be made for a fixed ratio µR/µR0 for all events; e.g. if µR0 = pT,1, we can rescale to

µR = 2 pT,1 or µR = pT,1/2, but not to µR = MZ or µR = HT ).

2.1.2 Factorization scale dependence

The evolution of parton distributions associated to a variation of the factorization scale µF

is determined by the Altarelli-Parisi equations [35] which read (omitting for simplicity the

dependence on the Bjorken scaling variable x):

µ2
F

d

dµ2
F

fi(µF, µR) =
∑
j

Pij(αs(µR), µF, µR)⊗ fj(µF, µR) . (2.5)

The expansion to the third order of the splitting functions P
(n)
ij computed for µF = µR

is [36, 37]:

Pij(αs(µR), µF, µR) =
αs(µR)

2π
P

(0)
ij +

(
αs(µR)

2π

)2 [
P

(1)
ij + β0lP

(0)
ij

]
+

(
αs(µR)

2π

)3 [
P

(2)
ij +

(
β1P

(0)
ij + 2β0P

(0)
ij

)
l + β2

0 l
2P

(0)
ij

]
+O(α4

s ) ,

(2.6)

where we introduced

l = log

(
µ2

R

µ2
F

)
. (2.7)

Note that (2.6) can be rewritten as

Pij(αs(µR), µF, µR) =
αs(µF)

2π
P

(0)
ij +

(
αs(µF)

2π

)2

P
(1)
ij +

(
αs(µF)

2π

)3

P
(2)
ij +O(α4

s ) ,

(2.8)

which implies that fi(µF, µR) and fi(µF, µF) fulfil the same evolution equation to all per-

turbative orders. The finite scheme transformation between both possible choices for µF,

equal or different from µR, is thus vanishing to all orders and both functions can at most
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vary in their non-perturbative boundary conditions. For all perturbative purposes, we thus

have

fi(µF, µR) = fi(µF, µF) ≡ fi(µF) , (2.9)

which we will normally use in what follows (except if the scale transformation of the parton

distribution is not expanded in αs(µF), but in αs(µR)).

The parton distribution at a fixed scale µF0 can be expressed in terms of parton

distributions at µF by expanding the solution of (2.5). We distinguish the expansion in

powers of αs(µR) and in powers of αs(µF) and introduce

LF = log

(
µ2

F

µ2
F0

)
. (2.10)

The expansion in αs(µR) of the parton distribution at µF0 reads then:

fi(µF0) = fi(µF)− αs(µR)

2π
P

(0)
ij ⊗ fj(µF)LF

−
(
αs(µR)

2π

)2 [
P

(1)
ij ⊗ fj(µF)LF −

1

2
P

(0)
ij ⊗ P

(0)
jk ⊗ fk(µF)L2

F

+P
(0)
ij ⊗ fj(µF)β0LF

(
l +

1

2
LF

)]
+O(α3

s ) . (2.11)

The expansion in powers of αs(µF) is obtained from the above by setting µR = µF in αs to

yield

fi(µF0) = fi(µF)− αs(µF)

2π
P

(0)
ij ⊗ fj(µF)LF

−
(
αs(µF)

2π

)2 [
P

(1)
ij ⊗ fj(µF)LF −

1

2
P

(0)
ij ⊗ P

(0)
jk ⊗ fk(µF)L2

F

+
1

2
P

(0)
ij ⊗ fj(µF)β0L

2
F

]
+O(α3

s ) . (2.12)

In both expressions, a summation over indices appearing twice is implicit.

2.1.3 Hadron collider jet cross section

Using the results presented above, one can compute the perturbative coefficients of the

hadron collider cross section with default values of µF0 = µR0 = µ0. The perturbative

expansion to NNLO reads:

σ(µR0 , µF0 , αs(µR0)) =

(
αs(µR0)

2π

)2

σ̂
(0)
ij ⊗ fi(µF0)⊗ fj(µF0)

+

(
αs(µR0)

2π

)3

σ̂
(1)
ij ⊗ fi(µF0)⊗ fj(µF0)

+

(
αs(µR0)

2π

)4

σ̂
(2)
ij ⊗ fi(µF0)⊗ fj(µF0) +O(α5

s ) . (2.13)
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The full scale dependence of this expression, for µF and µR different from each other,

can be recovered by inserting (2.4) and (2.11) into the above equation. It yields

σ(µR, µF, αs(µR), LR, LF) =(
αs(µR)

2π

)2

σ̂
(0)
ij ⊗ fi(µF)⊗ fj(µF)

+

(
αs(µR)

2π

)3

σ̂
(1)
ij ⊗ fi(µF)⊗ fj(µF)

+LR

(
αs(µR)

2π

)3

2β0 σ̂
(0)
ij ⊗ fi(µF)⊗ fj(µF)

+LF

(
αs(µR)

2π

)3 [
− σ̂(0)

ij ⊗ fi(µF)⊗
(
P

(0)
jk ⊗ fk(µF)

)
− σ̂(0)

ij ⊗
(
P

(0)
ik ⊗ fk(µF)

)
⊗ fj(µF)

]
+

(
αs(µR)

2π

)4

σ̂
(2)
ij ⊗ fi(µF)⊗ fj(µF)

+LR

(
αs(µR)

2π

)4 (
3β0 σ̂

(1)
ij + 2β1 σ̂

(0)
ij

)
⊗ fi(µF)⊗ fj(µF)

+L2
R

(
αs(µR)

2π

)4

3β2
0 σ̂

(0)
ij ⊗ fi(µF)⊗ fj(µF)

+LF

(
αs(µR)

2π

)4 [
− σ̂(1)

ij ⊗ fi(µF)⊗
(
P

(0)
jk ⊗ fk(µF)

)
− σ̂(1)

ij ⊗
(
P

(0)
ik ⊗ fk(µF)

)
⊗ fj(µF)

− σ̂(0)
ij ⊗ fi(µF)⊗

(
P

(1)
jk ⊗ fk(µF)

)
− σ̂(0)

ij ⊗
(
P

(1)
ik ⊗ fk(µF)

)
⊗ fj(µF)

]
+L2

F

(
αs(µR)

2π

)4 [
σ̂

(0)
ij ⊗

(
P

(0)
ik ⊗ fk(µF)

)
⊗
(
P

(0)
jl ⊗ fl(µF)

)
+

1

2
σ̂

(0)
ij ⊗ fi(µF)⊗

(
P

(0)
jk ⊗ P

(0)
kl ⊗ fl(µF)

)
+

1

2
σ̂

(0)
ij ⊗

(
P

(0)
ik ⊗ P

(0)
kl ⊗ fl(µF)

)
⊗ fj(µF)

+
1

2
β0 σ̂

(0)
ij ⊗ fi(µF)⊗

(
P

(0)
jk ⊗ fk(µF)

)
+

1

2
β0 σ̂

(0)
ij ⊗

(
P

(0)
ik ⊗ fk(µF)

)
⊗ fj(µF)

]
+LFLR

(
αs(µR)

2π

)4 [
− 3β0 σ̂

(0)
ij ⊗ fi(µF)⊗

(
P

(0)
jk ⊗ fk(µF)

)
− 3β0 σ̂

(0)
ij ⊗

(
P

(0)
ik ⊗ fk(µF)

)
⊗ fj(µF)

]
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+O(α5
s ) . (2.14)

2.2 Scale choices

Inclusive jet observables accumulate each reconstructed jet in the event to the same kine-

matic distribution, resulting in multiple bookings of the event into a given histogram. The

set of possible scale choices is consequently large and we shall distinguish two generic types:

event-based and jet-based scales. A jet-based scale only uses kinematic information from

the individual jet to determine the scale associated with the contribution from this jet to

the cross section. In a given event, the event weight is thus evaluated at several different

scales, one scale for each jet. In contrast to this, an event-based scale uses information

from the full final state of the event to set a common scale for all binnings of the jets that

are contained in this event.

In this paper we will consider the following set of functional forms for the scale choice

(and multiples thereof):

the individual jet transverse momentum pT: When this jet-based scale choice is used

for the inclusive pT distribution, the observable is directly aligned with the scale it-

self, making it a convenient choice for PDF fits. It mimics kinematical hierarchies in

an event, where multiple jets can be reconstructed with very different pT. However,

this can lead to the scale being set to values that are not at all representative of the

underlying hard scattering process.

the leading-jet transverse momentum pT,1: This event-based scale uses the pT of the

hardest jet in the event, which is a better proxy for the scale of the hard interaction

compared to the µ = pT choice. For multi-jet events comprising many hard resolved

jets, pT,1 can still underestimate the scale of the hard interaction. Moreover, pT,1

does not take account of scale hierarchies in an event.

the scalar sum of the transverse momenta of all reconstructed jets HT: With

this event-based scale one incorporates the kinematics of all individual jets by sum-

ming up their respective transverse momenta, HT =
∑

i∈jets pT,i. As such, it consti-

tutes the hardest scale discussed so far and for the Born-level 2 → 2 process, it is

related to the pT scales as HT = 2 pT = 2 pT,1. It however suffers from a discontinuous

behaviour, when the number of reconstructed jets changes:

njets = 1⇒ HT = pT,1 , njets = 2⇒ HT = pT,1 + pT,2 , . . . . (2.15)

For this reason, it displays a large displacement at the phase-space boundaries where

(n+ 1)-jet events migrate to n-jet events. As a consequence, higher order corrections

for values of pT close to the minimum jet acceptance pT,min become unstable and we

will no longer consider this scale in the remainder of this paper.

the scalar sum of the transverse momenta of all partons ĤT: The undesirable dis-

continuous behaviour of HT can be alleviated if the transverse momentum sum is not

based on the reconstructed jets, but instead obtained as the transverse momentum

– 8 –



scale type njets → njets + 1
analysis

dependence

pT (2 pT) jet based continuous yes

pT,1 (2 pT,1) event based continuous yes

HT/2 (HT) event based discontinuous yes

ĤT/2 (ĤT) event based continuous no

Table 1: Possible scale choices in inclusive jet production and their properties.

sum of all partons in the event: ĤT =
∑

i∈partons pT,i. This event-based scale choice

also has the advantage of being insensitive to the jet reconstruction applied in the

analysis and is an infrared-safe event shape variable.

Any scale choice that is based on the kinematics of the reconstructed jets, i.e. pT, pT,1,

and HT from the list above, inherits a dependence on the jet cuts and the details of the

clustering employed in the analysis [38]. This means that for a given partonic configuration

and the same scale definition, the determined value for the scale depends on the details of

the jet algorithm, the allowed rapidity range and the rapidity and pT range probed by the

experiment. In particular, the scale choice introduces an indirect dependence on the cone

size R of the jet algorithm and on the jet cuts:

• A sensitivity of event-based scales on the jet cuts induces the unwanted property that

a variation of rapidity cuts can impact the predictions in the other rapidity regions

well away from the variation.

• The dependence of the scale on the jet-clustering algorithm can introduce an indirect

sensitivity on the cone size R. Such an effect becomes hard to disentangle from

the purely kinematical dependence on R, which is discussed in Sect. 2.4 and which

induces potentially enhanced corrections of the form log(R).

As an example of the above, consider the event-based scale µ = pT,1 and a configuration

in which the leading jet is relatively forward and thus does not contribute in a central

rapidity slice of the single jet inclusive cross section. If the detector rapidity coverage

includes the jet, the scale will be the pT of this forward jet. On the other hand, if the

forward jet lies outside of the detector coverage it will not be identified as the leading jet,

and the event-based scale will be different. As a consequence, predictions for the jet cross

section in the central region of the detector will depend on the rapidity coverage of the

detector when the event-based scale pT,1 is used.

In contrast, the µ = pT scale choice always uses the transverse momentum of the jet

in the rapidity slice where the jet is observed and therefore its predictions are not sensitive

to the jet-defining cuts. However, as will be detailed in Section 2.4, the scales µ = pT,1

and µ = pT show a different sensitivity to the jet cone size.
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Both of these issues are avoided for µ = ĤT that is defined on the basis of the parton

kinematics. While not being directly accessible in the experimental measurement, ĤT is

infrared-safe and theoretically well-defined. Its use for scale settings is not problematic,

since the renormalization and factorization scales are simply auxiliary quantities in the

theoretical prediction.

Table 1 summarises the different scale choices together with their respective properties

discussed in this section.

2.3 Individual jet contributions to inclusive jet production

To illustrate the difference between an event-based and a jet-based scale choice, we consider

two of the most common scale choices in studies of jet production at hadron colliders,

i.e. µ = pT,1 and µ = pT. To this end, it is instructive to look at the composition of

the single jet inclusive cross section in terms of contributions from individual jets in an

event (ordered in decreasing transverse momentum). With the event-based scale choice

µR0 = µF0 = µ = pT,1, then through to O(α4
s ) we have:

dσ

dpT
(µ = pT,1) =

dσ

dpT,1
(µ = pT,1) +

dσ

dpT,2
(µ = pT,1) +

dσ

dpT,3
(µ = pT,1) +

dσ

dpT,4
(µ = pT,1) .

Predictions for the jet-based scale choice µ = pT can subsequently be obtained in the

following way,

dσ

dpT
(µ = pT) =

dσ

dpT,1
(µ = pT,1) +

dσ

dpT,2
(µ = pT,2) +

dσ

dpT,3
(µ = pT,3) +

dσ

dpT,4
(µ = pT,4)

=
dσ

dpT
(µ = pT,1)

+
dσ

dpT,2
(µ = pT,2)− dσ

dpT,2
(µ = pT,1)

+
dσ

dpT,3
(µ = pT,3)− dσ

dpT,3
(µ = pT,1)

+
dσ

dpT,4
(µ = pT,4)− dσ

dpT,4
(µ = pT,1), (2.16)

such that the difference between the µ = pT,1 and µ = pT results can be identified in the

last three lines in equation (2.16). It will therefore be important to numerically study the

individual sub-leading jet contributions to the inclusive jet sample and in particular the

effects that can arise from changing the scale from an event-based scale to a jet-based scale.

When decomposing the inclusive jet cross section in terms of the contributions from

leading and subleading jets, the individual jet distributions are well-defined and infrared-

safe only if they are inclusive in the jet rapidity (with the same global rapidity cuts applied

to all jets). Since the notion of leading and sub-leading jet is not well defined at leading

order (pT,1 = pT,2 at LO), the rapidity assignment to the leading and subleading jet is

ambiguous for leading-order kinematics. When computing higher-order corrections, the

rapidity of the leading and subleading jet may thus be interchanged between event and

counter-event, causing them to end up in different rapidity bins, thereby obstructing their

– 10 –



cancellation in infrared-divergent limits. On the other hand, in the inclusive jet transverse

momentum distribution (which sums over all jets in the event) IR-safety is restored in

differential distributions in rapidity y, since leading and subleading jet contributions are

treated equally.

2.4 Dependence on the jet resolution parameter R

In this subsection we discuss the effects stemming from the jet definition itself, in particular

the jet resolution. For the sake of illustration, we represent the jets by cones of radius R in

rapidity and azimuthal angle, as obtained [39] by either a cone algorithm or the commonly

used anti-kT clustering/recombination algorithm [40].

Figure 1 shows some illustrations of various jet configurations at LO and NLO where

solid arrows represent partons and cones represent jets resulting from the jet algorithm.

Fig. 1(a) shows a dijet event at leading order where two back-to-back partons form two

jets and pT,1 = pT,2. In this case there is no difference in scale choice between pT,1 and

pT. Fig. 1(b) shows a dijet event where three partons are clustered by the jet algorithm

into two jets such that the jets are still balanced in pT and the scale choice is identical.

Fig.1(c) shows a trijet event where three partons are sufficiently hard and separated to

form three distinct jets. In this configuration pT,1 6= pT,2 6= pT,3 and so the scale choice

does make a difference, although the three-jet contribution makes up only a very small

fraction of the inclusive jet cross section as we will observe in Section 3. Fig. 1(d) depicts

a dijet event where the third parton falls outside the jet radius and is not clustered but

also is not sufficiently hard to form a jet on its own; such configurations typically lead to

a small imbalance in the leading and subleading jet pT and their description is sensitive to

the scale parameterization.

At NNLO there are more configurations to consider due to the presence of four final-

state partons in the double real contribution forming either two, three or four jets. Once

again, many configurations do not contribute to the difference in scale parameterization.

Whenever the jet algorithm clusters two, three or four partons into two jets then the jets

are balanced in pT and there is no difference between the µ = pT,1 and µ = pT scale

choices. The only NNLO configurations that can contribute to the difference are: three- or

(a) (b) (c) (d)

Figure 1: Illustrations of jet events at LO and NLO with arrows representing partons and

cones representing jets.
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(a) (b)

Figure 2: An illustration of 2-jet NNLO configurations that contribute to the pT imbal-

ance between the leading and subleading jet with arrows representing partons and cones

representing jets.

(a)
(b)

Figure 3: An illustration of clustering the same three-parton event with smaller (a) and

larger (b) values of R.

four-jet events (for which the cross section is very small) or two jet events where additional

radiation falls outside of the jet radius, see Fig. 2.

As illustrated in Fig. 3 the choice of the R parameter in the jet algorithm can have

an effect on how the partons are clustered into jets. We can take the same three-parton

configuration and consider the clustering for different values of R, Fig. 3(a), and a larger

value of R, Fig. 3(b). For the smaller R value the most subleading parton is more likely

to fall outside the jet radius of the two leading jets and so generate a difference between

the µ = pT,1 and µ = pT scale parameterizations. Therefore, when using the µ = pT scale

choice, the value of the scale can vary with R for a fixed event. On the other hand, with

the choice µ = pT,1, the scale for the event is R-independent at NLO, where the leading jet

is not sensitive to radiation outside the cone, and becomes R-dependent only at NNLO.

This difference between the two scale choices grows significantly for small R, decreases

for large R, and is moderate for the phenomenologically relevant values used at the LHC,

for R = 0.4 (0.7) as we will observe in Section 3.
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3 The scale choices µ = pT,1 and µ = pT

As observed in Ref. [32], the spread in the NNLO predictions for single jet inclusive pro-

duction between using the dynamical scales µ = pT,1 and µ = pT can be comparable or

even larger in size than the respective uncertainties estimated through scale variations.

The significant effect of this scale ambiguity on the NNLO predictions, and the lack of a

theoretically well-motivated preference motivates us to revisit these results and to further

study this issue.

For the leading jet in the event, the scale µ = pT is identical to µ = pT,1 and its

contribution is therefore insensitive to the scale choice between pT and pT,1. Furthermore,

two-jet events where the jets are balanced in pT cannot generate any difference as pT =

pT,1 = pT,2. Away from these jet configurations, the subleading jets will have a smaller pT

than the leading jet in the event so that pT,2, pT,3, . . . < pT,1.

For these reasons, at LO the two scale choices generate the same prediction and simi-

larly, for all events at higher order that have LO kinematics there is no difference between

the two scale choices. In particular at high pT the scale choices once again converge as is to

be expected for the largely back-to-back configurations encountered at high pT. Kinemat-

ical configurations where the scale choices do not coincide are events with three or more

hard jets and events with hard emissions outside the jet fiducial cuts that generate an

imbalance in pT between the leading and subleading jets in the event. For this reason, we

can expect also that for larger jet cone sizes the difference in the predictions using µ = pT

or µ = pT,1 will be smaller, since the increased number of parton clusterings driven by a

larger cone size promotes final state jets balanced in pT.

It is the aim of this section to scrutinise how the contributions to the single jet inclusive

transverse momentum distribution behave according to the choice of the functional form

of the scale. To this end, we use the two central scale choices µ = pT and µ = pT,1 as

representatives for jet-based and event-based scale settings. After describing our calcula-

tional set up in Section 3.1, in Sections 3.2 and 3.3 we study the impact on the transverse

momentum distribution of the individual jet fractions at LO, NLO and NNLO level for

the two central scale choices µ = pT and µ = pT,1 and for the two cone sizes R = 0.7 and

R = 0.4. Having identified the crucial role of the second jet distribution from this analysis,

in Section 3.4 we focus our attention to this particular contribution and present how it

behaves at a given perturbative order.

3.1 Calculational setup

In order to investigate the differences between the scale choices µ = pT and µ = pT,1 and

their origin, we perform a numerical study for the single jet inclusive cross section at a center

of mass energy
√
s = 13 TeV. The jets are identified using the anti-kT algorithm [40] and

results are presented for both R = 0.4 and 0.7 to further allow to inspect the dependence

on the jet cone size.

Jets are accepted within the fiducial volume defined through the cuts

|yj | < 4.7, pjT > 114 GeV, (3.1)
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Figure 4: Perturbative corrections to the single jet inclusive distribution at 13 TeV (CMS

cuts, |y| < 4.7, R = 0.7), integrated over rapidity and normalised to lower order predictions.

Central scale choice: (a) µ = pT,1, (b) µ = pT.

covering jet-pT values up to 2 TeV, and ordered in transverse momentum.1 As explained in

Section 2.3, we can not apply a rapidity binning to leading and subleading jet distributions.

We systematically use the PDF4LHC15_nnlo_100 PDF set [41] for the evaluation of

the LO, NLO and NNLO contributions. This choice of a fixed PDF across the different

perturbative orders allows us to quantify the effects of the two scale choices at the partonic

cross section level rendering our conclusions independent of the PDF set used. The value

for the strong coupling constant is given by αs(MZ) = 0.118, as provided by the PDF set.

3.2 Corrections to the transverse momentum distribution

As a first step, we investigate the impact of including NLO and NNLO corrections to

the single jet inclusive transverse momentum distribution. Figure 4 shows the size of the

higher order corrections to the single jet inclusive cross section obtained with the scale

1Unless otherwise stated, we use the pT binning and rapidity bin widths used by the CMS collaboration

in their 13 TeV jet measurement [12].
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choice µ = pT,1 (left) and µ = pT (right) for a fixed cone size R = 0.7. The top and bottom

panels show respectively ratios of perturbative predictions to the LO and NLO results and

the shaded bands represent the theoretical uncertainty estimated by varying the central

scale choices by factors of 2 and 1/2 and taking the envelope of the resulting cross sections.

For all event-based scales in the remainder of this paper the variation includes doubling

and halving the central value of the scale independently for µR and µF , with the constraint

1/2 ≤ µR/µF ≤ 2. For jet-based scales the reevaluation of the event at several different

scales is increasingly expensive to compute. For this reason we restrict the scale variation

for event-based scales to 3-point symmetric µR, µF scale variations noting that the bulk

of the scale dependence comes from µR variations and that no significant differences are

observed with respect to a 7-point scale variation.

As expected, we can observe that at high pT the NLO and NNLO effects are small and

similar using either of the two central scale choices while more pronounced and different

effects can be observed at low pT. In the low pT region we can observe larger NLO

corrections with the scale µ = pT than with the scale µ = pT,1, while one observes smaller

NNLO corrections with the µ = pT scale than with the scale µ = pT,1. As a result we see

a faster convergence of the perturbative expansion when using the scale µ = pT, where in

particular the NNLO result lies inside the NLO scale uncertainty band, which itself lies

inside the LO scale band. Furthermore, the scale uncertainty at NNLO displays a greater

reduction for the scale choice µ = pT.

It is instructive to compare what happens when using a smaller jet cone size. In this

case, we fix the jet cone size to R = 0.4 and present the results in Fig. 5. Similarly to

the R = 0.7 case, we observe identical higher order effects at high pT between the two

scale choices while more pronounced effects can be seen at low pT. In this case, we observe

that the NLO corrections using the central scale µ = pT are smaller than those corrections

obtained for R = 0.7. The NLO scale uncertainty band is artificially small with the central

scale choice sitting at the top of the band and the overlap between the NNLO result and

the NLO scale band is no longer observed. Looking at the µ = pT,1 results, we observe

an almost identical NLO scale band as for the results obtained with R = 0.7 and again

non-overlapping NNLO and NLO scale bands. By comparing the NNLO/NLO K-factors

for the two scale choices we observe that the NNLO cross section decreases (increases)

with respect the NLO result with µ = pT (µ = pT,1). This is not unexpected since we have

anticipated that for smaller jet cone sizes the effects of changing the scale from µ = pT to

µ = pT,1 would be more pronounced. In particular, by comparing the NNLO/LO curves

for µ = pT,1 and µ = pT (remembering that the LO result is identical for the two scale

choices) we see that in the R = 0.7 case the NNLO predictions lie significantly closer to

each other than for R = 0.4.

In order to demonstrate the last effect more clearly, Fig. 6 shows the ratios of the

predictions at NLO (in blue) and NNLO (in red) for the two scale choices. We see that

at NLO and NNLO, the impact of changing the scale from µ = pT,1 to µ = pT is more

pronounced for the smaller jet size R = 0.4 (right) than it is for the larger jet size R = 0.7

(left). Interestingly, we also observe that for the two jet sizes, the impact of this change

is bigger at NNLO than it is at NLO, which contradicts our expectation that the higher
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Figure 5: Perturbative corrections to the single jet inclusive distribution at 13 TeV (CMS

cuts, |y| < 4.7, R = 0.4), integrated over rapidity and normalised to lower order predictions.

Central scale choice: (a) µ = pT,1 and (b) µ = pT.

order corrections should lead to a smaller scale dependence.

It is worth noting that we do not necessarily expect that a change in the form of the

central scale choice from µ = pT,1 to µ = pT can be captured by varying the values taken

for renormalization and factorization scales in the predictions computed at a given fixed

order. When the scale variation is performed, all the events are shifted simultaneously by

a rescaling of the µR and µF scales. On the other hand, when we change the central scale

from µ = pT,1 to µ = pT, events with LO kinematics are unchanged while events with

higher order kinematics can change significantly.

The renormalization group equations (see Section 2) can be used to predict a change

in the cross section due to a multiplication of the scales by a constant shift factor, but

are otherwise unable to predict the behaviour of the cross section with another functional

form for the central scale choice. For this reason we can expect the potentially different

behaviour of the two scales used to compute IR sensitive observables (which are subject to

delicate cancellations between real and virtual corrections) to be the underlying cause of
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Figure 6: Ratio between predictions for the single jet inclusive distribution integrated

over rapidity obtained with µ = pT,1 and µ = pT at NLO (blue) and NNLO (red) for

different jet resolution: (a) R = 0.7; (b) R = 0.4.

the discrepancy in the results at NNLO between µ = pT,1 and µ = pT.

3.3 Jet fractions in the single jet inclusive distribution

In order to explore this idea further, it is instructive to observe the breakdown of the single

jet inclusive transverse momentum distribution into leading and subleading jet fractions,

which is shown in Fig. 7 for the scale µ = pT,1 and jet sizes R = 0.4 (left) and R = 0.7

(right) at LO (top), NLO (middle) and NNLO (bottom). Beyond the trivial LO result,

which as expected shows an equality between the first and second jet transverse momentum

distributions, we observe interesting effects at higher orders. In particular, at NLO, we find

that the leading jet contribution dominates the inclusive jet pT spectrum for both jet sizes,

while the contribution from the third jet is negligible. As expected for the larger cone size

we produce more events with jets that are balanced in pT and the jet fractions for the first

and second jet are closer to the symmetric LO result. We can also identify a significant

depletion of the second jet contribution in the NLO result for the jet cone size R = 0.4

at low pT with the scale choice µ = pT,1. Finally, the NNLO results show a substantial

increase in the second jet fraction for both jet sizes with respect to the NLO case, thereby

coming closer to the LO result of similar-size first and second jet fractions.

With these results in mind, we can conclude that a small change in the second jet pT

distribution can have a potentially larger impact on the inclusive jet transverse momentum

distribution at NNLO than at NLO, since the second jet contributes significantly more

to the inclusive jet sample at NNLO than it does at NLO. It is therefore plausible that

a change in scale from µ = pT,1 to µ = pT which affects the second jet pT distribution

produces a larger shift in the prediction of the inclusive jet pT distribution at NNLO than

it does at NLO (as shown in Fig. 6).

For comparison, Fig. 8 shows the corresponding jet fractions for the µ = pT scale choice

and jet sizes R = 0.4 (left) and R = 0.7 (right) at LO (top), NLO (middle) and NNLO

(bottom). As expected, when we compare with the results obtained with the scale µ = pT,1
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Figure 7: Breakdown of single jet inclusive cross section integrated over rapidity into

contributions from first, second, third and fourth jet at (i) LO, (ii) NLO and (iii) NNLO

evaluated for µ = pT,1 for jet cone sizes (a) R = 0.4 and (b) R = 0.7.
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Figure 8: Breakdown of single jet inclusive cross section integrated over rapidity into

contributions from first, second, third and fourth jet at (i) LO, (ii) NLO and (iii) NNLO

evaluated for µ = pT for jet cone sizes (a) R = 0.4 and (b) R = 0.7.
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Figure 9: Perturbative corrections to the transverse momentum distribution of the second

jet at 13 TeV (CMS cuts, |y| < 4.7, R = 0.7), integrated over rapidity and normalised to the

LO prediction. Central scale choice: (a) µ = pT,1 and (b) µ = pT. Shaded bands represent

the theory uncertainty due to the variation of the factorization and renormalization scales.

we do not see significant differences in the jet fractions for the larger jet size of R = 0.7.

On the other hand, for R = 0.4 we observe an increase in the second jet contribution at

low pT at NLO and a reduction in the same region at NNLO with respect to the results

for µ = pT,1.

3.4 The second jet transverse momentum distribution

Given its potential impact on the scale uncertainty of the NNLO single jet inclusive cross

section, we now focus our attention on the second jet transverse momentum distribution.

Fig. 9 shows the perturbative expansion of the second jet pT distribution for the jet cone size

of R = 0.7 with the scale choice µ = pT,1 (left) and µ = pT (right). For the two scale choices,

we observe that this distribution is subject to very large perturbative corrections indicating

potentially IR-sensitive effects. In particular we identify the presence of very large negative

NLO corrections and large positive NNLO corrections generating an alternating series

expansion with large coefficients. It is reassuring that the results at NNLO for the two

scale choices are still largely identical despite this effect. We can nonetheless discern a

significantly improved behaviour in the perturbative expansion when the scale µ = pT is

used. Both NLO and NNLO K-factors are significantly reduced and the NLO and NNLO

scale uncertainty bands are also closer to each other for the µ = pT case.

The same behaviour can be observed for the smaller jet cone size of R = 0.4 in

Fig. 10 where the sensitivity to IR effects is even more pronounced. In this case, we find

a negative NLO cross section for the scale choice µ = pT,1 which is clearly exhibiting a

pathological behaviour. The NNLO corrections fix this unphysical behaviour even when

the scale µ = pT,1 is used, but similarly to the R = 0.7 case, we see a significantly better
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Figure 10: Perturbative corrections to the transverse momentum distribution of the sec-

ond jet at 13 TeV (CMS cuts, |y| < 4.7, R = 0.4), integrated over rapidity and normalised

to the LO prediction. Central scale choice: (a) µ = pT,1 and (b) µ = pT. Shaded bands rep-

resent the theory uncertainty due to the variation of the factorization and renormalization

scales.

convergence of the perturbative series using µ = pT as the central scale choice.

Interestingly enough we observe also for both cone sizes, that in this contribution the

NNLO scale band (in red) is larger than the LO scale band (in green). As explained in

Section 2.3, the notion of leading and subleading jet is not well defined at leading order

(pT,1 = pT,2 at LO) and for this reason the NLO result is the first non-trivial contribution

sensitive to the difference in pT between the leading and subleading jet. As such, the

single jet inclusive observable is decomposed into IR-sensitive leading and subleading jet

contributions and the functional form of the scale can have an impact on the final result,

when the kinematics of the scale choice affects the IR cancellations between the different

contributions.

In order to understand the source of the IR sensitivity in the second-jet contribution

Fig. 11 shows the fractional contribution to the second jet pT distribution in a given pT,2

interval (133 GeV < pT,2 < 153 GeV) for particular pT,1 slices plotted along the x-axis,

for either µ = pT,1 (left frames) or µ = pT (right frames), and using R = 0.7 (upper

frames) and R = 0.4 (lower frames). The bin content is constrained to sum to unity by

construction. We observe that this is achieved from a large cancellation (for both scale

choices) between the first bin of the distribution (where pT,1 = pT,2) and the adjacent bin

where (pT,1 & pT,2). In particular at NLO (in blue) the entire second bin content is filled

from the NLO real emission (where pT,1 can be larger than pT,2 for the first time) while the

virtual correction contributes to the first bin only. When comparing the behaviour of the

two scale choices we note that for µ = pT,1 the scale is increasing along the x-axis. On the

other hand for µ = pT, the scale is fixed to be equal to pT,2 for all contributions and the
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Figure 11: Decomposition of events contributing to a single bin in pT,2 according to the

transverse momentum of the leading jet in the event pT,1. CMS cuts at 13 TeV with jet

resolution R = 0.7 and scale choice (a) µ = pT,1; (b) µ = pT; jet resolution R = 0.4 and

scale choice (c) µ = pT,1; (d) µ = pT;.

cancellation between the large positive real emission and large negative virtual correction

is improved (as shown by the height of the bins). This effect is even more pronounced for

the R = 0.4 jet size as shown in the two lower frames of Fig. 11.

We can therefore infer that we observe an instability at higher order in the second

jet pT distribution when additional radiation is not recombined into the outgoing jet and

generates an imbalance between pT,1 and pT,2. In this case, relatively soft emissions do

not outbalance fully with virtual corrections and large logarithms appear.2 This effect

has been observed to be particularly relevant for the smaller jet cone size distributions.

After employing the µ = pT scale choice we see an improved convergence for the second

jet pT distribution. The observed stabilisation for the jet-based scale µ = pT as opposed

to the event-based scale µ = pT,1 is at first sight counter-intuitive, as one should expect

2 The same instability is present in the inclusive dijet cross section. In that case, the use of asymmetric

pT cuts on the first and second jet’s pT increases the phase space available for soft emissions, suppressing

the appearance of large effects from soft gluon emission.
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an event-based scale to lead to an improved infrared stability [38], since all contributions

from a single parton-level event are evaluated at the same scale. The situation is somewhat

different for the jet inclusive pT distribution, since its infrared sensitivity stems only from

the contribution from the second jet, which has implicit restrictions on its allowed phase

space. If the second-jet cross section in a fixed kinematical bin is broken down according

to the event properties that contribute to it, then the jet-based µ = pT is a fixed scale,

while the event-based µ = pT,1 becomes a dynamical scale.

We conclude that by employing the scale µ = pT we improve the stability of the

second jet transverse momentum distribution with respect to µ = pT,1 by improving the

cancellation at fixed order between the real and virtual corrections. Since the leading jet

pT,1 contribution is identical with either µ = pT and µ = pT,1, the single jet inclusive cross

section is potentially more stable when using the jet based scale µ = pT.

4 Comparison of different scale choices

The renormalization and factorization scales are arbitrary dimensionful parameters and

any scale is a priori an equally valid choice. Moreover, any ambiguity induced by differ-

ent choices of the scales should ideally reduce as higher order terms in the perturbative

expansion are included. As was shown in the previous section, however, the inclusive pT

distribution suffers from an infrared sensitivity that exhibits a strong dependence on the

scale that is used and a suboptimal choice can introduce pathological behaviours in the

predictions.

It is the aim of this section to go beyond the two scale choices µ = pT and µ = pT,1

of the previous section and to study predictions for single jet inclusive production based

on the comprehensive set of functional forms introduced in Section 2.2. In particular, we

will study the scale µ = ĤT and the appropriate scaling factor in front of the central scale

choice. To this end, we introduce a set of criteria that define desirable properties for a

suitable scale choice:

(a) perturbative convergence: We require that the size of the corrections reduces at each

successive order in the perturbative expansion.

(b) scale uncertainty as error estimate: In order to have a reliable estimate of theory

uncertainties due to missing higher-order corrections, we require overlapping scale-

uncertainty bands between the last two orders, i.e. between the NLO and NNLO pre-

dictions. Ideally, the central prediction with the highest accuracy should lie within the

scale variation of the order that precedes it.

(c) perturbative convergence of the individual jet spectra: Based on the observation of the

previous section, where the pT spectra of the individual jets receive large corrections

with cancellations in the inclusive distribution, we further demand the convergence of

the corrections to the individual pT,1 and pT,2 distributions.

(d) stability of the second jet distribution: The comparison between the scales µ = pT and

pT,1 has exposed the second jet distribution to be especially sensitive to the scale choice,
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sometimes even exhibiting unphysical behaviour where the scale variation predicts

negative cross section. We therefore introduce an additional criterion based on the

second jet distribution and its associated scale uncertainty and require the predictions

to provide physical, positive cross sections.

In this way, a careful assessment of the behaviour of each scale can be made purely based

on the behaviour of the predictions in perturbation theory, prior to any comparisons with

experimental data (which are deferred to Section 5).

Section 4.1 is devoted to a comparison of the different scales on the basis of the cri-

teria defined above and identifying the choices that satisfy our requirements on transverse

momentum distributions integrated over rapidity. It is the aim of this section to arrive

at a sensible scale choice for single jet inclusive production. In Section 4.2, we validate

the optimal scale choices we made by further looking at the inclusive jet pT distribution

differentially in rapidity.

4.1 Assessment of the convergence criteria

In order to test the convergence criteria (a–d) defined in the introduction of this section

on a more quantitative level, we define the following correction factors for the individual

jet pT spectra

δkNLO
i =

dσNLO/dpT,i

dσLO/dpT
− 1 ,

δkNNLO
i =

dσNNLO/dpT,i

dσNLO/dpT
− 1 , (4.1)

where pT,i denotes the i-th leading jet in the event. The K-factor for the inclusive jet

distribution can be expressed in terms of the δki as follows,

KNLO =
dσNLO/dpT

dσLO/dpT
= 1 + δkNLO

Σ , δkNLO
Σ =

∑
i∈jets

δkNLO
i ,

KNNLO =
dσNNLO/dpT

dσNLO/dpT
= 1 + δkNNLO

Σ , δkNNLO
Σ =

∑
i∈jets

δkNNLO
i , (4.2)

and conditions (a,c) are then given by

(a)
∣∣δkNNLO

Σ

∣∣ < ∣∣δkNLO
Σ

∣∣ ,
(c)

∣∣δkNNLO
i

∣∣ < ∣∣δkNLO
i

∣∣ ∀i .

Given that the measured single jet inclusive sample receives contributions predominantly

from the two leading jets in the event, it is sufficient to test condition (c) only for i = 1, 2.

Figures 12 and 13 show the correction factors δk1, δk2, and δkΣ for the set of scale

choices of Sect. 2.2 at NLO (solid lines) and NNLO (dashed lines) for the cone sizes R = 0.7

and R = 0.4, respectively. As anticipated, we find large cancellations between the leading

(blue) and the subleading jet contributions (red) at each order in the perturbative expansion

for any scale choice.
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Figure 12: Differential correction factors at
√
s = 13 TeV for the leading jet (δkNkLO

1 ,

blue), subleading jet (δkNkLO
2 , red) and the inclusive jet distribution (δkNkLO

Σ , black) with

R = 0.7 and integrated over rapidity for the scale choices (a) µ = pT, (b) µ = 2 pT, (c)

µ = pT,1, (d) µ = 2 pT,1, (e) µ = ĤT/2, (f) µ = ĤT.
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Figure 13: Differential correction factors at
√
s = 13 TeV for the leading jet (δkNkLO

1 ,

blue), subleading jet (δkNkLO
2 , red) and the inclusive jet distribution (δkNkLO

Σ , black) with

R = 0.4 and integrated over rapidity for the scale choices (a) µ = pT, (b) µ = 2 pT, (c)

µ = pT,1, (d) µ = 2 pT,1, (e) µ = ĤT/2, (f) µ = ĤT.
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In particular, we can observe a very large negative (positive) NLO coefficient for the

second (first) jet contributions in solid red (blue) respectively. This effect explains why the

second jet contribution to the inclusive jet pT sample at NLO is significantly reduced and

the first jet fractions dominates (as shown in Figs. 7, 8). At the next order, the sign of

the NNLO coefficient is reversed for the leading and subleading jet (dashed blue and red

respectively), resulting in the leading and subleading fractions to become similar over the

whole pT range at NNLO.

Given that the aforementioned feature is common for all scale choices, we can now

apply the criteria (a,c) to assess which scale choices show the most stable behaviour in

the perturbative expansion. Criterion (c) is concerned with the spread of the blue and red

curves, associated with δk1 and δk2, respectively. Going from NLO to NNLO, we require

the size of the corrections to the individual jet pT to become smaller and therefore that

the dashed curves exhibit a smaller spread than the corresponding solid ones. We observe

that for the scale choices µ = pT, µ = pT,1, and µ = ĤT/2 this condition is not fulfilled,

specially at low pT and in particular for the smaller jet cone size R = 0.4.

The net effect on the inclusive pT spectrum is given by the correction factors δkΣ,

shown as the black lines. With criterion (a), we require the K-factor at NNLO to be

smaller than at NLO, i.e. the dashed black lines to be closer to zero than the solid ones.

Here, we observe that the scales pT and pT,1 give rise to sizeable NNLO corrections that

are larger in magnitude than the corresponding corrections at NLO for R = 0.4, while for

the bigger cone size of R = 0.7 the same effect is observed to be true again for the pT,1 scale

choice. The remaining scales 2 pT,1, 2 pT, ĤT, and ĤT/2 fulfil criterion (a), with NNLO

corrections at the level of 5–10%.

In Fig. 14 we examine criterion (b) on the theory error estimate by plotting the pre-

dictions at a given order with their respective scale uncertainty bands normalised to the

NLO prediction. Given the potentially large impact of the cone size, we present results

for both R = 0.7 (top) and R = 0.4 (bottom). For both cone sizes we observe that the

scale choices pT,1 and 2 pT,1 give rise to scale uncertainty bands at NLO and NNLO that

do not overlap in the low-pT region. For the scale pT, the conclusion depends strongly on

the cone size where we observe overlapping bands for R = 0.7 but not for R = 0.4. The

remaining three scales 2 pT, ĤT, and ĤT/2, on the other hand, exhibit good convergence

with overlapping scale uncertainty bands independently on the cone size.

Finally, we study criterion (d) by investigating the perturbative behaviour of the sec-

ond jet distribution and its associated scale uncertainties. In Figs. 15 and 16 we show the

corrections to the pT distribution of the second jet for the cone sizes R = 0.7 and 0.4,

respectively. As was already mentioned in the study of criterion (c), we clearly observe

an improved perturbative behaviour with smaller higher-order corrections and scale uncer-

tainties for the three harder scale choices 2 pT, 2 pT,1, and ĤT compared to their respective

counterparts that are smaller by a factor of a half. For R = 0.4, we find that only the

scale µ = 2 pT is able to predict positive NLO cross sections across the entire pT range,

both for the central value as well as for its variation. Although the scale choices 2 pT,1

and ĤT give rise to NLO scale uncertainties that extend to negative cross section values,

this behaviour is less critical as it only occurs in the very first bin(s) below pT . 150 GeV
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Figure 14: Inclusive jet pT spectrum integrated over rapidity at LO (green), NLO (blue)

and NNLO (red) normalised to the NLO prediction as a function of the central scale choice

for (a) cone size R = 0.7 and (b) cone size R = 0.4.

and the central predictions remain positive. The situation is much more severe for the

remaining three scales pT, pT,1, and ĤT/2, where the NLO prediction exhibits the unphys-

ical behaviour of negative cross sections already starting from pT ∼ 400–600 GeV. In the

case of µ = pT,1 and ĤT/2, even then central prediction turns negative in the lowest pT

bin(s) below ∼ 150 GeV. For the larger cone size of R = 0.7, on the other hand, the issue

of negative cross sections at NLO is largely alleviated, where only the choice µ = ĤT/2

exhibits this unphysical behaviour.

We summarise the findings of this section in Tables 2a, 2b for cone sizes of R = 0.7 and

R = 0.4 respectively. By comparing the two tables we see that, as expected, the various
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Figure 15: The transverse-momentum distribution of the subleading jet with R = 0.7 for

(a) µ = pT, (b) µ = 2 pT, (c) µ = pT,1, (d) µ = 2 pT,1, (e) µ = ĤT/2, (f) µ = ĤT.
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Figure 16: The transverse-momentum distribution of the subleading jet with R = 0.4 for

(a) µ = pT, (b) µ = 2 pT, (c) µ = pT,1, (d) µ = 2 pT,1, (e) µ = ĤT/2, (f) µ = ĤT.
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criterion

scale (a) (b) (c) (d)

pT,1 – – X X

2 pT,1 X – X X

pT – X X X

2 pT X X X X

ĤT/2 X X X –

ĤT X X X X

(a) R = 0.7

criterion

scale (a) (b) (c) (d)

pT,1 – – – –

2 pT,1 X – X (X)

pT – – – –

2 pT X X X X

ĤT/2 X X – –

ĤT X X X (X)

(b) R = 0.4

Table 2: Summary of scales vs. criteria for (a) R=0.7 and (b) R=0.4 cone sizes.

scale choices behave in a much more similar way for the larger cone size than for R = 0.4.

It is interesting to note that the two most commonly used scales µ = pT and pT,1 perform

by far the worst among the set of scale choices considered here. In particular, they are not

able to fulfil any of the criteria for the smaller cone size of R = 0.4. On the other hand,

the scale µ = 2 pT fulfils all the requirements we identified at the beginning of this section,

while the scale µ = ĤT satisfies all of the criteria for pT > 150 GeV. We therefore identify

µ = 2 pT and µ = ĤT as the two theoretically best-motivated scale choices for single jet

inclusive production, noting that the former belongs to the class of jet-based scales and

the latter is an event-based scale.
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Figure 17: LO/NLO (green), NLO/NLO (blue) and NNLO/NLO (red) K-factors at√
s =13 TeV for (a) central rapidity, 0.0 < |y| < 0.5, and (b) forward rapidity, 2.5 < |y| <

3.0, as a function of the central scale choice for R = 0.7 and CMS cuts.

4.2 Results for central and forward rapidity slices

Having discussed at length the behaviour of the leading and subleading jet contributions

as a function of the scale choice integrated over rapidity, for the remainder of this section,

we will focus on the single jet inclusive observable for the different rapidity bin intervals

used by the CMS collaboration [12].

Figure 17 shows the perturbative corrections for the single jet inclusive cross section

at NLO and at NNLO for the same six scale choices discussed earlier: µ = pT,1, µ = pT,

µ = 2 pT,1, µ = 2 pT, µ = ĤT, and µ = ĤT/2 for a jet cone size of R = 0.7 and for jets

produced at (a) central rapidity (|y| < 0.5) and (b) forward rapidity (2.5 < |y| < 3.0). The
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Figure 18: Ratio of 13 TeV single jet inclusive cross sections to the µ = 2 pT scale choice

at (a) NLO and (b) NNLO with R = 0.7 and CMS cuts.

shaded bands represent the scale variation around the respective central scale choice.

Focussing first on the central rapidity region shown in Fig. 17(a), we see that the shape

and size of the LO/NLO K-factor (green) for the µ = pT,1, µ = pT and µ = ĤT/2 scales

are fairly similar. However, we observe larger NLO radiative corrections when these central

choices are rescaled by a factor of 2.

Inspection of the NNLO/NLO K-factor (red) reveals that the size and shape of the

NNLO corrections are generally smaller than the NLO ones, but that there is some depen-

dence on the functional form of the scale choice. While the NNLO/NLO K-factor is never

more than ±20% for any of the scale choices, the dependence on pT is quite varied. For

µ = pT (µ = 2 pT), the corrections grow from −10% (0%) at low pT to a few percent (10%)

at large pT, while for µ = pT,1 (µ = 2 pT,1), the corrections fall from +15% (12%) at low

pT to a few percent (10%) at large pT. For µ = ĤT, the corrections are always positive,

growing from a few percent at low pT to 12% at large pT. In the case of µ = ĤT/2, the

NNLO/NLO K-factor is always small. The same qualitative behaviour can be observed in

the predictions for jet production at forward rapidity (2.5 < |y| < 3.0), shown in Fig. 17(b).

Because of the significantly different behaviour of the perturbative expansion for each

scale choice, it is instructive to compare the respective absolute cross sections in the central

rapidity region with a fixed normalisation. Fig. 18(a) shows the NLO results for all six

scales normalised to one common NLO prediction, namely that for µ = 2 pT. For R=0.7 we

see at NLO, that the scale uncertainty bands of the various NLO predictions (red band) are

largely overlapping with the scale uncertainty for µ = 2 pT (green band) indicating little

scale choice ambiguity in the NLO predictions. In other words, the change in functional
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form of the scale choice is largely captured by the scale uncertainty of the NLO result.

Performing the same comparison for the different scale choices at NNLO in Fig. 18(b)

and normalising to the NNLO prediction with µ = 2 pT, we observe the anticipated dra-

matic reduction in the scale variation with respect to NLO (as indicated by the reduction

in the thickness of the red and green bands compared to Fig. 18(a)). We also conclude

that the NNLO predictions are generally all in good agreement, particularly at high pT,

and independently of the scale choice. However, at low-pT we do observe larger differences,

where the scales µ = pT,1, µ = 2 pT,1 tend to look similar and predict a larger NNLO

cross section of approximately 10% with respect to the scales µ = pT, µ = 2 pT, µ = ĤT,

µ = ĤT/2. The size of this effect combined with a significant reduction in the scale un-

certainty of the NNLO prediction introduces an ambiguity because the scale variation of

the NNLO cross section no longer captures the predictions of different functional forms for

the central scale choice. This has an important interplay with PDF extractions [42] using

jet data and NNLO predictions, and also a significant impact when comparing the NNLO

predictions with jet data.

We present the study of the perturbative corrections for the smaller jet cone size

R = 0.4 in Fig. 19. Compared to the results with R=0.7 (Fig. 17) we observe smaller NLO

scale uncertainty bands and smaller NLO corrections. In particular at low-pT, for R=0.4

the central scale choices tend to sit at the upper edge of the band, and accidentally min-

imise the scale uncertainty. At NNLO there is a more symmetric scale variation, however

the NNLO/NLO K-factors behave rather differently. The effect of the NNLO radiative

corrections is positive for the scales µ = pT,1, µ = 2 pT,1, negligible for the scales µ = ĤT,

µ = ĤT/2, and negative for the scales µ = pT, µ = 2 pT. As expected, the magnitude of

the ambiguity in the scale choice for inclusive jet production is more severe for the smaller

jet cone sizes.

The respective absolute cross sections at NLO and NNLO for all six scale choices

compared to the prediction at the same order computed with µ = 2 pT for the jet size of

R=0.4 are shown in Fig. 20(a) and (b), respectively. As in Fig. 18, the red band reflects

the scale uncertainty for the various scale choices, while the green band shows the scale

uncertainty for µ = 2 pT. As with the larger cone size, R = 0.7, Fig. 20(a) shows scale

variations at NLO whose uncertainty largely captures the effects of changing the functional

form of the scale. That is to say that the red and green bands largely overlap.

The same comparison is shown at NNLO in Fig. 20(b) where, as for R = 0.7, we

observe a dramatic reduction in the scale variation with respect to NLO (as indicated by

the reduction in the thickness of the red and green bands compared to Fig. 20(a)), except

at low-pT for the scale choices µ = pT, µ = pT,1 and µ = 2 pT,1. For this reason, we

can conclude that the NNLO predictions are generally in very good agreement at high pT,

independently of the scale choice. At low pT we find larger differences, where in particular

the scales µ = pT,1, µ = 2 pT,1 tend to look similar and predict a larger NNLO cross section

of approximately 15%-20% with respect to µ = pT, µ = 2 pT, µ = ĤT, µ = ĤT/2.

The instability of the single jet inclusive cross section at low pT has been thoroughly

discussed in Sections 3 and 4.1. Due to implicit restrictions on its kinematics, it was found

that the contribution from the second jet in the event is particularly sensitive to higher order
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Figure 19: LO/NLO (green), NLO/NLO (blue) and NNLO/NLO (red) K-factors at√
s =13 TeV for (a) central rapidity, 0.0 < |y| < 0.5, and (b) forward rapidity, 2.5 < |y| <

3.0, as a function of the central scale choice for R = 0.4 and CMS cuts.

effects, and that the perturbative stability of the predictions can be improved to some extent

by adopting sensible scale choice criteria. Moreover, the largest difference in cross section

and NNLO scale uncertainty is associated to using either µ = pT, µ = pT,1 or µ = 2 pT,1

as central scale choices. As documented in Tables 2a, 2b, these scale choices introduce

pathological behaviours in the perturbative expansion of the single jet inclusive observable.

Since the spread in the NNLO predictions including these scale choices is larger in size

than the NNLO scale variation, their inclusion (and associated pathological behaviours)

is therefore overestimating the residual scale uncertainty at NNLO. It is therefore sensible

to adopt well-motivated criteria for fixing the scale choice that best maximise the impact
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Figure 20: Ratio of 13 TeV single jet inclusive cross sections to the µ = 2 pT scale choice

at (a) NLO and (b) NNLO with R = 0.4 and CMS cuts.

of the knowledge of the higher order QCD corrections to the observable, to the extent

that pathological behaviours are avoided. We have observed that the best perturbative

stability can be obtained for µ = 2 pT or µ = ĤT, where the perturbative convergence

of the individual jet contributions is vastly improved with respect to the other functional

forms of the scale choice. It is therefore not surprising that these scales tend to show

smaller NNLO corrections and lead to smaller residual NNLO scale uncertainties.

In the remainder of this paper we will employ these two functional forms of the central

scale choice to compare our predictions with jet data from the CMS dataset at
√
s = 13

TeV for the first time.

5 Comparison with CMS jet measurements at
√
s = 13 TeV

Having discussed how the jet kinematics at the LHC differently affects each of the event-

based and jet-based scale choices, in this section we present predictions for the double

differential jet cross section at NLO and NNLO for the CMS measurement at
√
s = 13

TeV [12]. We use the same numerical setup as described in Section 3.1 and do not include

non-perturbative effects from underlying event and hadronization in our predictions. An

assessment of the size of the non-perturbative contributions has been presented in [12] and

we note that these can vary significantly with the jet pT and the R cone size. In the study

in [12] the non-perturbative corrections are expected to be negligible for R = 0.4 but can

reach up to 10%-15% for R = 0.7 at low-pT .
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Figure 21: Double-differential single jet inclusive cross-sections measurement by CMS [12]

and NNLO perturbative QCD predictions as a function of the jet pT in slices of rapidity,

for anti-kT jets with R = 0.7 normalised to the NLO result for (a) µ = 2 pT, (b) µ = ĤT

scales. The shaded bands represent the scale uncertainty.

Figure 21 displays the NLO and NNLO predictions for the jet-based scale choice µ =

2 pT, as well as for the event-based scale choice ĤT, compared to the CMS 13 TeV data [12]

with a jet cone size of R = 0.7. For both scale choices we observe small positive NNLO

corrections across all rapidity slices, that improve the agreement with the CMS data,

as compared to the NLO prediction. In addition we identify a reduction in the scale

uncertainty from NLO to NNLO across the entire pT range.

Figure 22 shows the NLO and NNLO predictions for the smaller jet cone size of R =

0.4 (where non-perturbative corrections are expected to be less important than for R =

0.7 [12]). Similarly to the R = 0.7 case, we see that both scale choices provide reasonable

predictions and that the agreement with data is improved at NNLO. For the µ = 2 pT scale

choice this is achieved by having small negative NNLO corrections while for µ = ĤT the

NNLO corrections are flat leading to a smaller residual scale variation at NNLO than for

µ = 2 pT.
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Figure 22: Double-differential single jet inclusive cross-sections measurement by CMS [12]

and NNLO perturbative QCD predictions as a function of the jet pT in slices of rapidity,

for anti-kT jets with R = 0.4 normalised to the NLO result for (a) µ = 2 pT, (b) µ = ĤT

scales. The shaded bands represent the scale uncertainty.

6 Summary and Conclusions

In this paper we have studied single jet inclusive production at hadron colliders and the jet

transverse momentum distribution obtained by adding up the contributions from all jets

that are observed in an event. Our predictions include the most up-to-date second order

NNLO corrections in the perturbative expansion of the observable.

In detail we presented a breakdown of the inclusive jet-pT sample into leading and sub-

leading jet contributions and found large radiative corrections to the first and second jet

contributions (that dominate the inclusive jet sample) that largely cancel each other. By

investigating the second-jet transverse momentum distribution we identified large cancel-

lations between different kinematical event configurations, which are aggravated by certain

types of scale choices. Since the notion of leading and subleading jet is not well defined at

leading order (pT,1 = pT,2 at LO), the single jet inclusive observable is decomposed into
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IR-sensitive leading and subleading jet contributions and the functional form of the scale

can have an impact on the final result, when the kinematics of the scale choice affects the

IR cancellations between the different contributions. We have found this effect to be worse

for the smaller jet cone size R=0.4 than for R=0.7.

The smaller cone size increases the contribution from events where relatively soft emis-

sions are not recombined with outgoing jets. These do not cancel fully with virtual cor-

rections, leading to an imbalance between pT,1 and pT,2. Since the second jet contribution

to the inclusive jet sample is increased at NNLO with respect to NLO we have identified

this effect to be the cause in the mismatch between inclusive jet predictions at NNLO

that employ µ = pT or µ = pT,1 as central scale choices. By investigating the kinematical

properties of events that contribute to a fixed bin in pT,2 (as function of pT,1 in the event),

we found that the imbalance between real and virtual emissions is much more serious for

µ = pT,1 than for µ = pT, which can be understood from the fact that the former is

changing event-by-event in this distribution, while the latter remains constant.

We have observed that the spread in the NNLO predictions that use different functional

forms of the scale is larger in size than the NNLO scale variation in the low-pT region of

the transverse momentum distribution. For this reason we have introduced a sensible set

of criteria that define desired properties for a suitable scale choice and that can maximise

the impact of the knowledge of the higher order QCD corrections to the observable, to

the extent that scale choices that introduce pathological behaviours can be identified and

avoided.

We have identified µ = 2 pT and µ = ĤT as the two scales that fulfil all the criteria that

we have defined, observing that they lead to important cancellations between the leading

and subleading jet contributions which result in an improved perturbative convergence on

the transverse momentum distributions, with overlapping scale uncertainty bands.

Subsequently we used these two functional forms of the central scale choice to compare

our NNLO predictions with jet data from the CMS dataset at
√
s = 13 TeV [12] for the

first time. We have observed that both recommended scale choices are stable and provide

reasonable predictions for the two jet cone sizes employed in the measurement across the

entire pT and rapidity region where the observable is defined. In particular we find an

improved agreement with data at NNLO with respect to NLO with a significant reduction in

scale uncertainty by roughly more than a factor of 2 in a wide range of pT and rapidity. We

have refrained from comparing the measurement to predictions that employ scale choices

that contain pathological behaviours since these scale choices are not recommended on the

grounds introduced in this study.

The central scale choices µ = 2 pT and µ = ĤT are clearly found to be favoured in terms

of stability and convergence of the predictions for single jet inclusive production. Both

yield very similar predictions at NNLO. We expect that our findings will enable improved

precision studies based on single jet inclusive production data, especially in using them as

precision probes of the parton distributions in the proton and for a determination of QCD

parameters.
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