Measurements of Higgs boson properties using a combination of different Higgs decay channels

Nicolas Morange, On behalf of the ATLAS Collaboration ICHEP, 07/07/18

A 125 \mathbf{GeV} Higgs is a gift !

- $H \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$ high resolution channels
 - ⇒ Precision measurements of Higgs mass and Differential distributions
- Many other modes accessible: $H \rightarrow WW, H \rightarrow \tau\tau$, ttH, VH(\rightarrow bb), $H \rightarrow \mu\mu$
 - \Rightarrow Very complementary analyses
 - ⇒ Combination very beneficial, and gives a broad set of results

Combination of $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels: HIGG-2016-33

- See Talk by William Leight !
- 2 per-mille precision

DIFFERENTIAL DISTRIBUTIONS

Differential Cross-sections: HIGG-2017-11

- Total and differential measurements in $H \to 4\ell$ and $H \to \gamma\gamma$ channels
- Corrected to common fiducial volume
 - Typical acceptance factors 50%
- Comparisons of $p_{{\bf T}}^{H},|y^{H}|,N_{{\bf jets}}$ and $p_{{\bf T}}^{j1}$ with state-of-the-art calculations

Results

- Total cross-section: $57.0^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb
- Differential distributions dominated by stat uncertainties (20 – 30%)
- Channels in agreement with each other
- Good agreement with the predictions

p-values [%]	p_{T}^{H}	$ y^H $	$N_{\rm jets}$	p_{T}^{j1}
NNLOPS $(K = 1.1)$	29	92	43	6
HRES	16	-	-	-
Radish + NNLOJET	30	-	-	-
SCETLIB	-	91	_	23
Madgraph5_AMC@NLO ($K = 1.47$)	77	91	65	-

N. Morange (LAL Orsay)

HIGGS COUPLINGS: COMBINATION

NEW Combination of all main Higgs analyses: ATLAS-CONF-2018-031

- $H \rightarrow \gamma \gamma, H \rightarrow 4\ell, H \rightarrow WW \rightarrow e\nu\mu\nu, H \rightarrow \tau\tau, VH(\rightarrow bb), ttH, H \rightarrow \mu\mu$
- Run 2 data: 79.8 fb⁻¹ for $H \rightarrow \gamma \gamma$, $H \rightarrow 4\ell$, $H \rightarrow \mu \mu$, 36.1 fb⁻¹ for the others
- Complementarity of analyses: probe all production modes and decay channels accessible at the LHC
- Correlation of uncertainties: choice not always straightforward. Detailed studies performed.

Uncertainty source	$\frac{\Delta \mu}{\mu}$ [%]
Statistical uncertainties	4.5
Systematic uncertainties (excl. MC stat.)	6.1
Theory uncertainties	4.8
Signal	4.3
Background	2.3
Experimental uncertainties	4.0
Luminosity	2.1
Fake leptons	1.2
Jets, E_T^{miss}	1.3
Flavour tagging	0.9
Background modeling	1.2
Electrons, photons	2.2
Muons	0.3
τ-lepton	0.4
Other	1.5
MC stat. uncertainties	1.5

Global Signal Strength

- Most basic measurement: $\mu = (\sigma \times B)/(\sigma \times B)_{\rm SM}$
- μ = 1.13 ± 0.05(stat.) ± 0.05(exp.)^{+0.05}_{-0.04}(sig. th.) ± 0.03(bkg th.)
- Compatible with SM at 13% level
- Uncertainties: dominated by signal and background modelling/prediction
- \Rightarrow Relevance of cross-section measurements

HIGGS COUPLINGS: PRODUCTIONS CROSS-SECTIONS

Production cross-sections

- Measured for $|y^{H}| < 2.5$, assuming SM BR
- Single-experiment observation of VBF
- ZH/WH only process not observed yet
 - Driven by $VH(\rightarrow b\bar{b})$
- All values compatible with SM (global compat 51%)
- Measured uncertainty on ggF not far from uncertainty of SM prediction
- Related measurement of σ_i × B_f: show relative importance of each channel

Process	Value	Uncertainty [pb]				SM pred.	Significance	
$(\left y_{H}\right <2.5)$	[pb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[pb]	obs. (exp.)
ggF	47.8	±4.0	(±3.1	+2.7 -2.2	±0.9	±1.3)	44.7 ± 2.2	-
VBF	4.25	+0.77 -0.74	(±0.63	+0.39 -0.35	+0.25 -0.21	$^{+0.14}_{-0.11}$	3.515 ± 0.075	6.5 (5.3)
WH	1.89	+0.63 -0.58	$\binom{+0.45}{-0.42}$	+0.29 -0.28	+0.25 -0.16	$^{+0.23}_{-0.22}$	1.204 ± 0.024	41(37)
ZH	0.59	+0.33 -0.32	$\begin{pmatrix} +0.27 \\ -0.25 \end{pmatrix}$	± 0.14	+0.08 -0.02	±0.11)	$0.794^{+0.033}_{-0.027}$	f (5.7)
$t\bar{t}H+tH$	0.71	±0.15	(±0.10	±0.07	$^{+0.05}_{-0.04}$	+0.08 -0.07	$0.586^{+0.034}_{-0.050}$	5.8 (5.3)

PRODUCTIONS CROSS-SECTIONS CONT'D

- Low correlations between measured crosssections
- ggF vs VBF: -14%
- Highlight complementarity of analysis channels

Ratios of cross-sections and BR Measure x-sec and BR using $gg \rightarrow ZZ \rightarrow 4\ell$ as reference

$$(\sigma \times B)_{if} = \sigma_{\mathrm{ggF}}^{ZZ} \cdot \left(\frac{\sigma_i}{\sigma_{\mathrm{ggF}}}\right) \cdot \left(\frac{B_f}{B_{ZZ}}\right),$$

- Model independent measurement
- Some uncertainties cancel in the ratios

κ Framework

Simple parameterization of cross-sections and partial widths

$$\sigma_i \cdot \mathbf{B}_f = \kappa_i^2 \sigma_i^{\mathrm{SM}} \frac{\kappa_f^2 \Gamma_f^{\mathrm{SM}}}{\kappa_H^2 \Gamma_f^{\mathrm{SM}}}$$

- Same approach as for Run 1
- Validity limited to leading orders, but quite versatile
 - Relations between κs introduced to probe various aspects of Higgs couplings
 - κ_H fixed by the others if no non-SM decays

Simplest results Fermion and Gauge Couplings

- Fit κ_V and κ_F, mapped to the productions and decays
 - e.g $H \rightarrow \gamma \gamma$ depends on $\kappa_{\rm V}^2$, $\kappa_{\rm F}^2$, $\kappa_{\rm V} \kappa_{\rm F}$
- Compatibility with SM: 30.6%

Effective Photon and Gluon Couplings

- Fit κ_g and κ_γ
- Probes non-SM contributions to the loops
- Compatibility with SM: 70.5%
- If allow additional $B_{\rm BSM}$: limit $B_{\rm BSM} < 0.13$

SM Parameterization

- Assumes: SM structure of the loops, no BSM decays
- Consistency test of SM
- All κ close to 1 within uncertainties
- Compatibility with SM: 79%

Parameter	Result
κ _Z	$1.07^{+0.11}_{-0.10}$
κ_W	1.04 ± 0.10
КЪ	$1.00^{+0.24}_{-0.22}$
ĸ	$1.03^{+0.12}_{-0.11}$
KT	$1.04^{+0.17}_{-0.16}$
Kμ	< 1.63 at 95% CL

With BSM couplings

- Add κ_g and κ_γ
- Allow or not B_{BSM} to probe for invisible decays
 - Limit at $B_{\rm BSM} < 0.26$

Coupling modifiers

- Ratios of κs
 - References are $\kappa_g \ / \ \kappa_Z$
- Most model-independent result

Results

- Measurements at the 8 16% level
- $t\bar{t}H$ observation reduces significantly the uncertainty on λ_{tq}
- SM compatibility 86%

HIGGS COUPLINGS: BSM SCENARIOS: 2HDM

Two higgs Doublet Model Interpretation of results with parameterizations targetting specific models

- 2HDM: Generic idea realised in broad classes of models
- Classification assuming no FCNC at tree level
 - Type I: vector bosons vs fermions
 - Type II: up-type quarks vs down-type quarks and charged leptons (e.g MSSM)
 - Lepton-specific, Flipped: mixed cases
- All couplings parametrized as function of mixing angles α and β between the Higgs bosons

Results

- Data consistent with alignment limit
- Narrow 'petal': $\cos(\beta + \alpha) \sim 0$, fermion couplings with same magnitude but opposite sign to SM

hMSSM

- Simplified MSSM model: corrections to mass matrix of Higgs bosons from top and stop only
- Lightest Higgs *h* identified with the observed one: SM-like couplings
- Couplings κ_V , κ_u , κ_d depend on tan β and m_A
- Limited validity for $\tan \beta \ll 1$

Results

- Data consistent with decoupling limit (large m_A)
- Stronger observed limit: linked to $\mu > 1$ in $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$, while physical boundary $\kappa_V < 1$

Differential Distributions

- $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ allow already precise measurements
- Total cross-section
 57.0^{+6.0}_{-5.9}(stat.)^{+4.0}_{-3.3}(syst.) pb
- Good agreement with with state-of-the art calculations

Results on Higgs Couplings

- Combination of 7 major complementary analyses
- Global signal strength $\mu = 1.13^{+0.09}_{-0.08}$
- Broad set of results on production crosssections, coupling modifiers, BSM scenarios
- All results consistent with SM

