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Fast Calorimeter Simulation in ATLAS 
ICHEP 2018 Poster Session, Seoul

  Stefan Gadatsch (Université de Genève) for the ATLAS collaboration

The need for large scale and high fidelity simulated samples for 
physics analyses at the LHC motivates the development of new 
simulation techniques. ATLAS already relies strongly on fast calorimeter 
simulation techniques based on thousands of individual 
parametrizations of the calorimeter response [1], achieving a significant 
speed-up over the full simulation of the detector response at the cost of 
accuracy. Current developments [2,3] aim at improving the modelling of 

the particle shower’s substructure. Building on the recent success of deep 
learning algorithms, the application of Variational Auto-Encoders [4,5] 
and Generative Adversarial Networks [6] is investigated, too [7]. The 
properties of synthesized photon showers in the electromagnetic 
calorimeter show promising agreement with showers from a full detector 
simulation using Geant4, opening the possibility to complement current 
simulation techniques.Ab
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The grid CPU usage in 2017 was 
dominated by MC production, yet 
many physics analyses are limited 
by available statistics. A more 
precise detector simulation leads 
to higher CPU consumption. With 
increasing data rates, even more 
events need to be simulated. 

  Validation results

The presented results focus on photon showers in the barrel of the 
electromagnetic (EM) calorimeter, made from liquid argon (active) and lead 
(absorber). The ATLAS calorimeter has approximately 190.000 readout 
channels of which approximately 110.000 are in the EM barrel. For training 
generative neural networks rectangular selections containing >99% of the 
shower energy are applied. FastCaloSim also considers electron and pion 
showers as well as the hadronic calorimeter and the forward regions.

  FastCaloSim developments
Building on top of a parametrized calorimeter response in an E-η grid for 
the longitudinal and lateral shower development derived from Geant4 
simulated single particles, several developments are ongoing: 
• Improved modelling of the total energy and (correlated) energy deposits 

per layer through employing a principal component analysis. 
• Employ multilayer perceptrons to perform shower regression and reduce 

memory footprint. 
• Incorporate lateral shower fluctuations to describe shower substructure. 
• Correct for usage of simplified geometry, and use full forward geometry.
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Variational Auto-Encoders (VAEs) are a class of unsupervised learning 
algorithms combining deep learning with variational Bayesian methods. 
Two stacked neural networks act as encoder and decoder respectively. 
VAEs are latent variable models that introduce a set of random variables 
that are not directly observed but used to explain and reveal underlying 
structures in the data. The encoder compresses the shower into the latent 
space, while the decoder reconstructs it. By sampling from the latent 
representation, new showers can be generated. The training of the model 
maximises the variational lower bound on the marginal log-likelihood 
for the data and penalises deviations in the total shower energy and the 
shower development.

Generative Adversarial Networks (GANs) are a class of unsupervised 
learning algorithms implemented as a deep generative neural network 
taking feedback from an additional discriminative neural network. The 
generator network learns generating calorimeter showers from a latent 
space distribution. These shower candidates are compared to the full 
simulation by the discriminator whose training objective it is to identify 
the synthesised instances. The generator is trained to increase the 
discriminator's misclassification rate and thus generate gradually more 
realistic distributions. The robustness of the training and the quality of the 
generated showers is improved through employing a Wasserstein loss and 
a two-sided gradient penalty [8] for gradients greater than one.
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