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%= The need for large scale and high fidelity simulated samples for the particle shower’s substructure. Building on the recent success of deep
p—t physics analyses at the LHC motivates the development of new learning algorithms, the application of Variational Auto-Encoders [4,5]
E simulation techniques. ATLAS already relies strongly on fast calorimeter  and Generative Adversarial Networks [6] is investigated, too [7]. The
#=) simulation techniques based on thousands of individual properties of synthesized photon showers in the electromagnetic
"2, parametrizations of the calorimeter response [1], achieving a significant calorimeter show promising agreement with showers from a full detector
e, speed-up over the full simulation of the detector response at the cost of simulation using Geant4, opening the possibility to complement current
< accuracy. Current developments [2,3] aim at improving the modelling of simulation techniques.

Variational Auto-Encoder

Latent space z (10 dim.

Data pr

/\f ROOT Encoder ' Decoder

< o)
Detector Digitization Physics étgc\é —>§gd >§59d '§9d r§8d< }g%d >§,c_>d ’E,“Jd >§g§; > Eg

[ ) [ ) L[] = q)
simulation analysis > . G
266 266

Group Production mMc Reconstruction
pata Processing \ / The grid CPU usage in 2017 was |

dominated by MC production, yet e ey
many physics analyses are limited  Variational Auto-Encoders (VAEs) are a class of unsupervised learning

N

Analysis
by available statistics. A more algorithms combining deep learning with variational Bayesian methods.
O 0 Processing o e precise detector simulation leads Two stacked neural networks act as encoder and decoder respectively.
to higher CPU consumption. With ~ VAEs are latent variable models that introduce a set of random variables
increasing data rates, even more that are not directly observed but used to explain and reveal underlying
events need to be simulated. structures in the data. The encoder compresses the shower into the latent
AT L AS ca l o ri m et er space, while the decoder reconstructs it. By sampling from the latent
e T % & representation, new showers can be generated. The training of the model
) maximises the variational lower bound on the marginal log-likelihood
e L, ot lyer for the data and penalises deviations in the total shower energy and the
wenasome "8 ; L Rin) 9 % 1 H&} B shower development.
D\ ll | , - P Impact cell O O
TP o~ o\ — ... Generative Adversarial Network
e e i . . in middle layer JL_:..:I?._{.T_ Generator
~X 24 N : "'L:?e';f;?,;ci yg 3 @ 3 @ 3 @& | Generated
____________________________ faf . Befl el BUF oo
LAr electromagnetic ﬁ# " —— /" Q 9 Qo o o 9 Q-
=l = s |
The presented results focus on photon showers in the barrel of the - - -
electromagnetic (EM) calorimeter, made from liquid argon (active) and lead Discriminator |8 ML - (O SN Geans
(absorber). The ATLAS calorimeter has approximately 190.000 readout 8 : ® : ° : ®
channels of which approximately 110.000 are in the EM barrel. For training Siecriminaion
generative neural networks rectangular selections containing >99% of the Generative Adversarial Networks (GANs) are a class of unsupervised
shower energy are applied. FastCaloSim also considers electron and pion learning algorithms implemented as a deep generative neural network
showers as well as the hadronic calorimeter and the forward regions. taking feedback from an additional discriminative neural network. The
Fa StC a l 0O Si m d eve l obme ntS generator n.etw.ork learns generating ce}lorimeter showers from a latent
p space distribution. These shower candidates are compared to the full
Building on top of a parametrized calorimeter response in an E-n grid for simulation by the discriminator whose training objective it is to identify
the longitudinal and lateral shower development derived from Geant4 the synthesised instances. The generator is trained to increase the
simulated single particles, several developments are ongoing: discriminator's misclassification rate and thus generate gradually more
 Improved modelling of the total energy and (correlated) energy deposits realistic distributions. The robustness of the training and the quality of the
per layer through employing a principal component analysis. generated showers is improved through employing a Wasserstein loss and
 Employ multilayer perceptrons to perform shower regression and reduce a two-sided gradient penalty [8] for gradients greater than one.

memory footprint. ° °
e Incorporate lateral shower fluctuations to describe shower substructure. Va ll d atl O n res U lts
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