

The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

Mercedes Miñano Moya (IFIC Valencia),

on behalf of the ATLAS ITk Collaboration

Sundsvall, 24-28 June, 2018

Outline

- Introduction
 - HL-LHC
 - ATLAS Inner Tracker
- ITk Strip Detector
 - Local Supports
 - Modules
 - Barrel
 - End-cap
 - ABCStar & HCCStar
 - R&D
 - Components
 - Testing of strip modules
 - Petal/Stave Tests
 - Integration into global structures
- Conclusions and future plan

Introduction: HL-LHC

▶ HL-LHC is foreseen to start operations in 2026 \rightarrow Instantaneous luminosity up to 7.5 x 10³⁴ cm⁻² s⁻¹

Fluence expected at the end-of-lifetime of HL-LHC

• Increase in pile-up $\rightarrow <\mu > \approx 200$ (currently, $<\mu > \approx 40$)

- Higher granularity to keep occupancies low, and to have more precise measurements
- New detector designs to cope with higher radiation environment
- While reducing power consumption and keeping low material

INSTITUT DE FÍSICA C O R P U S C U L A R

ATLAS Inner Tracker (ITk)

- The new ATLAS Tracker will be an all-silicon detector:
 - Pixel \rightarrow 5 barrel layers and multiple forward disks
 - Strip → 4 barrel layers and 6x2 end-cap disks
 - With a solenoid magnet providing an uniform magnetic field of 2T

- Low radiation length materials are used to minimize the multiple scattering
 - The ITk material budget is around 30% lower in the region |η|<4.0
 - Most of the reduction comes from cables due to <u>serial powering for pixel and DC-DC powering for</u> <u>strips</u>

ITK Detector:

- Channels: Pixels \approx 80M \rightarrow 580M; Strips \approx 6M \rightarrow 60M
- Area: Pixels ≈ 13 cm² ; Strips ≈ 165 cm²
- Expected radiation levels:
 Pixels up to 3 x 10¹⁶ n_{eq}/cm²
 Strips up to 1.2 x 10¹⁵ n_{eq}/cm²
- Total Ionizing Dose (TID) of 50MRad (Strips)

Performance studies

In the ITk, the tracking parameter resolution is maintained or improved with respect to the current ATLAS inner detector during Run2 for the ITk Inclined layout

- Shorter **pixel** pitch in the longitudinal direction improves resolution in Z_0 and Θ_0
- ► Due to reduced material and higher precision of the ITk Strip Detector with respect to the Transition Radiation Tracker (TRT) in the outer layers of the current Inner Detector → Improvement of the momentum resolution

ITk Strip Detector

INSTITUT DE FÍSICA C O R P U S C U L A F

ITk Strip Detector: Local Supports

- Modules are glued on independent double-side local support structures: Barrel Staves and End-cap petals.
- Geometric stability with carbon fiber-based core
- Integrated titanium cooling tubes (2.3 mm outer diameter)
 - U-shaped bend at the small z side for the barrel and at the small radius of the petal
 - CO₂ evaporative system, allowing stable operations down to -35°C
- Integrated bus tape per side on which modules are attached:
 - Copper lines between layers of polyimide
 - To provide electrical connections (power and data transfer)
- The End-Of-Substructure (EOS) card is the interface between the stave/petals and the off-detector electronics

Internal structure of a module support

INSTITUT DE FÍSICA CORPUSCULAR

Strip Local Supports

- Staves for barrel
 - 2 layers with "Long Strip" modules (LS): strip length: 4.82 cm
 - 2 layers with "Short Strip" modules (SS): strip length: 2.41 cm
 - 14 modules per side

- Petals for end-cap disks
 - 9 flavours of modules(13 flavours of hybrids)
 - [7-12] read-out chips per hybrid
 - Different power/DAQ requirements

Silicon Strip Modules

▶ n^+ -on-p FZ Silicon sensor \rightarrow No bulk type inversion

- Bulk resistivity ~ 2.5K *Q* cm (Depletion voltage 365V)
- Rectangular strips in the barrel \rightarrow length = 2.41 cm (SS) and 4.82 cm (LS)
- Radial strips in the end-caps \rightarrow length= [1.51 6.02] cm
- Mechanical support and thermal management

Sensor:

Active area (cm ²)	9.7x9.7
Thickness (μm)	300-320
Strip pitch (μm)	75.5 (Barrel) [69.9-80.7] (End-cap)

- Integrated DC-DC LV Power block
- HV multiplexer for sensor bias
- Detector control system: AMAC (Autonomous Monitored and Control Chip) to control and monitoring of HV, LV currents and temperature

ATLAS Binary Chip ABCStar

- Read out 256 strips from a silicon sensor
- Convert incoming charge from the strips to hit
- Binary outputs sampled at 40MHz rate and store in a pipeline

Hybrid Control Chip (HCC)

Interface between the read-out chips and the End-of-Substructure

There will be **17888** modules in the Itk Strip Detector!!

INSTITUT DE FÍSICA CORPUSCULAR

ABCStar and HCCStar

- Evolution of the ABC130 and HCC130 chips, 130nm process
- 12 wafers with the last read-out chip design already submitted to stablish the final design this year
- Change in the read-out architecture to point-to-point links between each ABCStar and the HCC Star
- Higher radiation tolerance

- Noise measurements for different input capacitances, ABC130 and ABCStar prototypes and ABC130 on different hybrids
- Lower noise with irradiation than ABC130

0.87 Mrad/h @RT

INSTITUT DE FÍSICA C O R P U S C U L A R

R&D: Components

- Every component of the Itk Strip detector has passed through an extensive prototyping and testing phase.
- Collected charge by sensors biased at 700V for minimun ionising particles vs. Irradiation fluence expected in the ITk Strip detector
- From 11 to 17Ke⁻ at the end of lifetime ✓

- Digital current for ABC130 chips vs TID dose, for various X-ray irradiation rates and temperatures compatible with HL-LHC
- Increase in current by the digital portion of the chip around a TID of 1 MRad

Considerations for cooling and powering requirements have been adjusted to take into account the increased power consumption of the chips at the TID bump

 $1.2 \times 10^{15} n_{ea}/cm^2$ (includes a safety factor of 1.5)

INSTITUT DE FÍSICA C O R P U S C U L A R

R&D on assemble and testing of strip modules

- Several full-size prototype modules have been tested, both before and after irradiation. The most critical parameters under study are noise, gain and hit efficiency.
 - During 2016:
 - 1. Testbeam at DESY with 4.8 GeV electrons
 - Non-irradiated barrel module (LS4) with short and long strip regions
 - 2. Testbeam at CERN SPS with 120 GeV pions
 - Barrel module previously irradiated with 24GeV protons to 8 x 10¹⁴ n_{eq}/cm² and TID=37.2 Mrad (LS3)

EUDET Telescope with 6 cooled Mimosa26 planes and FEI4

Operated in coldbox at -35C (Sensor at -15C)

27.6.2018

R&D on assemble and testing of strip modules

- Modules are required to have, for their entire lifetime of ITk, a range of thresholds with a hit detection efficiency greater than 99% and channel noise occupancy lower than 10⁻³
- Results:
 - As expected, the signal efficiency is reduced significantly after irradiation

R&D on assemble and testing of strip modules

- During 2017:
- 1. First batch of RO sensors (radial strip sensors)
 - Long-term electrical characterization under evaluation
 - R0 sensor irradiated to a total fluence of 1.5 x 10¹⁵n_{eq}/cm²
 - Under testing
- 2. Testbeam at DESY with 4.4 GeV electrons
 - First non-irradiated R0 module (End-cap)
 - Non-irradiated SS1 module (Barrel) with power board

Noise and gain are consistent with previous barrel protoptypes

INSTITUT DE FÍSIC RPUSCU

Petal/Stave Tests

Thermal tests:

@ US

- Thermal performance proven in all subsystems
- Thermo-mechanical petal/stave inspected by IR thermography techniques

Electrical tests:

- 3-Module Stavelet built at US
- Operating well

3 NTCs/module x 13 modules/side

More electrical staves/petals to be prepared by the collaboration sites during this year

45

40

30 25

20

15 10

500

600

Integration into global structures

- Staves and Petals are mounted on global support structures, largely made of carbon-fibre
- Barrel Staves are inserted into the fully assembled cylinder structure from the ends, using temporary rails. The barrel consists of 4 concentric cylinders connected together at the ends by interlinks. Services are routed by trays overtop of the endcap services.
- Endcap petals are mounted onto wheel structures, forming a disk, with 32 petals per wheel. One endcap contains 6 disks and services are routed to the large radius side of the structure.

Wheel mockup @Nikhef

INSTITUT DE FÍSICA C O R P U S C U L A R

Conclusions and future plan

- A new ATLAS tracker detector is being developed for working under the HL-LHC conditions
 - Extended η coverage, low mass, radiation harder
- > All the baseline components of the ITk Strip detectors are defined and available for the collaboration
- New Front-end is almost finished
- Barrel modules show good end-of-life performance
- End-cap modules consistent with barrel prototypes
- Multi-module structures are being built and tested by the collaboration
- In the global supports/service area
 - Thermodynamics, radiation tests, robustness tests... on going
 - Service routing is being optimized
- Extensive irradiation campaign (proton, gamma, neutron) planned for new sensor deliveries (full-size and mini sensors) is under going. Testbeam campaign at Desy carried out this June and planned at CERN later this year.
- QA/QC procedures are under preparation
- Pre-production expected for Q2-2019 and then, Production at 2020! Planning 3.5 years module production
- Distributed production model:
 - Sites specialize in producing one or more components and/or building processes
 - Barrel assembly and integration at CERN
 - Endcap assembly at DESY and NIKHEF and shipped to CERN

Back-up

- ATLAS is a general purpose experiment at the LHC
- It consists of:
 - Tracker (Inner Detector), built with a silicon pixel detector, silicon strip detector (SCT) and a Transition Radiation Tracker (TRT)
 - Electromagnetic and hadronic calorimeter
 - Muon chambers

Designed for μ = 25 at 25ns bunch crossings

Material Budget

In comparison to the current ID, the ITk material budget is around 30% lower in the region $|\eta| < 4.0$. At the highest $|\eta|$, an even larger reduction is achieved.

References

[1] **Technical Design Report for the ATLAS Inner Tracker Strip Detector (2017)**, ATLAS Collaboration. CERN-LHCC-2017-005; ATLAS-TDR-025. <u>https://cds.cern.ch/record/2257755</u>