Sim@P1: Using Cloudscheduler for offline processing on the ATLAS HLT farm

F Berghaus for the Sim@P1 team

on behalf of the ATLAS Collaboration

Outline

- Definition: What is Sim@P1
- Status: Current operation
- Plan: Integration of Cloudscheduler

What is Sim@P1?

Racks	Servers per rack	Cores per node	RAM per node	RAM per core	Total cores
1-4, 6-13, 94, 95	32	16	~24 Gbyte	~1.5 Gbyte	10K
64-69	40	16			
16-26, 75-77	32	48	~64 Gbyte	~1.3 Gbyte	64K
70-74, 79-90	40	48			
44-54	40	56	64 Gbyte	~1.1 GByte	
Total: 58					74K

Sim@P1 = Simulation at point one

Sim@P1: Current Operation

- Dedicated VLAN for offline access to list of hosts in CERN General Purpose Network
- Compute resources isolated by virtualization

Sim@P1: Current Operation

30k

Boot:

- Puppet launches nova on worker nodes
- Puppet executes scripts to launch instances
- Instances connect to condor
 - CM + 2 Sched in GPN
- APF submits to each Sched
- Shutdown:
 - Puppet kills nova on worker nodes
 - Puppet calls cleanup scripts

CernVM at Point 1

- 20MB CernVM3 micro-kernel distributed from glance
- CernVM3 caches in ATLAS software and operating system
- Two SQUID servers in P1 are sufficient to provide software

Issues with current operation

- Hard to maintain:
 - Many undocumented scripts
 - Scripts spread over many servers in P1 and in GPN
- No error handling for running instances
- Hard to update or modify

Proposal for Sim@P1

Cloudscheduler

- Batch system on distributed cloud infrastructure
- In production for offline processing for
 - ATLAS (2012 present)

Cloudscheduler at Point 1

- Proposal for long shutdown two [LS2]:
 - Cloudscheduler & OpenStack run in P1 Network
 - Polling thread and HTCondor run in CERN GPN
 - Cloudscheduler and polling thread interact with database

Cloudscheduler at Point 1

- Communication flow for Cloudscheduler
- Requires channel to database between P1 & GPN

Harvester Job Submission

- Harvester pull mechanism allows job-specific resource request
- Condor reports resources availability to Harvester to improve PanDA job brokering
- Condor job router balance jobs across multiple schedulers

12

Summary

- Sim@P1 is successfully operating
- Cloudscheduler setup to ease operation under evaluation
- PanDA Harvester setup for job more flexible job submission

Thanks to many contributors

Cloudscheduler Team

K Casteels, C Driemel, M Ebert, C Leavett-Brown, M Paterson, R Seuster, R Sobie, R P Taylor,T Weiss-Gibbons

Sim@P1 Team

A Di Girolamo, C Lee, P Love, J Schovancova, R Walker

TDAQ Team

F Brasolin, D A Scannicchio, M E Pozo Astigarraga

P1 Network Upgrades

Tentative future

