
CHEP 2018 Poster Session - July 9 2018
Conditions Data Handling In The
Multithreaded ATLAS Framework

C. Leggett, I. Shapoval, S. Snyder, V. Tsulaia for the ATLAS Collaboration

• Conditions data is stored in containers indexed by name and type in the
ConditionStore, and ordered as one entry per IOV.
● Conditions data of type T stored in CondCont<T>
● Implemented as a ConcurrentRangeMap, allowing efficient lookup with no

locking, and locked writing with concurrent reading

• Conditions data is stored in containers indexed by name and type in the
ConditionStore, and ordered as one entry per IOV.
● Conditions data of type T stored in CondCont<T>
● Implemented as a ConcurrentRangeMap, allowing efficient lookup with no

locking, and locked writing with concurrent reading

Alg_A

Alg_C
y1

Alg_B
x1

CAx

x1

y1

z1

x1

CAy
y1

ConditionsStore

Alg_A

Alg_C
y1

Alg_B
x2

CAx

x1

y1

z1

x2

x2Alg_A

Alg_C
y1

Alg_B
x1

x1

y1

z1

Alg_A

Alg_C
y2

Alg_B
x2

x1

y1

z1

x2

y2

CAy
y2

Alg_A

Alg_C
y2

Alg_B
x3

CAx

x1

y1

z1

x2

y2

x3

x3

Event 1 Event 2 Event 3

Event 5
Alg_A

Alg_C
y2

Alg_B
x3

x1

y1

z1

x2

y2

x3

Event 6 Event 7

concurrent slot 2 concurrent slot 3concurrent slot 1

Multi-cache Conditions Store

Multithreaded Conditions Access
• In order to minimize memory usage, the ConditionsStore is

shared between all concurrent events.
• The structure of the ConditionsStore is a multi-cache, where data

is held in containers. Containers are indexed in the store by
name and type, internally ordered by Interval of Validity (IOV)

• Conditions are recorded in the ConditionsStore by special
Condition Algorithms that interact with the Conditions database
service and perform all necessary calculations to transform raw
conditions into derived ones before the recording is performed.

• Smart references called ConditionHandles are used by
Algorithms to write and read conditions data. These are
guaranteed to always point to the correct data for the current
event.

• At the start of the job, the scheduler builds a directed acyclic
graph of all Algorithms based on their data dependencies to
determine the execution order. At this time, Conditions
Algorithms are removed from the data flow realm, and managed
separately. Unlike regular Algorithms which are always executed
in each event by the scheduler, Condition Algorithms are only
executed when the data they manage enters an IOV that is not
already present in the ConditionsStore.

Multithreaded Conditions Access
• In order to minimize memory usage, the ConditionsStore is

shared between all concurrent events.
• The structure of the ConditionsStore is a multi-cache, where data

is held in containers. Containers are indexed in the store by
name and type, internally ordered by Interval of Validity (IOV)

• Conditions are recorded in the ConditionsStore by special
Condition Algorithms that interact with the Conditions database
service and perform all necessary calculations to transform raw
conditions into derived ones before the recording is performed.

• Smart references called ConditionHandles are used by
Algorithms to write and read conditions data. These are
guaranteed to always point to the correct data for the current
event.

• At the start of the job, the scheduler builds a directed acyclic
graph of all Algorithms based on their data dependencies to
determine the execution order. At this time, Conditions
Algorithms are removed from the data flow realm, and managed
separately. Unlike regular Algorithms which are always executed
in each event by the scheduler, Condition Algorithms are only
executed when the data they manage enters an IOV that is not
already present in the ConditionsStore.

• Client migration to Condition Algorithms is in progress.
● Significant amount of work due to thread safety considerations.

• Support for execution in serial Athena is maintained by means of special
sequences that execute Condition Algorithms before regular ones.

• Support for HLT use cases (all conditions loaded before execution of first event)
is maintained.

• Client migration to Condition Algorithms is in progress.
● Significant amount of work due to thread safety considerations.

• Support for execution in serial Athena is maintained by means of special
sequences that execute Condition Algorithms before regular ones.

• Support for HLT use cases (all conditions loaded before execution of first event)
is maintained.

Migration Status

Garbage Collection
In order to minimize memory usage, containers in the
ConditionsStore are periodically purged of entries that are no
longer needed.

• Maintain a circular buffers of timestamp and
run+LumiBlockNumber for last N events.

• When an object is added to a Condition Container, add note to
clean it M events later.

• At that time, examine objects in the container, oldest first. If none
of the keys from the last N events match it, then remove this
object.

• Stop when we find an object that matches a key, or when there is
only one object left.

• Cleaning can be performed synchronously from the event loop,
or asynchronously via a Threading Building Block task.

Garbage Collection
In order to minimize memory usage, containers in the
ConditionsStore are periodically purged of entries that are no
longer needed.

• Maintain a circular buffers of timestamp and
run+LumiBlockNumber for last N events.

• When an object is added to a Condition Container, add note to
clean it M events later.

• At that time, examine objects in the container, oldest first. If none
of the keys from the last N events match it, then remove this
object.

• Stop when we find an object that matches a key, or when there is
only one object left.

• Cleaning can be performed synchronously from the event loop,
or asynchronously via a Threading Building Block task.

• Uses the same infrastructure as the Conditions.
• Encapsulates alignment deltas and cached positions in

Alignment Objects that reside in ConditionsStore. These are:
● accessed via ConditionHandles.
● updated as necessary via GeoAlignAlg.

• Uses the same infrastructure as the Conditions.
• Encapsulates alignment deltas and cached positions in

Alignment Objects that reside in ConditionsStore. These are:
● accessed via ConditionHandles.
● updated as necessary via GeoAlignAlg.

Geometry and Detector Description

ConditionsStore

DD

CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element Client

DD

CC

DD

CC

DD

CC Alignment
Object

GeoAlignAlg

TFTF

ATFATF

Physical
Volume

Full Physical
Volume

Transform

Alignable
Transform

DD Delta
Transform

CC Cached
Position

PVPV

FPVFPV

• Algorithms use smart references (DataHandles) to interact with all event data.
• ConditionHandles are special instances that use the current event information

to point to the appropriate entry in the ConditionsStore.
● Conditions data of type T referenced via CondHandle<T>
● Can be accessed via derived or base types

• Algorithms use smart references (DataHandles) to interact with all event data.
• ConditionHandles are special instances that use the current event information

to point to the appropriate entry in the ConditionsStore.
● Conditions data of type T referenced via CondHandle<T>
● Can be accessed via derived or base types

Condition Handles

Alg_A
 read:
 write: a, b

a

b
x

CondDbSvc

w

Alg_B
 read: a
 write:

Alg_C
 read: b, x
 write:

CondAlg_X
 In:
 Out: x

ConditionsStore

x1 x2 x3

y1 y2

z1 z2 z3

CondSvc
regHandle(x)

EventStores

a

b

c

ReadC
ondHa

ndle<
X>

WriteCondHandle<X>
ReadHandle

Wr
it
eH
an
dl
e<
B>

