
I/O in the ATLAS
multithreaded framework
Jack Cranshaw, David Malon, Marcin Nowak, and Peter van Gemmeren
on behalf of the ATLAS Collaboration
10 July 2018

AthenaMT
´ For Run 3 ATLAS has developed a ‘multithreaded' framework called

AthenaMT:
´ Based on GaudiHive.

´ Multiple events in flight. Concurrent events are processed in parallel in “slots”.

´ A fixed number of slots is chosen at runtime, and a scheduler dispatches
events to these slots.

´ Slots use separate transient event stores. Each of these slots has a specific
EventContext.

´ The services which support the processing (including the I/O services)
are outside of the event loop. These services must be one of the
following:
´ stateless,

´ ‘slot-safe’ such that they can return the correct result if given an
EventContext.

´ mutexed/locking, i.e. not support parallel access.

C. Leggett 2016-02-26
6

AthenaMT / Gaudi Hive

• Gaudi Hive: multi-threaded, concurrent extension to Gaudi

• Data Flow driven
► Algorithms declare their data dependencies
► Scheduler automatically executes Algorithms as data becomes available.

• optimal traversal of graph possible if avg. Algorithm runtimes known

• Multi-threaded
► Algorithms process events in their own thread, from

a shared Thread Pool.

• Pipelining: multiple algorithms and events
can be executed concurrently

► some Algorithms are long, and produce data that
many others need (eg track fitting). instead of
waiting for it to finish, and idling processor, start a
new event.

• Algorithm Cloning
► multiple instances of the same Algorithm may exist,

and be executed concurrently, each with different
Event Context.

► legacy : one instance, non-concurrent
► cloneable : one or more instances, in its own thread
► re-entrant : once instance, executed concurrently by

multiple threads

time

10 July 2018Computing in High Energy Physics

2

Data Driven Scheduling
´ In GaudiHive, Algorithms are scheduled

based on their data dependencies.
´ For this to work, the Algorithms must

declare their input and output
dependencies using Read/Write data
handles.
´ Alg A has a WriteHandle<X>(mydat1),

and Alg B has a ReadHandle<X>(mydat1)

´ On input, this requires an adapter/bridge
for data originating outside the process.
´ The contents of the file have to be

declared to the scheduler.

´ This is currently done by attributing unmet
input dependencies to the SGInputLoader
Algorithm, where they are declared as
WriteHandles.

10 July 2018Computing in High Energy Physics

3

Alg A

WriteHandle<X>
(Xdat1)

Alg B

WriteHandle<Y>
(Ydat1)

Alg C

ReadHandle
<Y>(Ydat1)

ReadHandle
<X>(Xdat1)

Pr
oc

es
s T

im
e

ATLAS Use Cases for Multithreading
´ High Level Trigger (ATLAS ByteStream format)

´ More efficient use of memory to increase throughput

´ Coupled with general move to make HLT and offline algorithms interoperable.
´ Gaudi flow control can replace some of the steering code.

´ Reconstruction/Simulation (ATLAS ROOT EDM)
´ Addresses memory limitations of existing algorithmic code and challenges of handling

increased pileup.

´ Allows use of native tools that support multithreading on various hardware.

´ Derivations and Analysis (ATLAS ROOT EDM)
´ Derivations produce skimmed, slimmed, and thinned data samples for physics analysis.

´ Memory is less of an issue. The tradeoffs between multi-process and multi-threaded will
have to be investigated.

´ These are our most I/O limited jobs.

10 July 2018Computing in High Energy Physics

4

Athena I/O Infrastructure

10 July 2018Computing in High Energy Physics

5

´ Data is read from, and written to, StoreGate during the Athena event loop.
´ Converters translate between persistent and transient class representations.

´ This is normally a simple mapping, but for some classes the storage is optimized during this stage.

´ The Athena I/O services for ROOT these are shown in the diagram.

´ We have looked into sharing I/O services within Gaudi, such as a RootCnvSvc, but both LHCb and ATLAS have built
assumptions about their data model into their I/O services which make sharing non-trivial.

PersistencySvc
(APR:Database) ROOT

PersistencySvc
(APR:Database) ROOT

PersistencySvc
(APR:Database) ROOTStore

Gate
POOL
Svc

Output Stream

Scheduled bulk
write algorithm

with configurable
Itemlist

On-demand
single object

retrieval

Conversion
Service

optional
T/P conversion

Parallel Reading and Writing (I)
´ StoreGate proxies

´ When the I/O system ‘reads’ data it just registers the address for that data with
StoreGate. The proxies data only when accessed.

´ Caching
´ ByteStream:

´ For reading ByteStream, the data provider service has been upgraded to hold multiple event
buffers, one for each slot. The calls to the converters now include the EventContext, so that
they can access the correct buffer.

´ ROOT:
´ TTreeCache performs intelligent read-aheads and caches the data.

´ Event storage and caching have boundaries: files, baskets, TTreeCache, etc. With multiple
events in flight, the I/O can encounter points where it flips back and forth across one of those
boundaries. When it does, you can get a thrash condition.

´ Fixed by a summer student at Argonne last summer and incorporated into the ROOT code base.

10 July 2018Computing in High Energy Physics

6

Parallel Reading and Writing (II)
´ Multiple PersistencySvc

´ Currently we use three PersistencySvc. One each
for reading, writing, and conditions reading.

´ Concurrent Writing
´ We have multiple serialization points during writing:

ROOT, our PoolSvc, and StoreGate.
´ Converters for different types can be run in

parallel(as shown in the figure), so there is limited
scope for parallelism within the conversion service.

´ Parallel File I/O
´ One could read create multiple TFile/TTreeCaches

for parallel file reading
´ By type: We can do this by creating multiple

PersistencySvc instances, one for each type (the
grayed out portion in the figure).

´ By event: Because each branch is stored in baskets,
clusters of events, this can lead to multiple
decompression of the same basket, so we don’t do
this.

10 July 2018Computing in High Energy Physics

7

PersistencySvc 1 includes ROOT write

Obj. 1
Type A

createRep

Converter A incl. T/P

Obj. 2
Type A

createRep

Obj. 1
Type A

PersistencySvc
unlocked

Obj. 2
Type A

Obj. 3
Type B

createRep

PersistencySvc
unlocked

Not Yet:
PersistencySvc 2

Obj. 4
Type B

createRep

Obj. 3
Type B

Converter B
Converter
unlocked

Obj. 3
Type B

Obj. 1
Type A

register
Write

Converter A
unlocked

Obj. 2
Type A

register
Write

Obj. 3
Type B

register
Write

Obj. 4
Type B

Converter A
unlocked

Stream 1 Stream 2

Converter Parallelism

Can be added

Multiple Output Streams
´ ATLAS makes use of parallel output streams at multiple stages in its processing.

´ Reconstruction: filtered streams for calibration or trigger studies. (~10)

´ Derivation: filtered streams for physics analyses. (~10)

´ Derivation uses resources very differently from reconstruction.
´ For example, we will have to compare the performance of multi-process (MP) and multi-threaded (MT)

approaches. Using a separate process for each stream may work better than a single multi-threaded process.

´ Changes to event filtering.
´ Filtering of output streams is done using filter algorithms within the event loop and applying a logic inside the

DecisionSvc which provides a boolean result to the AthenaOutputStream (an Algorithm in the event loop).

´ The DecisionSvc has been updated to be ‘slot’-safe, and works in AthenaMT. Much of the functionality has
been subsumed into the Gaudi framework itself.

´ This entire process has been rendered somewhat redundant by Gaudi’s new, advanced control flow features.
Some users of simulation have already abandoned the DecisionSvc.

´ This needs to be addressed at a more architectural level as it affects bookkeeping.

´ Currently the scheduling of output streams is the same in AthenaMT as it is in serial Athena. They are
placed in a sequence which is executed after the event processing algorithms.
´ One could think of using data driven scheduling to run the output stream as soon as all of its objects are

ready, but its unclear whether the increase in complexity warrants this.

10 July 2018Computing in High Energy Physics

8

Metadata and Conditions
´ Event data are processed within the event loop and have an event scope

defined by the EventContext and the event store for that slot.
´ Non-event data are also accessed during event processing. These include both

conditions (calibrations, alignments, etc.) and metadata (simulation
parameters, dataset information, bookkeeping, etc.).
´ Condition contexts are defined by an interval of validity (IOV) scope.

´ This is associated with the conditions data by creating container objects in StoreGate which
function as maps of IOV to data. Conditions handles take an EventContext as argument and
return the correct data object from the conditions store by comparing the EventContext to the
IOV’s in the map.

´ Conditions data are primarily accessed from a database (Oracle, squid, sqlite,…), but
the data is stored in ROOT objects (thus the third PersistencySvc)

´ Metadata context is defined by the source of the metadata.
´ Metadata uses a similar system of handles and containers to conditions, but with a different

key. This system is still under development and testing.

´ For historical reasons, a large fraction of the metadata used by a job is stored and
accessed from the data file rather than from a database.

´ ATLAS is reviewing this system as part of building an I/O roadmap.

10 July 2018Computing in High Energy Physics

9

Data Chunking and Bookkeeping
´ There are two data chunks which impact bookkeeping during the job.

´ Luminosity: luminosity is calculated for chunks of events called luminosity blocks, typically
around 1 minute of data taking. Physics analyses need to know they have seen all the
events from a given luminosity block to integrate the total luminosity correctly.

´ Input Events: Both for luminosity and for other normalizations, it is important to know how
many events have been read and whether a file has been completely read.

´ Because bookkeeping is done during data processing, it has been stored in the data files.
The sum of events and sum of events per lumiblock are saved and marked as either
complete (input fully read) or incomplete (input partially read).

´ This system must evolve as our data processing workflow becomes more flexible. A single
process doesn’t have enough information to do it properly.

´ Two ideas are being developed for Run 3 to make this more robust.
´ External accounting: Propagating the event counts to a database which then has

information about multiple jobs.

´ Deferred accounting: Keeping a separate list of events which can be summed after the file
is closed or merged.

10 July 2018Computing in High Energy Physics

10

Conclusion and Outlook
´ Athena I/O services have been upgraded to support multithreaded

athena, AthenaMT.
´ Caching is enabled for both RAW data (multiple buffers) and ROOT data

(TTreeCache).

´ Parallelism has been improved and expanded within the Athena I/O services.

´ We maximize our use of ROOT multithreading where possible, and we will
leverage (and contribute) to improvements in ROOT I/O.

´ A system for handling conditions and metadata is in the later stages of
development, but it is also being re-evaluated as part of an ATLAS review
of I/O strategies for Run 3/4.

´ This means that ATLAS I/O now supports event processing on multi-core
architectures for both multithreaded processing (AthenaMT) and
multiprocess processing (AthenaMP).

10 July 2018Computing in High Energy Physics

11

