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Abstract

At the new ete~ storage ring (LEP) at CERN, reactions with complex decays of
heavy particles will be of particular interest. The more stable ones (like B and D.
mesons, 1 lepton) have lifetimes greater than 10-13 sec; evaluation of their decay
vertices thus requires a spatial resolution of ca. 10 um.

For this aim, the DELPHI spectrometer contains a vertex detector (silicon micro-
strips). Also needed is optimal utilization of all measurement information and
correct treatment of multiple scattering for the geometrical reconstruction of tracks
and vertices. Since the straightforward method of least-squares fitting leads to
prohibitive computing times, more sophisticated algorithms (which are equivalent
to the Kalman filter) must be used.

- - First results from Monte-Carlo studies on the precision of track and vertex fitting

confirm the usefulness of these methods.

‘Presented at the XVIth Int. Meeting on Fundamental Physics, Pefiiscola (Spain),
25-29 April 1988.
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Introduction

Heavy flavour physics will play an important role in the research program at
CERN's e+e~ storage ring LEP [1]. The DELPHI experiment will be outstanding
for its capability of hadron identification by means of RICH detectors covering the
full solid angle [2l. This advantage needs to be complemented by being able to
reconstruct in space the decay vertices of charm and bottom mesons.

The decay properties of some particles of interest are summarized below [3I:

Particle T/sec C+T decay topology comments
Ko, 5.2+10-8 1554 cm V2 excluded
K+ 1.2+10-8 371 cm C1,3 global PR
A0 2.6+10-10 7.9cm V2 important
Kog 0.9+10-10 2.7cm V2 -

Bo, B+ 1.4«10-12. 420 um V4,6;C3,5,7 desirable
D+ 9.2+10-13 280 um c(,3 -

Do 4.3+10-13 130 um V2,4 - "
Dig (Ft) =2.8+10-13 =~ 80 um C3,5 -
AO; ~ 2.3+10-13 =~ 70 um C3,5 -

™ 3.3«10-13 100 um c(,3 -
To, T+ 10141015 0.3..3um ? ~ excluded [4

(decay length L =n+c*t with = py=P/m)

In conclusion, it will be desirable to gain a spatial resolution of a few 10 um in the
projection (x,y) normal to the magnetic field in order to identify decay vertices
inside the beam tube. A still better spatial resolution (also in z) will be necessary
for studies on lifetimes, angular distributions etc.

For charged one-prong decays ("kinks" C1), a geometrical vertex fit can only .be
performed if the vertex is well outside the beam tube; otherwise, the outgoing
track will be flagged as "not associated". Decay topologies to be identified are
V2...V6 for neutral and C3...C7 for charged decays. ~

Critical points are the following requirements
- from track search: reliable track element association, e.g. correct "hit merging"
in the vertex detector [5];



= from global pattern recognition: reliable identification of decay vertices inside
the tracking detectors.

— from single-track fitting: optimal precision of track parameters and their co-
variances at the reference cylinder (inner surface of the beam tube);

After a geometrical vertex fit, it is possible to re-adjust the fitted parameters using
‘kinematic constraints in order to improve precision [6]. But beware of mistakes
‘caused by wrong mass assignments or unmeasured (neutral) tracks.

The rest of this paper will present in more detail the algorithms for geometrical
vertex fitting with emphasis on the Kalman filter method (chapter 1), strategies
chosen for vertex evaluation in the DELPHI data analysis (chapter 2), and first
results from a MC study on the precision of vertex fitting (chapter 3).

A convention generally used throughout this paper is to denote vectors by bold
(p), matrices by outlined (C) symbols, and fitted estimates with a tilde (p). Trans-
position of a matrix is denoted by superscript (CT), inversion by exponent (C-1). A
distinction between column vectors (p) and row vectors (pT) is made only when
used in matrix operations.

This work was performed within the DELPHI Working Group on Data Analysis
(chairman: Prof. J. Wickens, Brussels) and in contact with the DELPHI Vertex
Detetector and Physics Analysis Groups. Special thanks are due to R. Friihwirth
and Prof. M. Regler (Vienna) for their development of the basic algorithms and
helpful collaboration.



1. Vertex Fitting and the Kalman Filter Method

The task of a geometrical single-vertex fit (for a given "bundle" of tracks) is to find
an estimate for the vertex position X and for the track parameters ¢; at the
‘common vertex. This chapter will, after presenting the needed prerequisites,
- survey the algorithms for vertex fitting by different methods (7.

1.1 Prerequisites for Vertex Fitting [8.9]

The trajectory of a particle in space can be described by a set p of 5 parameters
at some arbitrarily chosen reference surface (see below), e.g.

p=(R®, z, 0, ¢, e/P) at R = const (cylinder), or
P=( x vy, 06, ¢0, e/P) at z = const (plane)

with (R, ®, z) denoting a space point in cylindrical, P = (P, 6, 0) a momentum
vector in spherical coordinates; e is the charge. The first two parameters define a
point, the next two a direction at the reference surface. The 5th parameter is
undefined in case of zero magnetic field B; otherwise, it is proportional to sin6'/r,
with 8’ being the angle (P,B), and r the radius of curvature.

A track model is derived from the equations of motion of the particle and depends
upon the characteristics of the magnetic field B(x). In case of a homogeneous
field B = (0, 0, B), a helix track model will be appropriate.

In the absence of multiple scattering, the particle's trajectory is a deterministic
- result of "starting parameters” (x, q) at an arbitrary point. Therefore, making use
of the track model, the track parameters p at a given reference surface can be
expressed as a set of functions

p=p(x!q)

with x = (X, y, z) being a point in space, and q = (8, ¢, e/P) the direction and (if
defined) the inverse momentum at this point (fig. 1a). In the latter case, it may be
useful to represent the momentum vector as q = (Px,Py,P;) in cartesian co-
ordinates (see section 1.5).



Single-track fitting yields, for each of n reconstructed tracks, a 5-vector of track
parameters B; and an associated 5x5 covariance matrix Gj-1, defined at some

reference surface. For the single-vertex fit, these are now regarded as virtual
measurements p; with

pi=p covipip)=Gi!  (i=1..n)

Note the assumption cov(pj,pj) =0 fori = | (this may be a subtle problem in
detectors with bad multi-hit resolution, but affects pattern recognition rather than
single-track fitting). The covariance (or error) matrix Gj1 is symmetric, positive-
definite with (in general) off-diagonal elements. Its inverse is the weight matrix Gi.

A-priori knowledge of the position (with its errors) of the vertex, e.g. by measuring
the beam spot, may be utilized in the vertex fit as another virtual measurement v
and an associated (in most cases diagonal) 3x3 error matrix cov(v,v) = Gp™1.

+ The pj are assumed to be defined at a reference surface which has been chosen -
such that all errors coming from multiple scattering are included in Gj1; this is the

case if there is no significant matter between the vertex and the reference
surface. E.g., when being interested in vertices inside the beam tube cylinder, its
inner surface is a good choice.

If this condition is not fulfilled, pj and Gi-1 must be propagated to a more inner

reference surface while taking into account multiple scattering in the matter
traversed, yielding pi* and Gi*-1. In case of the matter being concentrated in thin

layers, these may easily be used step-by-step as new reference surfaces; for one
such step (see fig. 1b),

pi* = pi* (Pi) defined by the track model
D =Jpi* / Ipi 5x5 matrix of derivatives (Jacobian)

Then one gets for the new covariance matrix

Gi*1=DG'DT +

O O O O O
O O O O O
2
>
<
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o
O O O O O



with the first term being the error propagation to the new reference surface, and
the second term adding the errors from multiple scattering in that surface (using
spherical coordinates 6 and ¢). The latter, originating from a quasi-stochastic
process, can be derived from Moliére's formula, with logarithmic correction [3]

 02(AL) ~ As + (€+0.0141 GeV / B+P)2 + (1 + 0.111slog10AS)2

where A is the projection of the scattering angle into a plane containing the
track direction, and As is the track length in matter (in units of radiation length).
Transformation to global spherical coordinates yields

62(A0) = 62(A})
02(A0) = 62(AA) / sin20

Noting that cov(A8,A¢) =0 gives the matrix elements shown above.

1.2 Vertex Fitting by the Least-Squares Method

The identity v(x) = x and a linear (1St order Taylor) ansatz for the n track model
equations pj(x,q;) around an arbitrarily chosen "expansion point" (x9,q19,...,qn°)
yield

' i 0 ..... 0 X - x0 x0
p1 A1 By ..... 0 q1-0q1° P1(x%,q1°)
= * +
pnll " An 0 ..... . Bn dn - qn° Pn(x%,qn0)
with
A= [api / ax] (x0,g;0) Bi= [api / aq;] (x0,q;0)

being 5x3 matrices composing the (5n+3)x(3n+3) matrix M of derivatives
(Jacobian) at the expansion point.

It should be clear that it is not the track model equations pj(x,q;) themselves
which are linearized, but only the deviations pi - pi(x°,qi;°) as functions of the
deviations (x-x9, q;-q;%) from the expansion point.



Note that the choice of an expansion point (x0,q19,...,qn°) is in principle arbitrary,
nevertheless it should be chosen as close as "guessable" to the true values. E.g.
for a primary vertex fit, the centre of the beam spot and the track parameters
- obtained by backward tracing are a good choice. If an expansion point is chosen
- too far away, i.e. the linear ansatz is no longer correct, several iterations will be
needed for the fit, using the resulting estimates of one iteration as the expansion
point for the next one. '

The linear ansatz can be made homogeneous by re-defining the virtual measure-
ments

Pi = Pi' = pi + Aix0 + Biqi® - pi(x%,qn°)

to become "centred" around their expansion point values:

' i 0 ..... 0 X
p1' Ay By ..... 0 q1
Pn' Anh 0 ...... Bn an

This system of linear equations has 2n numbers of degrees of freedom (2n-3 if
Go = 0, i.e. there is no a-priori vertex measurement v). Solutions for (x,q1,...,qn)

can be obtained by the least-squares method in a straightforward way:

X v
q p1'
an Pn'

with the Jacobian matrix M defined above, and the (5n+3)x(5n+3) weight matrix

given by

Go
G1

G = : with zeros off the block diagonal.




The (3n+3)x(3n+3) matrix MTGM is the weight matrix of the vertex fit. The
computing requirements are dominated by its inversion, with the number of
arithmetic operations being proportional to n3. If the vertex fit should also be used
as a test criterium for the correct association of tracks, it must be répe‘ated many
times with different track combinations. '

In conclusion, if the track multiplicity is high, or if there are ambiguities in track.
association, the straightforward method is prohibitive in practice.

A way out of this dilemma is to take advantage of the block structures of the
matrices M and G, which are a direct result of cov(p;,pj) =0 fori = j. This has first
been suggested in ref. [10]. Further analysis of this problem has shown that its
solution is equivalent to the linear filter method of Kalman [11.12],

1.3 Vertex Fitting by the Kalman Filter Meth

~ The Kalman filter is an iterative algorithm for the addition (resp. removal) of a
subset of (virtual) measurements to (resp. from) a linear least-squares fit. This is
possible provided that all sub-sets are uncorrelated with each other.

For the application of this method to our vertex fit problem, we continue to follow
the terminology and notation used so far. A mathematically more rigorous treat-
ment is given in ref. [11]. We start with defining (2n+1) 3x3 matrices (note that D;

are unsymmettric):

Do = Go+ X ATGjA; (summation forj=1...n)
D, = ATG;B, } fori=1..n

W; = (BT G;B)"

then we get for the covariances of the vertex position X, the (3n+3)-vector of fitted
parameters (X, G, ... , @,) and the 2 of the fit (summations forj = 1 ... n)

cov (%,X) = Cgo = (Dg - 2 D;W; D;T)-"

X = Coo[Gov+ L ATG (1-B,W,BTG) p;]

G =W;BTG; (- AX + p;) fori=1..n
x2=(v-X)TGp(v-X) + 2 (p/- )T Gi(p/-B))



with
P = P "(X,Gj) = jx + B,q, (linear expansion of fitted values)

It should be noted that these formulae contain an iterative algorithm by virtue of
- the summations; this will become manifest in the next section. The number of
, ~ arithmetic ‘operations required .is only proportional to n, thus providing- a fast

" algorithm. If the full covariance matrix of the vertex f|t is also wanted (e.g. for-a
subsequent kinematics fit), we get

COV()? a) Col = - Coo D] Wj
COV(aj i') Cjo = @01
COV(ﬁ a]) C'l = 6‘1 W W .TCOJ

The number of arithmetic operations required is still proportional to n, except for
cov(§;,d;) with i = j: in that case it is proportional to n2. Comparing this with the
straightforward method of the previous section (increase «n3), a break-even is to
be expected for vertices with ca. 4 tracks.

1.4 Method for Testing Track Association:

This is another benefit of the Kalman filter method, which follows from the
iterative character of its algorithms. The problem to be solved is:

How do the results (X, G, ..., §, and x2) of a vertex fit with n tracks change, when
either adding another track (n+1) to the fit, or removing one track (k < n) from the
fit ? For track addition, we get

X+ = COO* [COO-1 X+ An+1TGn+1 (dﬂ - n+1 Wn+1 n+1TGn+1) pn+1']
d* =G-W,DT(x*-X) fori=1..n
Gnet1* = Wiy Boyt T Gy (- Ay X* + Pryt’)
X2 =x2+ (X-X4)T Coo! (X - X*) + (pn+1' - Prat)T Gy (pn+1' - §n+1*)
with
= [Coo™ + Ane1T Gt (1 - Byt Whyq Braq T Gnyr) Agyq]”
Pre1* = Prot (X*,Gne1*) = Ay X* + By 1Gner* (linear expansion)

For track removal, the same formulae can be used, with index (n+1) replaced by
K, and changing sign of the matrices Gy and W,.
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Defining the change in x2 caused by the addition (resp. removal) of one track to
(resp. from) the vertex fit as

X2, =x2*-x220 (for addition of one track)
x2_=x2*-%2<0 ~ (for removal of one track)

we can use 2, or x2_as a powerful test criterium for the correct association of a

track to a vertex. In other words, wrongly associated tracks can be regarded as
"outliers" with respect to the vertex fit [12],

-Since 2, incorporates all the information available (errors and covariances) of a
fitted track to be tested, it is a more selective criterium than the usual method of
testing impact parameters; this will be confirmed in chapter 3. Because the test

can be performed one-by-one, there is no combinatorial overhead even in case
of many ambiguous tracks. Therefore, %2, is also a fast test criterium.

It should be noted, however, that the-y2, test is not absolutely selective either. It

may fail to do a correct decision between competing vertices. These limits will be
further investigated in chapter 3.

1.5 Inclusion of 3-momentum Conservation

The use of all 4 energy-momentum constraints at some vertex requires correct
mass identification for the incoming and all outgoing particles. This is not always
possible. For events with one or more secondary vertices, the kinematic
constraints require a true multi-vertex fit to be performed.

Using only 3-momenta avoids the problem of unknown masses. The kinematic
constraints are applied to only one secondary vertex; let's assume it is the decay
of a particle coming from the primary vertex. Then following the Kalman filter
method, the primary vertex position can be used as an additional virtual measur-
ment v for the secondary vertex fit (fig. 1¢). This requires only the inversion of a
7x7 matrix, and gives an update of the secondary vertex position X and the para-

meters for the connecting track @, together with a x2, of the fit.

The %2, can be used as a test criterium for the validity of the assumption above,
“ i.e. to identify cascade decays. This is important for B meson physics.

11



2. Strategies for Vertex Evaluation in DELPHI

When speaking of "vertex evaluation”, we have in mind a complex task which
aims at achieving the following results:

— ldentification of secondary vertices ("vertex separation"); : , }

— Association of reconstructed tracks to the identified vertices ("track bundling");

— Geometrical single-vertex fits, i.e. reconstruction of the position of all vertices
and the parameters of all tracks at their vertex ("vertex fit");

— If needed, update of the vertex fits by the inclusion of kinematic constraints.

In this study, we are interested in vertex separation and track bundling only
inside the beam tube. Outside, i.e. in regions covered by tracking detectors, these
tasks will already have been done by global pattern recognition (PR), which
should also be able to identify kinks.

In the framework of the DELPHI data analysis chain (DELANA), vertex evaluation
will logically be performed after all charged tracks have been unambiguously re-
-constructed by single-track fitting. Since the reference surface is defined to be the
inside of the beam tube cylinder, all inultiple scattering is included in the error
matrices (see section 1.1).

Our strategy adopted at present for vertex evaluation assumes event topologies
with at least two primary vertex tracks which can be recognized a-priori (e.g. by

their high momentum). These are used for a first approximate primary vertex fit.
Then, all tracks are tested for their association to this vertex by the [x2,| criterium

~ (algorithms of section 1.4). This fast method should be able to associate a large

fraction of all the primary vertex tracks.

Tracks which fail in the |x2,| tests are subject to combinatorial bundling. It is this
stage where secondary vertices (inside the beam tube) will be identified and the
remaining tracks associated to a vertex. Developement of this part is also rather
advanced [13] and it will soon be included in DELANA.

Finally, the primary vertex and all secondary vertices are fitted, using the algo-
rithms of section 1.3. The same will be done for secondary vertices outside the
beam tube which have been identified by global PR.

12



Later versions will allow to update the secondary vertex fits by the inclusion of
3-momentum conservation, either to improve the precision, or to identify
cascade decays (see section 1.5). A simplified flow chart of our strategy being
- implemented in DELANA is given on the next page.

- The assumption made above (existence of recognizable primary vertex tracks) is
characteristic for the majority of e+e~ events at LEP energies, like the one shown
in fig. 2 [4. However, this is not the case for some event topologies which are of

particular interest (e.g. BB production). For these, our strategy must be modified
to allow for skipping the first approximate primary vertex fit and the fast track

association tests. But, when relying only on combinatorial bundling without
knowledge of a [x2,|, more sophisticated algorithms will be required.

Since the task of vertex identification and track bundling can be regarded as a
problem of pattern recognition, it may be appropriate to solve it by using the
principal components analysis (PCA) method [8l. The basic idea is to represent
each pair of fitted tracks as one point in a 10-dimensional parameter space, with
the similarity relation being that tracks originating from a common vertex must
cross each other "very closely". '

It should be sufficent to regard only the (x,y) projection normal to a (quasi)-
homogeneous magnetic field B. Then, the feature pattern can be linearized by
polar inversion, transforming circles of radius ry through the origin into straight
‘lines with a distance of 1/ry from the origin. Therefore, the sensitivity is fully kept
for vertices near the origin, i.e. inside the beam tube. The 10-dimensional PCA
transformation can be constructed from a carefully chosen training sample. The
~“constraint hypersurfacé has in general 9 dimensions; but in our case effectively
only 8 dimensions due to translation invariance in z.

The PCA method may also be used in place of combinatorial bundling after a first
approximate vertex fit, as described above. The efficiency of its application will be
investigated in another study to come.

The vertex evaluation package makes use of a utility library for helix tracking and
error propagation (UHLIB) [5]. This library is field-proven and has become stan-
dard in the DELPHI data analysis.

13
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3. Precision of the Vertex Fit (Monte-Carlo'vStudy) _

A warning from the very beginning: since the Monte-Carlo study is still going on,
all results presented here are only preliminary (as of April 1988).. Nevertheless,
they elucidate some of the problems arising from our ambitious goals for vertex
evaluation. This chapter will first describe a mini-simulation of and single-track
fitting in the DELPHI spectrometer, and then discuss some aspects of primary
vertex fitting and track association.

3.1 Mini-Simulation_and Single-Track Fittin

The motivations for this work were twofold: first, to generate realistic virtual
measurements (i.e. fitted tracks) to serve as input to the vertex fit procedures;
second, to evaluate the effect of different detector set-ups on the precision of the
track fit (Monte-Carlo study). These results have been published in more detail
elsewhere [16],

The DELPHI spectrometer [2.5] is a complex set of individual detector modules
(fig. 3a).: Regarding the "barrel region" (fig. 3b), the following central tracking
parts are considered for the mini-simulation: Beam Tube, 2 layers of Vertex
Detector (VD), Inner Detector (ID) and Time Projection Chamber (TPC). All these
parts are described by cylindrical surfaces around the z axis. A homogeneous
magnetic field (1.2 T in the z direction) allows to use a helix track model. Multiple
scattering is simulated using Moliére's formula with logarithmic correction, and all
matter assumed to be concentrated in thin layers.

Special care is taken to simulate fitted track segments with random errors as
expected from measurements in the ID or TPC (error matrix with realistic off-
diagonal elements). The VD returns only R+® measurements (6ro = 5 um, two-

track resolution effects are not simulated). Constants used in the simulation for

geometry, matter and measurement errors are quoted in ref. [16].

Using these simulated track segments as virtual measurements, a single-track fit
is done by applying the Kalman filter method to track fitting: starting with the TPC
and progressively moving inwards to the ID, layer 2 and layer 1 of the VD, up to
the beam tube. This involves propagation of the (updated) parameter vector and
error matrix to a new intermediate reference surface; inclusion of multiple

15



> scattering effects to the error matrix, as described in section 1.1 ; and updating the
fit (parameter vector p and error matrix G-1) by adding a new virtual measure-
ment (fig. 3c). The final reference surface for the single-track fit is the inside of the
beam tube cylinder (R;ef = 8cm).

Fig. 4 shows some results of relevance for vertex fitting: the- mean value of the
impact parameters (obtained from the fitted P) with respect to the known vertex,
either in space or in the (x,y) projection, is plotted as a function of momentum and
for different detector set-ups. It becomes clear that the VD adds accuracy only in
the projection; this will help for the identification of short-lived decays, but not for
determining lifetimes or angular distributions.

Knowing ptrue at Ryet, the "normalized deviations" (B - ptrue) / Yvar(p) (with
var(p) being the diagonal of G-!) can be plotted for each of the 5 components of
the parameter vector. They must be normally distributed with a mean = 0 and an
r.m.s. = 1, thus constituting a very sensitive check for correctness.

3.2 Event Data Generated for the MC Study

At this early stage of the study, only "unphysical" data samples are used, which
are sufficient for testing the most basic properties of the algorithms. The following
discussions in this chapter are based upon 4 data samples:

Sample A of 200 events: primary vertex with 30 tracks, charge = +1 (equally)
P =2..22GeV/c (flat distribution)

cotd =—-1 ... +1 - -
¢ =0..2rn -

Sample B of 100 events: primary vertex with 20 tracks, kinematics as above;
4 secondary vertices: Pgecay = 10 GeV/c
Mdecay = 1.86 GeV (& D% mass)
isotropic decays into K n*rn~, K¥n~n+, K~n+, K*n~
decay lengths = 800 um (in the laboratory system)

Sample C of 100 events: as sample B, but decay lengths = 2400 um

Sample D of 100 events: as sample B, but Pdecay =5 ... 10 QeV/c (flat distr.)
Mdecay = 5.275 GeV (& B® mass)

16



Sample A is supposed to test the quality of a "clean" primary vertex fit with high
track multiplicity. Samples B ... D are supposed to test, after an approximate
primary vertex fit, the association of "right" and "wrong" tracks for different kinds of
- the latter. It may be expected that samples C (longer decay lengths) and D (lower
momenta and higher masses) will enable better selection than sample B.

These data samples are passed through the mini-simulation and single-track
fitting program described in section 3.1, considering only tracks with |cotB| < 1

(i.e. those passing through the VD). The impact parameters in space resp. in (x,y)
projection, w.r. to the vertex, are shown in figs. 9 ... 12 for samples A ... D.

3.3 Primary Vertex Fit and Track Association

The processing follows the procedures described in chapter 2, making use of the
algorithms given in sections 1.3 and 1.4. Tracks of the "starting sample" for a first
approximate primary vertex fit are selected by P > P, = 10 GeV/c.

The x2, (addition) test is performed for all tracks of the "test sample" (P < Poy),
“and the x2_ (removal) test for all tracks of the "starting sample" (P > Pcut). These
x%; tests are performed without updating the results of the first approximate

primary vertex fit.

Selection of tracks for the final primary vertex fit: For data sample A, the 2, are

ignored, i.e. all tracks are selected. For data samples B ... D, tracks are selected
by the x2, test with |x2.] < |x24|cut = 3, corresponding to a loss of ca. 22% of

"good" tracks. It should be clear that such a tight cut is chosen here for test
purposes only.

As with the single-track fit, a very sensitive check for correctness can be per-

formed for simulated data because of knowing (xtrue, qqtrue, .., q,t'ue) at the

vertex. Plotting the "normalized deviations" for each component of

»

(X - xtrue) / var(X) with var(X) = diag(Coo)  and
(Gji - qitrue) / Y var(q;) with var(q;) = diag(Cyj) fori=1..n

must result in normal distributions with a mean = 0 and an r.m.s. = 1. Correct
input from the single-track fit is, of course, obligatory. -
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Further checks for correctness involve the %2 of a vertex fit resp. the |x2,| of track
association tests. Both must be x2-distributed, i.e. have a mean = NDF and an
r.m.s. =+/2«NDF, with NDF being the number of degrees of freedom.

In case of a vertex fit with n tracks, NDF = 2n (or 2n-3 if not using the beam spot);
therefore, plotting x2/NDF gives a mean = 1. In case of track association tests,
- NDF = 2, so plots of |x2,| are x2-distributed with a mean = 2 and an r.m.s. = 2;

this can be seen in figs. 5 and 6,7,8:a,c.

It should be noted, however, that these checks are only fulfilled if the tracks are

fitted to their correct vertex. E.g., when testing association of "wrong" tracks to the
primary vertex, the |x2,| of the test are no y2-distribution anymore (figs. 6,7,8:b).
Similarly, when losing too many "good" tracks after a tight [x24] cut, the x2/NDF

distribution of the final vertex fit will also be distorted (mean < 1).

3.4 Preliminary Results of the Primary Vertex Fit

The precision of a primary vertex fit may be defined by the deviations of the fitted
parameters (X, &, ... , G,) with respect to the true ones (xtrue, qqtrue, . qptrue),

AX = (AX, Ay, Az) = (X - xtrue)
Agi= (AB;, Adi, AG)) = (Gi- qive)  withi=1..n

Plotting these for each component results in distributions with a mean = 0 and an
r.m.s. to be determined, as shown in the following table:

Data sample A B C D
no. of events 200 100 100 99
no. oftracks  forpr.vx. fit 5997 1817 1631 1573
mean (tracks / ev.) --" -- 30.0 18.2 16.3 15.9
r.m.s. (Ax) /um 5.90 8.04 7.54 7.99
r.m.s. (Ay) /um 6.12 8.21 8.24 7.59
r.m.s. (Az) /um 37.8 50.3 53.0 54.8
r.m.s. (A6;) / mrad 0.325 0.340 0.328 0.336
r.m.s. (A¢;) / mrad 0.091 0.134 0.117 0.113
r.m.s. (A(,%)i) / GeV-1 0.0015 0.0015 0.0014 0.0014



Regarding Ax, Ay and Az, the higher precision of sample A is mainly due to the
higher number of tracks entering the vertex fit.

Comparing, for sample A, the mean values of the impact parameter, either in
space (fig. 9a) or in (x,y) projection (fig. 9b), with the quadratically added r.m.s. of
the vertex position (see table above) shows clearly the gain in brecisio‘n .reSUIting
from fitting many tracks to a common vertex:

mean (impact parameter in space) 153.7 um
r.m.s. (\/ Ax2+Ay2+Az2) 38.7 um
mean (impact parameter proj. to (x,y)) 23.5 um

r.m.s. (\/ Ax2+Ay2) 8.5 um

It should not be forgotten, however, that these values represent the "ideal case":
high track multiplicity, no ambiguities from pattern recognition, no ambiguities
from track association. Therefore, they give an indication for the optimal precision
achievable rather than for a realistic one to be expected.

3.5 Preliminary Resulfs of Track Association

In order to evaluate the selection power of the %2, test described in section 1.4,
we plot for data samples B (fig. 6), C (fig. 7) and D (fig. 8) the %2, (addition test) for
primary vertex tracks (figs. *:a), the x2, (addition test) for secondary vertex tracks
(figs. *:b), and the [x2_| (removal test) for primary vertex tracks (figs. *:c). The |x2_|
(removal test) for secondary vertex tracks is not shown because almost none of
these have momenta P 2 P = 10 GeV/c.

Whereas the [x2,| are "correctly" distributed (mean = r.m.s. = 2) for ptimary vertex
tracks (figs. *:a,c), this is not the case for the x2, of "wrong" (secondary vertex)
tracks, which have mean and r.m.s. = 5 for data sample B (fig. 6b), and even
much bigger for data samples C (fig. 7b) and D (fig. 8b).

A comparison of the y2, distributions for "right" tracks (figs. *:a) with the
corresponding ones for "wrong" tracks (figs. *:b) shows that also the latter do not

decrease at lowest values. As a consequence, any selection criterium based
exclusively upon %2, cuts has to find a compromise between too much losses

and too much contamination.
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Choosing a rather tight cut at |y2,| < IX24lout = 3 gives, for the particular cases of

our data samples, the following percentages for losses of "right" resp. contami-
nation with "wrong" tracks:

Datasample B c D -
losses by x2, and x2_ tests [%)] 22 22 23
contamination by %2, tests [%)] 13 3.5 2

It is clear that, for a fixed |x2,|., = 3, the losses are constantly = 22 %. The conta-
mination from "wrong" tracks is smaller; it decreases as the x2, distributions get

more and more distorted towards high values for data samples B - C - D.
.6 Comparison with Impact Parameter Te

Given the same conditions, which is the selection power of the usually performed
impact parameter tests? For this aim, we plot for our data samples B (fig. 10), C
(fig. 11) and D (fig. 12) the impact parameters in space (figs. *:a,b) resp. in (x,y)
projection (figs. *:c,d), with respect to the true primary vertex, for "right" (primary
vertex) tracks (figs. *:a,c) and "wrong" (secondary vertex) tracks (figs. *:b,d).

Comparing the corresponding distributions for "right" and "wrong" tracks show
that for the impact parameters in space there is a bigger overlap (worse selec-
tivity) than for the projected impact parameters. In both cases, a high percentage
of contamination is to be expected.

Performing cuts on the impact parameters at such values that the percentage of
losses of "right" tracks is the same as with the %2, cuts applied above, the

resulting contamination with "wrong" tracks will be

Data sample B C D
losses (see above) [%] 22 22 23
contamination by I.P. i. space cuts [%)] 32 23 16
contamination by I.P. project. cuts [%)] 22 9 5

which is no surprise. But it is clear that 2, tests constitute a more powerful
selection criterium than any of the impact parameter tests. Thus, our expectations
of section 1.4 are confirmed.
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3.7 Preliminary Conclusions and Qutlook

The Kalman filter method (in its general and rigorous form) is used for the first
time in a real computer program for fitting vertices and testing track association in
- a storage ring experiment. It has been shown to work fast and reliably. The part of
the program doing a geometrical primary vertex fit (with all tracks) is alréady
included in the DELPHI data analysis chain.

How powerful is the %2, as a test criterium for track association to the primary
vertex? The method has been shown to be superior to the usual impact para-
meter tests. But for short-lived decays (like B and D mesons), it is still not as
selective as wanted.

Therefore, the method needs still a lot of study in order to develop more sophisti-
cated test criteria. Suggested are tests combining the x2, with other relevant

criteria, like the momentum P of the track, or the %2 of a fitted "candidate” secon-
dary vertex. It may turn out necessary to have different test criteria for different
physics channels of interest, each being highly selective for the own channel, but
possibly bad for the others.

In any case, there will remain a region of ambiguity, which can only be treated by
combinatorial bundling. After the association of all primary vertex tracks, combi-
natorial bundling will also be necessary for distributing the remaining tracks
among the secondary vertices, which thus become identified. (Application of the
PCA method for this task will be investigated in another study to come.) After the
correct bundling of all tracks, the geometrical secondary vertex fit uses the same
algorithms as the primary vertex fit.

Due to the vertex detector, the precision of the fitted vertex position is rather bad
in the z coordinate (see table in section 3.4). A way to correct this drawback
would be to re-adjust the fitted vertex parameters using kinematics information,
with the danger of possible distortions caused by wrong mass assignements.

This may be avoided by using only 3-momentum constraints. Application of the
method outlined in section 1.5 for the identification of cascade decays of B
mesons will be part of another study to come.
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Fig. 12 Impact parameters in space resp. projected, for data sample D






