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Abstract 

These Lecture Notes give an intuitive introduction to noncommu-
tative field theory with an emphasis on the physics ideas and methods. 
We pay special attention to those aspects of noncommutative field the-
ory that represent genuine novelties from the physical point of view, 
such as the UV/IR mixing. We also include brief discussions of possible 
applications of these ideas to phenomenology as well as the connection 
to string theory. 
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1 Introduction 

Noncommutative Field Theory (NCFT) is a field theory defined over a 
space-time endowed with a Noncommutative Geometry (NCG) (c.f. [1, 2, 3]). 

Although the motivations for considering NCG are mostly mathematical, 
aspects of the formalism do show up in various physical situations and, in 
priciple, it is a relevant generalization of the standard framework of local 
quantum field theory. Indeed, the existence of a nonlocal, and yet tractable, 
generalization of quantum field theory is a highly non-trivial fact of great 
intrinsic interest. This is not only linked to interesting mathematics but it 
is also related to the non-locality present in string theory [4]. 

In this vein, the recent discovery of subtle quantum mechanical effects in 
NCFT, having to do with the interplay between locality and renormalization 
(c.f. [5]), has prompted a wide interest in NCFT as a toy model for the most 
widely studied nonlocal theory: string theory. Other potential applications 
of the formalism to the study of large-N limits of ordinary gauge theories 
(c.f. [2, 6, 7]), as well as the Quantum Hall Effect [8], only add to the interest 
of these ideas. 

Here we give a very basic introduction to NCFT, emphasizing the phys-
ical methods and motivations, at the price of being considerably sloppy on 
the mathematical niceties of the subject. Other reviews with a much more 
comprehensive scope exist. See for example [9]. Reviews with a more math-
ematical outlook are for example [10, 11]. 

In preparing these notes, no attemp has been made of giving a careful set 
of references. Rather complete sets of references can be found in the reviews 
just quoted. In the text, we will only refer explicitly to some works that are 
particularly relevant to the discussion. 

1.1 Noncommutative Geometry 

Intuitively, NCG is the generalization of standard geometry ideas, such 
as manifolds, metrics and fiber bundles, to spaces where the "coodinates" 
are operators rather than c-numbers. In particular, they do not commute, 
but satisfy some operator algebra 

[x\xj] = Cnj(x). (1) 

It is useful to think of the operators xk as "generators" of an algebra A, 
in the sense that the general element of A can be thought of as a function 
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of the basic variables, f (x ) , satisfying certain constraints. In this case, the 
functions C(x) acquire the interpretation of "structure functions", general-
izations of the notion of structure constants for ordinary Lie algebras. The 
basic idea of the development of NCG is then the recovery of geometrical no-
tions about the "base space" (the space parametrized by the "coordinates" 
Xk) in terms of the algebra A of functions on that space, where this algebra 
is required to be associative but in general non-commutative. 

1.1.1 Examples 

Rather than developing these ideas in full generality, here we collect some 
simple examples that are motivated by the applications of the formalism to 
physics. 

• The trivial example is C^ = 0, a commutative algebra. Then A is 
the algebra of (say smooth) functions C(M) on the base manifold 
parametrized by the c-numbers xk. 

• The next example in order of triviality is when the noncommutative 
algebra is a direct product of a commutative algebra and a finite-
dimensional noncommutative algebra, such as some Lie algebra Q: 

This is the case of ordinary gauge theory, where fields are just matrix-
valued functions. 

• Another simple, albeit somewhat exotic example is the "fuzzy sphere". 
If we define S2 as the solution in R 3 of 

the obvious definition of the fuzzy sphere whould be in terms of three 
non-commuting operators x\,x2,xs that satisfy 

A = C{M)®g. (2) 

.RF + X22 + ./-'J = I?2, (3) 

x\ + xl + xl = R2 1, (4) 

with 1 the unit operator of the algebra. An obvious choice is 

(5) 



Introduction to Noncommutative Field Theory 189 

where Ja are SU(2) angular momenta in the spin-j representation. 
Hence, this is the particular choice 

R 
Cabix) = i , E (6) 

V J U + 1 ) c 

for the structure "constants". Notice that the resulting operator space 
respects the 50(3 ) isometry that characterizes S2. The space is "dis-
crete" in some sense, because the spectrum of eigenvalues of any po-
sition operator xa has dimension 2j + 1. So, it looks like some kind 
of "lattice approximation" to S2. Strictly speaking, we cannot build a 
quantum field theory with an infinite number of degrees of freedom on 
such space. In the limit j —> oo at fixed R, the number of degrees of 
freedom does diverge, but then we recover the commutative algebra of 
functions on S2. 

• In the previous examples, the noncommutative character of A was 
"finite-dimensional", which leads to somewhat trivial examples. The 
next step in complexity is to regard Xj as operators represented in some 
infinite-dimensional Hilbert space, with continuous spectrum, i.e. we 
want to regard their eigenvalues are parametrizing standard flat space 
R''. Then the simplest choice of structure constants is a simple central 
extension: 

[xj,xk] = iejk7 (7) 

with e j k an antisymmetric matrix of constants with length-dimension 
two. This defines noncommutative flat space or and an obvious 
restriction to periodic angular coordinates defines the noncommutative 
torus Tj| = Rj|/Zd. 

1.2 Examples from Physics 

NCG may arise in physical systems when some effective position operator 
becomes non-commutative as a result of interactions. 

[ 1 ^ , 1 ^ 0 . (8) 

This involves typically non-relativistic systems in first-quantization and the 
non-commutatitivity of the position operator may or may not vanish in the 
classical limit h —> 0. We will illustrate this with two examples: electrons in 
a strong magnetic field and D-branes. 
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1.2.1 Electrons in a Strong Magnetic Field 

Let us consider planar electrons in a strong uniform magnetic field Bij, 
with Hamiltonian 

where 

A t = ^ B t j x i (10) 

in an appropriate gauge. Defining 

V 2 n 

and the operators 

elBl'x + iy) ( 1 1) 

a = dg + ~, J = -0z + ~. (12) 

one finds a harmonic oscillator system 

[a, a] = [af, af] = 0, [a, af] = 1, (13) 

and the Hamiltonian 

H = hu>c(a*a + ± y (14) 

with spectrum Ei = hu>c(£ + £ Z, where u>c = e\B\/me denotes the 
cyclotron (Larmor) frequency. Each energy (Landau) level has an infinite 
degeneracy; the ground states satisfy: 

a${z,z)= (dz- + 0 # M ) = O. (15) 

A basis of the lowest Landau level (LLL) can be chosen as 

= (16) 
y m ! 

We can concentrate on the LLL wave functions if the magnetic field is 
large enough, so that mixing with the higher Landau levels is suppressed 
by the high cyclotron frequency gap. The interesting feature of the LLL 
wave functions is that they are almost analytic. We can consider analytic 
functions vm(z) by stripping off the exponential term: 

vm(z) = el-zl^2tpm(z,z). (17) 
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If we further define a specific inner product on the LLL: 

Onbm) = J d/J,(z,z) Vn(z) Vm(z) = (lpn\lpm) (IB) 

with the non-holomorphic exponential term in the measure: 
1 12 

djj,(z7z) = • dzdz, (19) 

then we have, integrating by parts: 
(f\dz\g) = (f\z\g), (20) 

so that, on the LLL: 

(9Z)LLL = (Z)LLL- ( 21 ) 

Hence, [dz,z\ = 1 implies 

[z,z]LLL = 1 (22) 

or, back to the original variables 

[X,V]LLL = IOS, 8 B = r̂ Ti" • (23 ) 
e\iS\ 

Thus, the motion of electrons in the lowest Landau level is effectively 
described by a noncommutative plane. NCG is relevant to the physics of the 
Quantum Hall Effect. 

It is worth deriving this result in a more heuristic fashion, using a La-
grangian argument. The Lagrangian of the system is 

L = hfnex - | Btj x1' xj. (24) 

In a situation where the kinetic energy term is negligible \mex%\ <C \BijX^\, 
we may approximate the dynamics by the degenerate Lagrangian 

L k ^ - B ^ x K (25) 

The canonical momenta are proportional to the coordinates themselves: 

dL 
dxi = S = (26) 

Upon canonical quantization 

3 

and finally: 

[71-j, xl] = -ih Sj = —e Bjk [xk, xl], (27) 

kl 
[xk,xl] = ih(^w) . (28) 
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1.2.2 D-branes 

Dp-branes are specific states of string theory that resemble non-relativistic 
solitons extended in p spatial dimensions [12]. For the case of D-particles, 
their low-energy dynamics is primarily characterized by the position collec-
tive coordinates. For a system of distant N D-particles, we have a collection 
N vectors of positions Xi,i = 1 , . . . , N. When the D-particles' separation is 
in the stringy domain, |.r,; — ,7j\ < £$, with is the string length, new light 
degrees of freedom appear, corresponding to open strings stretched between 
neighboring D-particles. Therefore, the number of collective coordinates is 
enlarged to N2 and we may assemble them into a hermitian matrix X ^ . 

Thus, the notion of positon becomes "fuzzy" at short distances. An 
operational definition of the i-th particle position is 

(X), = <i|X|i) = Xii. (29) 

With this definition, any non-diagonal matrix of collective coordinates as-
signs a nonvanishing dispersion to the possition of the i-th particle: 

(AX)? = (X2), - <X>? = £ |Xy|2 > 0. (30) 

Once the positions are promoted to a matrix, the statistical permuta-
tion group of N particles, SN, is naturally promoted to U(N), whose Weyl 
subgroup is precisely SM-

In fact, for a one-dimensional system we just have a single "position 
matrix" and we can always agree to define the positions in terms of the 
eigenvalues of this matrix. Starting with two spatial dimensions we have 
more than one position matrix and it is not possible to diagonalize all of them 
in the same basis, unless they commute. In D-brane theory, this condition 
is selected dynamically by the minima of the static interaction potential of 
a system of D-particles: 

V(X) = ~ £ (31) 
9sts a,6=1 

Thus, in this case the noncommutativity survives the classical limit of 
the theory. In fact, taking into account the "statistical symmetry" U(N) we 
are just constructing a U(N) gauge theory with Higgs fields in the adjoint 
representation, and interpreting the expectation values of these scalar fields 
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as generalized position coordinates of the soliton. Thus, from the point of 
view of the earlier list of simple NCG examples, the D-branes represent the 
noncommutative algebra C(M) x U(N). Notice however that here M is 
only the world-volume of the D-brane, whereas the space transverse to the 
D-brane is constructed out of the matrix degrees of freedom, via the Higgs 
fields Xa in the adjoint of U(N). 

In certain situations, the interaction potential depends on a background 
field through a "dielectric coupling" [13]: 

5V(X) = ifeabctr XaXbXc. (32) 

In this example, it depends on a single constant parameter / and we take 
d = 3. The equations of motion become 

[[Xa,Xb},Xb]+ifeabc[Xb,Xc}. (33) 

Although commuting (diagonal) matrices are still a solution, we see that the 
fuzzy sphere (6) is a solution with 

A"„ = / . / „ . (34) 

and Ja in the spin-j representation of SU(2). 

2 Noncommutative Field Theory 

In constructing NCFT we go one step further. As in the D-brane ex-
ample, the underlying NCG is taken as a passive "arena", or background 
choice, for the dynamics, but we formally generalize the noncommutativity 
to infinite matrices, i.e. operator algebras. In these lectures we concentrate 
on the simple example of The nontrivial structure 

[xj,xk]=iejk (35) 

can be interpreted by regarding xk as phase-space variables represented on 
a Hilbert space Tig. This Hilbert space has nothing to do with the standard 
Quantum Hilbert space that arises upon quantization. In fact, H$ is 
part of the specification of the classical field theory, i.e. the classical field 
configurations are functions <f>(xk) on the algebra of operators A$ that are 
represented on HQ. 
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It is clear that such a structure imposes a physical nonlocality on length 
scales of 0(Vd). There is a minimal area unit of O{0) in the sense of the 
Heisenberg uncertainty relation: 

Axj Axk >hdjk\. (36) 
£J 

Thus, we may hope that \[Q is an interesting physical cutoff in quantum 
field theory, presumably with interesting applications to the quantum gravity 
realm. Meanwhile, if space-time satisfies (35) at short distances, the most 
characteristic hint at low energies would be the short-distance breakdown of 
Lorentz invariance, a very well-tested symmetry. 

2.1 Elementary Construction of Classical N C F T 

For simplicity, we begin with a single noncommutative plane with coor-
dinates x, y satisfying 

[x,y]=i6. (37) 

We consider the standard representation on "wave functions" on L 2 (R) . 
The operator x is diagonal and represented multiplicatively, whereas y is 
the corresponding 'conjugated momentum': 

xip{x) = xip{x), yil>{x) =—iddxi>{x). (38) 

We have then the standard operator identities: 

etpi>f(x) =f{x^Pe)etp\ (39) 

so that y generates translations o f f eigenvalues. Straightforward application 
of the Baker Campbell Hausdorff formula yields the plane-wave composition 
rule: 

where we have returned to a general matrix and defined 

pxq = piid^vqv. (41) 

A convenient way of manipulating the operator algebra is to map it to 
some deformed function algebra. This in turn allows a much more intuitive 
development of the physical set up for NCFT. 
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The basic idea is to work with the "components" of the operators in a 
conventionally chosen basis. This is the infinite-dimensional generalization 
of the standard choice of a basis in a finite-dimensional U(N) Lie algebra: 

N2 

4 = (42) 
o=1 

In this case, we say that the hermitian matrix A has "vector components" 
A" in the basis of generators {Ta}. For a general operator O acting on Ti$ 
the "vector of components" in a given basis is in general a function of a 
continuous label f^x^). This establishes a map from the operator algebra 
to the space of ordinary functions: 

0 = J ddxfd(x»)Tx», (43) 

where Txn is a basis of the operator algebra. Associated to this choice of 
basis, there is a representation of the operator product "in components". 
This is a product in the space of component functions, the "star product", 
defined by the identity: 

fd&W = foW * f&W- ( 4 4 ) 

For illustrative purposes, it is interesting to work out the star product in the 
finite-dimensional U(N) Lie algebra. In a conventional basis of generators 
Ta we have 

r , T b = j 2 c f ' r (45) 
c 

for some constants Cf. Given two hermitian matrices A = aAaTa,B = 

Ysa BaTaj the product can be written as 

AB = J2AaBbJ2 c f T° = J2(AB)c T'- ( 10)  
a,b c c 

So that the definition of "star product" is simply 

AC*BC = (AB)c = Cf Aa Bb. (47) 
a,b 

A convenient choice for Rj| is the so-called Weyl map, defined by choosing 
the operator basis as 

( 4 8 ) 
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with inverse 

/ d ( s " ) = / - ^ j d •Ere^C®-*)" O ( ^ ) . (49) 

The specific property of the Weyl map that makes it useful is that the 
plane-wave operator 

exp (ip • x) (50) 

is associated to the plane-wave function 

exp(ip-x). (51) 

In particular, the composition law (44) holds for the star product of the 
component functions: 

;PXQ J(j>+q)-x (52) 

A general expression for arbitrary functions can be obtained by simple su-
perposition of plane waves: 

f(x) * g(x) = f(x) exp Q da>3 ^ g{x). (53) 

This associative, but noncommutative product is known as the Moyal prod-
uct of functions. In this language, NCG amounts to a smooth deformation of 
the classical algebra of functions, i.e. we just change the composition rules, 
but not the elements of the algebra. 

Since A$ can be viewed as a deformation of the ordinary algebra of 
functions on R'' , we can construct NCFT by deforming action functionals 
in a straightforward way. 

Therefore, a prescription to construct NCFT's is to exercise a "correspon-
dence principle" in terms of the noncommutativity deformation parameter 
03k: one just replaces ordinary products by Moyal products all over the 
place, i.e. for a scalar field: 

= jddx (ldrf*d»<l>-^m2<l>*<l>-±<l>*<l> (54) 

An important property of any such action is the cyclic property of the 
Moyal product inside integrals: 

J dAx f (x)-k g(x)-k h(x) = J ddxg(x) *h(x) * f(x), (55) 
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provided one can neglect boundary terms at infinity. In particular, under 
the same conditions one can remove one Moyal product inside integrals: 

J ddxf(x) *g{x) = J ddx f(x)g(x). (56) 

As with any correspondence principle, the noncommutativity of products 
implies some ambiguities in translating actions. For example, for fields with 
indices, the interaction term 

J ddx </>i*ft* * 4? (57) 

is not equivalent to 

j dtxfc + fa *<?*<!?. (58) 

2.2 Noncommutative Gauge Theories 

The previous construction of a classical scalar field theory admits straight-
forward generalizations to other theories with polynomial interactions involv-
ing fermions and scalars with Yukawa-type couplings. Special features arise 
in the case of gauge fields. 

Starting from an ordinary gauge theory based on a Lie group G, the 
naive correspondence principle yields 

< § n c y m = " 4 ^ 2 J ddxtr F„v * F^, (59) 

where 

FIJa, = dltAv-dvAlt + iAlt*Av-iAv*Alt, (60) 

with infinitesimal gauge transformations acting as 

bAil = Dil<L = dil<L + iAil*<L-i<L*Ail. (61) 

Notice that taking the gauge fields valued on the standard Lie algebra of G 
is not in general consistent with the noncommutative deformation. Let us 
write A(x) = ^aAa{x)Ta for some basis of Q. Then the non-commutative 
character of the Moyal product implies that gauge transformations depend 
on the anticommutator {Ta,Tb}, together with the usual commutator terms 
[Ta, Tb]. In general, the anticommutator of two generators belongs to the Lie 
algebra only in the case of U(N) in the fundamental representation. Thus, 
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the discussions of NCYM theories are normally restricted to U(N) groups. 
In principle, other options are possible (such as working with the univeral 
enveloping algebra that contains the products of all generators [14]) at the 
price of working with a theory whose degree of non-locality is considerably 
larger than that implied by the Moyal product. 

Restricting the generators to the fundamental representation of U(N) 
yields further constraints on the possible matter representations. These are 
restricted to the adjoint, the fundamental, ip, and the antifundamental, 
•ip. If g(x) is an N x N matrix-valued function satisfying 

g{x) * g{x)^ = g{x)^ * g(x) = 1, (62) 

the finite gauge transformations are 

An g + iAp-idJ-kg*, Vg*V*g*, ip g-ktp, tp^tp-kg^. 
(63) 

An important property that follows from these expressions is the non-
existence of naive local gauge-invariant operators, i.e. F2 —> g * F2 * g^ 
under gauge transformations, but in order to cancel out g(x) against g(x)t 
we need to use the cyclic property of the trace. Since the "trace" for the 
Moyal product includes the ordinary integral, we conclude that standard 
local operators must be integrated over in order to remain gauge-invariant 
after the noncommutative deformation. 

On can do slightly better and define quasi-local operators by using the 
so-called "open Wilson lines". Consider a Wilson line operator associated 
to the path jx with initial point x: 

W(7x) = P*exp (if A), (64) 

with P„ denoting the instruction of path-ordering with respect to the Moyal 
product. Then, given any local operator O(x), formally constructed out 
of the field strength and covariant derivatives, the noncommutative Fourier 
transform 

6{k) = J ddx tr 0{x) * W(-yx) * elkx (65) 

is gauge-invariant provided the endpoint of the path lies at the point 
x^ + kvQiw (c.f. for example [15]). 

There are some interesting consequences of these algebraic restrictions 
when considering the rank-one NCYM theory, i.e. the one based on aU{ 1) 
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gauge fields". Notice that this theory contains non-linear interactions much 
like any other non-abelian gauge theory, such that the theory becomes free 
in the classical commutative limit 8 —> 0. Once the Yang-Mills coupling 
e is fixed, the restriction on the matter representations implies that the 
charge of the matter fields cannot be adjusted further. Thus, the f7(l) 
charge assignments of the Standard Model are not easily implemented in a 
noncommutative deformation (c.f. for example [16], and [17] for alternative 
constructions). 

2.3 Perturbative Quantization 

In carrying the quantization of the classical theory (54) we may proceed 
with a formal canonical quantization provided 80t = 0. Otherwise, the infi-
nite number of time derivatives in the action makes the canonical program 
rather ackward. 

An alternative is to write down a formal path integral 

Z[J] = J dfi[</>] elSM e ? / d d x J^ (66) 

with some specification of the integration measure. For the time being, we 
will restrict ourselves to the perturbative evaluation of Z[J]. 

The crucial observation is that the free approximation is locally 8-indepen-
dent: 

S[#ree = ^jddx (d»<j> *&*<!> - m2<j>*<j>) = ^ J ddx (d^d^cj) - ™V) . 

(67) 
Therefore, in evaluating perturbation-theory integrals, we can consider the 
standard Gaussian ^-independent measure. This prescription gives a set of 
Feynman rules. We have standard propagators 

i 

p2 ^ m2 + i 0' 

and non-standard interaction terms. Upon Fourier transformation: 

I ddx 4>(x) * ... * 4>(x) = I ddp (2n)d S(J2p) 4>(pi) • • • 4>(Pn) W(pi, 

where 
W(pi,... ,pn) = exp - % - J^Pi x Pj 

(68) 

(69) 

(70) 
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is the so-called Moyal phase. Thus, we are led to a simple Feynman rule for 
the interactions. We just need to "decorate" the standard Feynman vertex 
with the non-local Moyal phase: 

-i Xn—>-i\nW(p!,...,pn). (71) 

Notice that the Moyal phase spoils the Bose symmetry of the vertex, the 
noncommutative vertex being only cyclically symmetric. This modifies the 
symmetry factors associated to the Feynman rules. 

Since the vertices written as in (71) are only cyclically symmetric, they 
satisfy the same topological properties as planar vertices in 't Hooft's double 
line notation for gauge-theory Feynman rules [18]. Thus, diagrams in non-
commutative field theories admit a similar topological classification by the 
genus of the surface on which they can be drawn. 

Using simple topological arguments, plus momentum conservation at 
each vertex, one can prove a general result regarding the ^-dependence of 
the Feynman diagram integrands: the class of planar diagrams has a in-
dependence saturated by the external legs, i.e. the overall Moyal phase of 
the diagram with a given set of external legs equals the phase of a single-
vertex diagram with the same external legs (c.f. [19]). 

For nonplanar diagrams, the ^-dependence remains in non-trivial phases 
in the integrand. Nonplanar loop integrations are then sensitive to the Moyal 
phases. 

2.3.1 Two Examples 

Having noticed that the bosonic Feynman vertices are not Bose-symmetric 
in general, it is still useful in practice to symmetrize them in order to ma-
nipulate them in a standard fashion, without paying special attention to the 
different topological classes of diagrams. We can illustrate this with two 
examples. 

Consider first <fi3 theory. The vertex can be obtained directly by consid-
ering the Moyal product of two plane-waves 

4(pi)etpiX e%P2X = 4{pi)4{p2) e^ipiXp2 e^pi+p^x. (72) 

Since the momentum variables p\, p2 are integrated over in writing the in-
teraction action, they are dummy variables can be switched over. So we can 
symmetrize the Moyal product above and write 

4 ( P I ) H P 2 ) COS ( ^ p ) ei(pi+p2)® ( 7 3 ) 
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Therefore, we can use the Feynman rule 

Vertex = —i A eos(pi x P2/2), (74) 

where Bose symmetry is restored. Consider now the one-loop contribution 
to the two-point function. It contains a factor of cos2(pi x p2 j2) from the 
vertices. The two structures, planar and non-planar, arise upon writing: 

2 [ P i ><P2\ 1 1 / v x 
cos ( — - — J = - + - cos (pi x P2). (75) 

The first term, 8 independent, yielding the planar part. 
A second example of the same nature involves the Feynman rules of a 

U(N) NCYM theory. Let us write for the plane-wave field: 

N2 

Ali(x) = J 2 A - l ( p ) T a e ^ (76) 
0=1 

and reduce the commutator: 

= \ T " } 4 ] * + ^ E t T ° ' T " ] 4 K (77) 
a,b a,b 

Defining now the usual symmetric and antisymmetric tensor structures: 

[Ta, Tb] = i Y^ fabc Tc, {Ta, Tb} = ^ dabc Tc , (78) 
c c 

one obtains 

[ / V Av]+ = E (* dabC T°sin (Pi x P2/2) + i fabc Tc cos (pi x p2/2)) 
c 

xA^(pi)Abv(p2) (79) 

It follows that the Feynman rule for a U(N) noncommutative gauge theory 
can be constructed from the Feynman rule of the ordinary SU(N) theory by 
the substitution of the structure constants: 

tabc . tabc {Pa Pb\ , ,abc • f Pa ^ Pb\ /on\ J y jaui, cog I I ^auc gm I I _ ^gQJ 

where now the group indices a, 6, c include also the diagonal U(\) subgroup 
of U(N). For example, the noncommutative rank-one theory, U(l), has a 
three-point coupling of the photon given by 

F7 r y = -2g sin ^ElJiF^j [ ( p i _ + _ ^ 

+(P3 - P i ) " 2 » y ' 4 1 ' 4 8 ] • (81) 
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2.3.2 Asymptotically Free Photons 

As an example of the peculiar new features introduced by noncommuta-
tivity we make a heuristic discussion of a surprising fact: the rank-one non-
commutative Yang-Mills theory (pure noncommutative photons) is asymp-
totically free (see for example [20]). According to the previous paragraph, 
the perturbative structure of this theory is rather similar to that of SU(N) 
Yang-Mills theory in the limit N —> 1. The perhaps surprising fact is that 
a characteristic dynamical feature such as asymptotic freedom does survive 
in the limit. 

Consider the ordinary SU(N) Yang-Mills theory with Wilsonian cutoff 
A and bare coupling g\ (we now switch to Euclidean signature): 

S = 4 - t f A tr |F|2. (82) 
4<?i J 

Integrating out quantum fluctuations in a momentum slice \k\ < \q\ < A, 
the operator \F\2 is renormalized as 

^ f ? ^ * - . < 8 3 ) 

where the effective coupling is given, with logarithmic precission, by 

•m ~ k + W ? l o g ( | f c | 2 / A 2 , + f l m t e ( 8 4 ) 

For SU(N) gauge group, we have /?o = 22/3, the usual one-loop beta func-
tion coefficient. Notice that the effective coupling corrected by the effect of 
quantum fluctuations grows towards the infrared, the behaviour that signals 
asymptotic freedom. Perturbation theory is then expected to break down at 
scales of order 

A g c D - A e x p ^ - ^ ) . (85) 

For an ordinary U(N) gauge theory, the same running takes place, except 
for the coupling of the global U(\) subgroup, that remains decoupled. Sep-
arating this part through the identity 

tr F2 = l ( t r F ) 2 + trF;V(,V) (86) 
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we end up with a one-loop corrected effective action: 

^ = i f 
- ^ ^ ^ ( l ^ l ' / A ' l l t r ^ , (87) 

where the second term subtracts the running of the f7(l) coupling. It can 
be thought of as the contribution of the one-loop non-planar diagram to the 
two point function of the field strength. 

We now consider the noncommutative theory with 8 ^ 0 . The integrand 
has a factor of 

sin2 = I - I sin (* x q) (88) 

from (88). The planar diagram contribution is identical to the first term in 
(87), since ^-dependence only affects external legs. On the other hand, the 
nonplanar contribution has a surviving factor of 

sin (k x q) 

from the Feynman rules. This factor oscillates very fast for large values of 
the loop momentum \q\. Thus, the loop momentum integral in the nonplanar 
graph is effectively cut-off at 

where we have defined 
kP = kvff'». (90) 

In other words, for \k\28 1 the effective coupling runs only at the planar 
level, with 

S(\k\2V » l)eff « I ( j - + log(|fe|2/A2)) tr \F\2. (91) 

This still makes sense for N = 1, so we learn that the NC f7(l) theory is 
asymptotically free! The NC U(N) theory has in fact the same beta function 
as the ordinary SU(N) theory: 



204 J.L.F. Barbon 

In particular, this would suggest that the NC U( 1) theory becomes 
strongly coupled for 

A s t r o n g ~ A e x p ^ • ( 9 3 ) 

On the other hand, perhaps we should expect some kind of threshold effect 
at the classical scale of noncommutativity \k\28 ~ 1. In fact, this is the case. 
Recall that the effective ultraviolet cutoff of the nonplanar diagram was 
Aeff = 1/I^P- So, for \k\28 < 1 the logarithmic divergence in the nonplanar 
diagram gives a term proportional to 

log = log(|fc|2|fc|2), (94) 

and we obtain 

S(\k\2e < l)ef f « 4 I ' ( 4 + M . log (|fc|2/A2)j t r |f|2 

log(\k\2\k\2) |tr(dA)\2 (95) 

In the second term we have written dA instead of F because the effective 
action is evaluated at quadratic order only, and in fact the gauge-invariant 
completion of (95) cannot be written entirely in terms of the field strength 
F (c.f. [21]). For us, the important point about (95) is that the second term 
grows at low energies and produces screening rather than the antiscreening 
that is characteristic of asymptotic freedom. Thus, we can combine these 
results and extract the effective coupling of the diagonal U(\) degrees of 
freedom with running 

The result is that the effective U(\) coupling grows towards the infrared, with 
the running induced by the planar contribution, as in an SU(N) theory in 
the formal N —> 1 limit, up to energies of order l/y/8. At this threshold, 
the screening effects start to dominate and the effective coupling grows back 
up. At energies of order 1/A8 the effective coupling has again the ultraviolet 
value gA and ceases to run. In principle, one can still have an infrared Landau 
pole in the pure U( 1) noncommutative theory provided Astrong%/0 > 1-
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The phenomenon just discussed is the first example of a "mild" UV/IR 
effect, since we see that, after removal of the UV cutoff A, the 8 —> 0 limit 
of the theory is no longer the ordinary free f7(l) Maxwell model. 

2.4 Physical Interpretation of the Moyal Product 

Consider a particle described by a noncommutative field <fr(x), interacting 
with a fixed external potential V(x) by a term 

j ddx (V(x) * <f>(x) - <f>(x) * V(x)). (97) 

For a plane wave configuration <f>(x) ~ ew'x we have 

V(x) * etp'x - etp'x * V(x) = (V(x + p • 8/2) 8/2)) etp'x. (98) 

Thus, the noncommutative interaction is exactly reproduced by that of a 
rigid dipole oriented along the vector 

Ltl = 6t w P v, (99) 

interacting ordinarily through the end-points, exactly like a rigid open string. 
This analogy is actually rather literal, as we will see in the next section. 

Fields interacting in the "fundamental representation" as 

j ddx V(x) * <f>(x) (100) 

behave as half-dipoles of length L̂ 1 /2 (c.f. [22]). 
Therefore, the non-locality of the noncommutative theories constructed 

out of Moyal products amounts to reinterpreting the elementary excitations 
as extended rigid objects [23]. This leads to an interesting extension of 
the heuristic Heisenberg principle. The effecive size of a noncommutative 
particle grows linearly with the momentum at very high velocity: 

Leff = max • (101) 

This type of relation is known to appear in string theory with the noncom-
mutativity scale replaced by the Regge slope parameter a' (c.f. for example 
[24]). This is essentially the reason why NCFT is an interesting toy model of 
string dynamics; it combines some essential features of strings with a much 
simpler dynamics with finite particle degrees of freedom. 
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2.5 Connection to String Theory 

The dipole picture implies that elementary quanta of NCFT are analo-
gous to open strings. This analogy is actually the source of one of the most 
important recent developments in the subject. 

Indeed, oriented open strings are naturally dipoles. The coupling of an 
electromagnetic U(\) vector potential to an open string is given by a Wilson 
line coupling to the end-points of the string. Consider a string worldsheet 
with proper time r and string coordinate <7, the endpoints given by a = 0 
and a = tt. The U(\) coupling is then 

Sum = [ Afidx^ - [ Afidx^ = [ Afidx^ = \ [ F^dx" A dxv. 
Ju=0 Ja=w JdE 2 JE 

(102) 
The complete sigma-model action for a string moving in a background metric 
g^v and background magnetic field Bij is 

s = i h L 9 ^ d x i t dx"+\LBfiu d x i t A ( 1 0 3 ) 

where (2-Tra')^1 is the tension of the string. 
Let us now suppose that B^ is constant and moreover \gij\ <C \a'Bij|, so 

that we can approximate the action by 

S ~ I J dx1 A dxj = \Bv JQ x"dr (104) 

Thus, we see that the endpoints of the open string behave like electrons in 
the LLL in this limit! The same arguments as in the electron case yield then 

[xj7xk]dE = i8jk (105) 

with 

(io6) 

In order to obtain a NCFT of rigid dipoles we would like to project out all 
the massive (oscillatory) degrees of freedom of the open string theory, i.e. we 
would like to take the zero-slope limit a' —> 0. But we just have learnt that 
at the same time we must keep 8 ~ 1/B constant and also \gij\ <C \a'Bij\. A 
scaling limit that satisfies these constraints and produces NCFT interaction 
Lagrangians out of the open-string perturbative interactions is the so-called 
Seiberg-Witten limit [25]: 

gtj ~ (a'f BtjB*i ^ 0 (107) 
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at fixed Bij = (1 /$)ij. Physically, what is being stated is very simple. In 
order to make the open string into a rigid dipole, we must take the nomi-
nal tension to infinity to decouple all oscillator modes (rigidity). Normally 
this produces the effective collapse of the open string to a pointlike object. 
However, if the magnetic field is kept large in the scaling limit, the Lorentz 
force tending to stretch the open string endpoints can compensate for this 
effect and one reaches a rigid open string of finite extent given bv L ~ dp. 

2.6 The U V / I R Mixing 

The phenomenon of UV/IR mixing represents the most radical departure 
of NCFT from the standard behaviour of ordinary field theories. It occurs 
in perturbation theory, so that it can be studied with considerable detail, 
and represents the fact that the two deformation operations: the noncom-
mutative deformation 8 ^ 0, and the quantum deformation h 41 0, do not 
commute [5]. 

The UV/IR mixing is a lack of Wilsonian decoupling between UV and 
IR scales, even in the presence of explicit masses. Technically, it comes 
about in a rather elementary fashion. Recall that nonplanar diagrams have 
improved convergence properties because of Moyal phases that depend on 
loop momenta. For example, two loop momenta q, q' tied by a Moyal phase 

will introduce an effective cutoff in the diagram at the scale Aeff ~ 
On the other hand, a loop momentum q tied to an exteral momentum p will 
introduce 

which in turn gives an effective cutoff Aeff ~ l/\p-8\. Since the corresponding 
UV divergences are absent, they are not explicity subtracted in the renor-
malization procedure. However, since the effective cutoff is non-analytic in 
0, these singularities in physical quantities show up in the 8 —> 0 limit. Al-
ternatively, in Green's functions depending on external momenta, they show 
up in the limit \8-p\ —> 0. This may be interpreted as non-analytic behaviour 
in the 8 —> 0 limit at finite or as an infrared singularity at fixed 8. 

Therefore, we see that in general the noncommutative quantum field 
theory is not a smooth deformation of the ordinary 8 = 0 theory, even if it 
was so in the classical approximation. We also learn that, at fixed non-zero 
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8, the NCFT is IR singular as a result of divergences that originally had an 
UV interpretation, hence the name UV/IR mixing. 

2.6.1 A Simple Example 

In order to illustrate this important phenomenon, we consider the sim-
plest setting in which it arises: the one-loop mass renormalization of the 
model in four dimensions (in this section we work in Euclidean signature): 

In the ordinary (8 = 0) model the leading mass renormalization comes from 
the normal-ordering diagram contribution to the self-energy: 

in terms of the ultraviolet cutoff A. We find the standard quadratic renor-
malization together with a subleading logarithmic piece. 

In the noncommutative theory, we have two contributions, planar and 
nonplanar. The planar diagram gives exactly the contribution (109), except 
for the different symmetry factor of the diagram, which is 1/3 instead of 1/2. 
On the other hand, the nonplanar diagram has a surviving Moyal phase that 
makes it finite: 

In order to compare the planar and nonplanar parts, we introduce an ultra-
violet cutoff via a Schwinger proper-time parametrization: 

(108) 

(109) 

(110) 

(111) 

We find 

(112) 

where the effective cutoff is given by 

A2IT = - . elt 02 ^ / (113) 
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Notice that Aeg- « A for \p\ <C 1/A0, whereas Aeg- « l/|p| for \p\ 1/A0. 
So, if we renormalize the theory at fixed p and fixed 8, by subtracting the 
planar divergence in the A —> oo limit: 

m2 M 2 = m2 + (A2 - m2 log (A 2 /m 2 ) ) + constant (114) 

we have a quadratic 1PI effective action: 

T i p i = J d4p<f>(^p) r (2)(p) 0(p) + . . . (115) 

with 

rP>(p) = / + M* + ^ - ^ log ( i / m ¥ ) + . . . d i e ) 

Thus, as promised, the effective action has a singularity at p = 0 that can 
be interpreted either as an IR singularity at fixed 8 or as a non-analiticity 
as a function of 8 at fixed p. 

We may wonder to what extent the leading IR-singular term 

\P\ 

can be reliably calculated in perturbation theory. An indication is given 
by the following estimation. Higher-order perturbative corrections to the 
leading 1/p2 behaviour have the form 

A [ A l o g ( M V ) ] \ 

These corrections are significant only for momenta such that the term in 
brackets is of 0(1) . Thus, we see that perturbation theory will break down 
at nonperturbatively small momenta of order 

I.P I breakdown ~ -^Q e • ( H ' O 

For the present model, we can give a simple physical interpretation of 
the UV/IR mixing provided the noncommutativity is purely spatial, i.e. 
80t = 0. Notice that the just computed 1PI effective action implies a modified 
dispersion relation for the ^-quanta of the form: 
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After Wick rotation back to ( — b + + ) signature one finds: 

w = ( 1 1 9 ) 

where c = A/967r2 and pg is the projection of the spatial momentum onto 
the plane of noncommutativity. 

This expression shows dramatically the UV/IR mixing effects, since the 
entire energy spectrum below noncommutative momenta of order x ^ / V e 
has been removed! 

2.6.2 The Case of Gauge Theories 

The UV/IR mixing in the case of gauge theories shows some specific 
features of interest [26]. Consider the polarization tensor of the NC f7(l) 
theory: 

£(2) = A^{k) Wv{k) Av(—k). (120) 

In the ordinary (or planar) case, gauge invariance together with Lorentz 
invariance forbids a quadratic divergence in the polarization 11^ ~ 'Q̂ V A2. 
It would violate transversality. In fact 

I W * ) (kft ^V VlItv k2) n(k), (121) 

where 

n(k) ~ log + finite. (122) 

The nonplanar contribution has the standard effective cutoff Aeff = min (A, 
l/\k\). Because of gauge invariance at 8 = 0, we would expect that UV/IR 
phenomena would only appear at logarithmic level ~ log (\k\2\k\2)} 

and indeed we found such terms in the previous section in our discussion of 
asymptotic freedom. 

However, the explicit breaking of Lorentz symmetry allows now for other 
kinematical structures with IR singularity stronger than logarithmic and still 
transverse. In particular, quadratic divergences do appear with the structure 

= ^ 2 C k - f - A2ff = C « * - . (123) 
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Notice that transversality is ensured by k^k^ = k^d^ky = 0. At one-loop, 
the constant C has been calculated to be 

where N is from the U(N) gauge group, ns is the number of complex scalars 
in the adjoint representation and n/ is the number of Majorana fermions 
also in the adjoint representation. Notice that C = 0 for supersymmetric or 
soflty broken supersymmetric spectra. 

Thus, we learn that the strength of the UV/IR mixing responds to the 
naive power-counting rather than to the effective divergence structure of the 
8 = 0 model. In particular, one finds unstable dispersion relations in NC 

with low-momentum tachyonic excitations as soon as C > 0. 

2.6.3 Heuristic Explanation of the U V / I R Mixing 

The dipole picture of NCFT that was developed before provides a simple 
heuristic explanation of the UV/IR mixing. Since a virtual loop of momen-
tum p carries dipoles of transverse length \6-p\, we understand that the loop 
corrections to the Green's functions will have strong ^-dependence down to 
arbitrarily low energies, unless these effects are cancelled by some mechanism 
(such as enough amount of supersymmetry). 

Notice that, if an explicit UV cutoff is present, A, it sets the maximum 
possible momentum of the virtual dipoles circulating in the loop. This in 
turn means that significant ^-dependence only appears down to momenta of 
order 1/K8. 

Thus, we have the following general hierarchycal structure. NCFT with 
ultraviolet cutoff Ay/d 1 has significant classical effects (tree level) associ-
ated to noncommutativity up to length scales of 0(V9). However, one-loop 
effects "transport" the effects of noncommutativity to the larger length scale 
of O(A0). This larger length scale is true dynamical scale of noncommuta-
tivity. Of course, this picture would be invalidated if perturbation theory 
would break down at some intermediate scale. For example, if we insist 
on removing the ultraviolet cutoff A —> oo at fixed 0, necessarily A8 —> oo 
and perturbation theory is bound to break down before we reach the deep 
infrared domain. 

C = — (2 + n s ^ 2 n / ) , 
7T 

(124) 

U( 1) 

(125) 
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2.6.4 U V / I R Mixing and Unitarity 

There is an interesting interplay between the UV/IR mixing and the 
violation of unitarity in the ease that the noneommutativity affects time. 
Instead of developing the general theory we will simply explain the basic 
phenomena by looking at a simple example. Let us consider a noncommu-
tativity matrix of the skew-diagonal form (8^) = i diag (02 8e, 02 8m). That 
is, we have the noncommutativity relations: 

[t,x]=ide, [y, z] = i8m. (126) 

We return now to the <f>4 theory studied in the previous section and we 
consider the massless model for simplicity. The normal-ordering tadpole di-
agram has no interesting dynamical interpretation in the ordinary theory, 
simply inducing the quadratic renormalization of the mass parameter. How-
ever, this is no longer the case for the noncommutative theory, since the 
nonplanar tadpole diagram does have an interesting singularity structure 
when interpreted as a 1 — 1 scattering amplitude: 

iM(p -+p) = f T T T T i e ^ = - t * J (127) 
v ; 6 J (2tt)4 q2 + 24?r2 - p 2 + v ; 

The striking fact about this explicit expression is that the imaginary part of 
the amplitude is a non-trivial distribution, i.e. 

2lmM{p) = ^~ 8(^p2). (128) 
127r 

Therefore, if unitarity is to be satisfied, this imaginary part should be un-
derstadable in terms of a product of on-shell amplitudes corresponding to 
all the non-trivial cuttings of the diagram. Since the tadpole has no on-shell 
cuttings, it seems that we find a violation of unitarity [27]. 

Despite this fact, one can still manipulate Im M in a purely formal fash-
ion so that it looks like a contribution from the optical theorem. Take 8m = 0 
and 8e ^ 0, and introduce 

1 = J d4k S(p - k) 

to obtain 

(129) 
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This formula can be interpreted as the amplitude for the mixing of the 4> 
quanta with particle states |x) with dispersion relation = The <f>~x 
coupling is given by 

x / M 5 m m 

Thus, it seems that we can save unitarity at the expense of enlarging the 
Hilbert space of asymptotic states, just like one can make the S-matrix of 
open-string theory unitary by introducing the closed-string states. In fact, 
while this is true at a formal level, it turns out that the added Hilbert space of 
'closed-string' states |x) does not satisfy appropriate physical conditions. In 
particular these states come with a continuous spectrum, they are tachyonic 
and moreover have negative norm in general. 

For example, just considering the more general case with 8m ^ 0 in our 
example above yields 

= J j^i^w) *<>-»• (131» 
where the frequency of the x particles is: 

= y W ^ f f b m l 2 - (132) 

This dispersion relation shows clearly that the x particles have an unbounded-
below spectrum of tachyonic excitations [28]. Thus, timelike noncommuta-
tive theories are generically inconsistent in perturbation theory, at least to 
the extent that UV/IR mixing is present. 

2.7 Remarks on ^-Phenomenology 

The most obvious application of NCFT is to entertain the possibility that 
the noncommutativity of spacetime might be real and could be detected ex-
perimentally. In such a situation the most notorious feature of the physics 
is the breakdown of Lorentz invariance. Even if = 0, the spatial noncom-
mutativity 6%i = e%ik6k determines a privileged direction in vacuo 8 = (8 k)-
Thus, collider experiments put a bound of order 

8\ < (100 G e V n 2 (133) 
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to begin with. In fact, it is not easy to be more specific since the Stan-
dard Model doesn't fit naturally into a NCFT with Lorentz violation (re-
call the problem of U{\) charge assignments). For this reason, most of the 
phenomenological discussions of NCG effects have been carried out in the 
noncommutative generalization of the QED sector. 

The bound (133) can be improved by application of some elementary 
constraints from atomic physics. Because of the dipole picture given before, 
the leading interaction of electrons with the field of the atomic nucleus has 
a dipole moment induced by the substitution 

s" —• s" - \pa 6ati, 
LI 

so that the Coulomb potential has terms: 

(Xem^ OLpm.Z 1 (Xpm.Z 

\J(x — \p)2 1X1 2 lX 

/1-» i -* f̂ix "cm-" . j? ? . /ntril 4\ noA\ Vc(\x^±p-61) = » —r + -—-rd-L + 0{6 p ), (134) 

where L = x A p. Thus, this term induces a "noncommutative hyperfine 
splitting" [29]. From limits on the Lamb shift we can put a bound of order 

\9\ < (10 T e V r 2 - (135) 

Constraints from collider experiments are not actually much better than this, 
if evaluated at tree level. Dependence on the noncommutativity parameter 
in the vertices comes with two powers of momenta (derivatives) and thus 
it corresponds generally to dimension five or six effective operators. For 
example, a leading correction to the e+ije~ vertex is given by the operator 

6*0 da drf. (136) 

Corrections from such operators are or relative order 0 (8E 2 ) for processes 
at typical energies of 0{E). Thus, collider physics at E ~ 100 GeV, known 
to within a few percent errors, give bounds of order 

101 < M F ~ ( T e V r 2 " ( 1 3 7 ) 

When quantum corrections are considered, the situation changes dra-
matically. The UV/IR mixing arising at one-loop order implies that non-
commutative effects show up at energies much below l /Vd . In fact, noncom-
mutative QED has tachyonic photon excitations induced at one-loop order 
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and therefore it is incompatible, not only with experiments, but with simple 
observations of everyday life. This means that, in exploring applications of 
NCG to phenomenology in the context of weakly coupled NCFT, we must 
assume the existence of an UV cutoff beyond which the effects of UV/IR 
mixing dissappear. 

Since UV/IR mixing affects dispersion relations, this means that the 
breakdown of Lorentz symmetry is not restricted to (nonrenormalizable) 
operators of high dimension, but rather creeps in the operators of dimen-
sion two and three at the one-loop level. Correspondingly, the violations of 
Lorentz symmetry that affect dispersion relations are the subject of fantastic 
constraints from both low and high energy physics (see for example [30]). 

Consider, for example, the dispersion relation of photons corrected at 
one loop in the pure NC f7(l) theory. The leading terms in the polarization 
tensor at low momentum are (we neglect the logarithmic corrections that 
only renormalize the coupling): 

I V = (PM Pv ~ P2 + PtiPv n n c (138) 

where 

n „ c = - S p (139) 

\P\ 
Considering transverse photons with polarization A^ ~ p^ we obtain a mass-
shell condition 

„2 

IP I 

Since C > 0 we find tachyonic excitations at low momentum. Therefore, we 
must assume some UV cutoff that eliminates the UV/IR mixing due to very 
long dipoles in the virtual loop. One such cutoff is provided for example by 
a softly broken supersymmetric spectrum broken at scale As. Then, we have 
an effective cutoff for the nonplanar diagram given by 

Aeff = ^—02 + 1 / A 2 ) 2 ( 1 4 1 ) 

and a corrected dispersion relation for photons polarized 

^ P[t given 
by 

2 _ , - 2 _ Cg2\p\2d2 

where we assume that the photon propagates parallel to the noncommutative 
directions. Expanding this dispersion relation around low momenta we see 

p2 - ^ r f = 0. (140) 
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that it produces a correction to the speed of light for these photons given by 

cs = 1 -Cg282A4s. (143) 

This means, in particular, that we must have Asy/d 1 in order not to con-
flict with observations. So we actually have an inverted hierarchy in which 
the noncommutativity scale is forced to be much higher than the supersym-
metry breaking scale. Even in this situation, a variety of phenomenological 
constraints put bounds of order 

\c8 - 1| < 1(T15 (144) 

or even stronger, depending on how model-independent we wish to be (see 
for example [31]). This translates into bounds on the hierarchy between As 

and 8 that easily render the classical bounds irrelevant. 
In any case, the lesson to be learned from these considerations is that 

noncommutative phenomenology is probably a premature exercise. The ab-
sence of natural models and the strong bounds to be put on 8 at the level of 
perturbative dynamics are rather neat arguments against the prospects of 
such phenomenonlogical exercises. 
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