

Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

Lorenzo Rossini on behalf of the ATLAS collaboration

Simulation Scheme

INFN Sezione Milano - Università degli Studi di Milano - lorenzo.rossini@mi.infn.it

14th Pisa Meeting on Advanced Detectors - La Biodola, 26 May- 2 June 2018

The ATLAS Pixel detector

Results

Simulations based on Allpix have been developed to predict the evolution of the performance parameters of the detector with fluence, such as: **charge collection efficiency** (CCE), the fraction of charge with respect to the non-irradiated case, and **Lorentz Angle**, the angle minimizing the transverse cluster size. Comparisons with data from 2016 and 2017 with 80, 150, and 350 V are shown in the figure. Simulation error bars account for radiation damage model parameter variations (trapping constant, introduction rates, and capture cross-sections).

Integrated Luminosity [fb⁻¹]

Incidence Angle [rad]

Integrated Luminosity [fb⁻¹

Future Operations

Simulation is also used to predict future operational conditions, allowing to change them in time to maintain a high detection efficiency.

The **most probable value of ToT** (Time over Threshold) of the **IBL** pixel clusters as a function of the Bias Voltage working point is shown in the figure.

In order to have the same ToT we will need to increase the Bias Voltage working point.

Conclusions

Effects of radiation damage are already visible in the pixel detector:

 Simulation is in good agreement with data within the systematic uncertainties on simulation - need to constrain these in the future.

Predictions allow to set a **new working point** in order to maintain a high detection efficiency.

Bibliography

 ATLAS Collaboration. "The ATLAS Experiment at the CERN Large Hadron Collider". In: JINST 3 (2008), S08003.
 G. Aad et al., ATLAS pixel detector electronics and sensors, JINST 3 (2008) P07007.

[3] Allpix: https://twiki.cern.ch/twiki/bin/view/Main/AllPix
[4] V. Chiochia et al. A Double junction model of irradiated silicon pixel sensors for LHC. Nucl. Instrum. Meth., A568:51–55, 2006.