

28 November 2017 (v2, 05 June 2018)

The performance of CMS ZDC detector in 2016

CMS Collaboration

Abstract

The Zero Degree Calorimeter (ZDC) detects neutral particles in $\eta > 8.5$ region. In 2016, the ZDC is cross-calibrated to 2010 dataset. Peaks corresponding to 1, 2 and 3 are visible in the ZDC total signal distribution. The effect of pileup is corrected by a Fourier deconvolution method. Neutron number distribution is unfolded using linear regularization method. The ZDC can be used as an unbiased centrality estimator in pPb collisions - but theoretical models valid at LHC are needed for this. The CMS ZDC is able to measure the spectator neutron multiplicity distribution, which will be a useful information for developing such models.

The performance of CMS ZDC detector in 2016

CMS Collaboration

January 9, 2018

The performance of CMS ZDC detector in 2016

1. Calibration

ZDC signal definition

Maximum in time slice 3 (TS3)
The definition of ZDC signal for a given *i* channel:

$$Q_i = Q_{i,TS3} - \frac{1}{2}(Q_{i,TS2} + Q_{i,TS6})$$

Low gain ZDC signal

When TS3 saturated, using *R* · TS4
Saturated signal:

$$Q_{i}^{*} = R \cdot \left[Q_{i,\text{TS4}} - \frac{1}{2} (Q_{i,\text{TS2}} + Q_{i,\text{TS6}}) \right]$$

R is calculated from not saturated events:

$$R = \left\langle \frac{Q_{i,\text{TS3}} - \frac{1}{2}(Q_{i,\text{TS2}} + Q_{i,\text{TS6}})}{Q_{i,\text{TS4}} - \frac{1}{2}(Q_{i,\text{TS2}} + Q_{i,\text{TS6}})} \right\rangle$$

Matching channel gains

Relative gain matching:

- w_i weights for each channels.
- Cross-calibration to 2010 data, using variables:
 - HAD2/HAD1
 - HAD3/HAD1
 - HAD4/HAD1

Total ZDC signal:

$$Q_{ ext{ZDC}} = \sum_{i} w_i Q_i$$

Calibration - neutron peaks

- Pb-going side
- Spectator neutrons are nearly monoenergetic due to large boost of the Pb ion.
- 1, 2, 3 neutron peaks clearly visible
 - Fit with sum of Gaussians, with:

 $\mu_n = n\mu_0$ $\sigma_n^2 = n\sigma_0^2$

■ 1 neutron peak at 2.56 TeV (nominal value for $\sqrt{s_{NN}} = 8.16$ TeV)

Example fits - 1

Run number	286178	286301	286302	286314
1 n peak location 1 n peak width	$\begin{array}{c} 59.2 \pm 0.04 \\ 14.24 \pm 0.02 \end{array}$	$\begin{array}{c} 63.70 \pm 0.05 \\ 15.25 \pm 0.03 \end{array}$	$\begin{array}{c} 59.02 \pm 0.04 \\ 13.94 \pm 0.03 \end{array}$	$\begin{array}{c} 55.79 \pm 0.03 \\ 13.14 \pm 0.03 \end{array}$

Example fits – 2

Run number	286178	286301	286302	286314
1 n peak location 1 n peak width	$\begin{array}{c} 59.2 \pm 0.04 \\ 14.24 \pm 0.02 \end{array}$	$\begin{array}{c} 63.70 \pm 0.05 \\ 15.25 \pm 0.03 \end{array}$	$\begin{array}{c} 59.02 \pm 0.04 \\ 13.94 \pm 0.03 \end{array}$	$\begin{array}{c} 55.79 \pm 0.03 \\ 13.14 \pm 0.03 \end{array}$

2. Pileup correction

Pileup in ZDC runs

- The shoulder at high signal values is the effect of pileup:
 - Larger tail at runs with higher pile-up.
- Possibilities for pileup subtraction:
 - Selecting single vertex events + corrections
 - Deconvolution via Fourier transform
- (μ): mean number of collisions yielding neutrons in the ZDC acceptance.

 (Nuclear + electromagnetic + diffractive collisions.)

Pileup correction

Pileup corrected with Fourier deconvolution method:

$$f(x) = g(x) p_1 + (g * g)(x) p_2 + (g * g * g)(x) p_3 + \dots$$

$$F(\omega) = \sum_{k=1}^{\infty} p_k G^k(\omega) = \frac{e^{-\mu}}{1 - e^{-\mu}} \sum_{k=1}^{\infty} \frac{(\mu G(\omega))^k}{k!} = \frac{e^{-\mu}}{1 - e^{-\mu}} \left(e^{\mu G(\omega)} - 1 \right)$$

$$g(x) = \mathfrak{F}^{-1} \left[\frac{1}{\mu} \log \left[1 + (e^{\mu} - 1)F(\omega) \right] \right]$$

Similar method used in: A. Laszlo et al. JINST 11 (2016) no.10, P10017 [arXiv:1605.06939].

3. Unfolding

Unfolding

- Monoenergetic neutrons → neutron number distribution can be unfolded from ZDC signal distribution.
- Response matrix constructed from data with assumptions:
 - Assuming Gauss shape ZDC response for single neutron
 - Assuming linear ZDC response
- Using linear regularization for unfolding.

Unfolding

Neutron number distribution successfully unfolded.

4. Centrality

Centrality

Number of spectator neutrons:

- Unbiased centrality estimator
- Theoretical model needed to describe the relation

 $\langle N_{coll} \rangle = f(N_{neuton})$

- Models working only for lower energies
- Measuring spectator neutron multiplicity distribution: useful input for tuning MC event generators to describe LHC energies

Backup

ZDC detector

- Tungsten + quartz-fibre sampling Cerenkov calorimeter
- Located in TAN, ~ 140 m from IP5
- EM + hadronic sections
- Measures forward neutral particles (neutrons and photons) at |η| > 8.5

ZDC detector

Segmentation:

- EM: y-axis 5 channels
- HAD: longitudinally 4 channels
- RPD: 4 x 4 quartz array 16 channels

Physics capabilities:

- Centrality in pA, AA
- Tagging UPC events
- Event plane (with RPD)

Deconvolution via Fourier transform

Assume that *n* number of collisions is Poisson distributed:

$$P(n)=rac{\mu^n}{n!}rac{\mathrm{e}^{-\mu}}{1-\mathrm{e}^{-\mu}}$$

(only the n > 0 case is considered, $1 - e^{-\mu}$ appears in the denominator to ensure proper normalization)

Then the ZDC energy deposit can be described by *X* probability variable:

$$X=\sum_{i=1}^n Y_i,$$

where Y_i is the probability variable describing ZDC energy deposit for a single event.

Deconvolution via Fourier transform

Aim: calculate the pdf of Y_i , g(x) when the pdf of X is known: f(x). Using total probability theorem:

$$f(x) = g(x) p_1 + (g * g)(x) p_2 + (g * g * g)(x) p_3 + \dots$$

Taking the Fourier transform of both sides:

$$F(\omega) = \sum_{k=1}^{\infty} p_k G^k(\omega) = \frac{e^{-\mu}}{1 - e^{-\mu}} \sum_{k=1}^{\infty} \frac{(\mu G(\omega))^k}{k!} = \frac{e^{-\mu}}{1 - e^{-\mu}} \left(e^{\mu G(\omega)} - 1 \right)$$

After expressing $G(\omega)$ and doing inverse Fourier transform:

$$g(x) = \mathfrak{F}^{-1}\left[\frac{1}{\mu}\log\left[1 + (e^{\mu} - 1)F(\omega)\right]\right]$$

Similar method used in: A. Laszlo et al. JINST 11 (2016) no.10, P10017 [arXiv:1605.06939].

Result on toy model

- Simple model: ZDC signal distributed as Gaussian + Poisson pileup.
- Method is verified by the toy model.

Unfolding with linear regularization

Solve problem as a linear optimization problem:

 $\mathbf{R} \cdot \mathbf{u} = \mathbf{c}$

R: response matrix

- **u**: unknown neutron distribution
- **c**: measured ZDC spectrum

Task: search for an **u** vector, which fulfils the equation above and 'smooth enough'.

Unfolding with linear regularization

Minimize

$$(\mathbf{R} \cdot \mathbf{u} - \mathbf{c})^{\mathsf{T}} \mathbf{V}^{-1} (\mathbf{R} \cdot \mathbf{u} - \mathbf{c}) + \lambda (\mathbf{D} \cdot \mathbf{u})^2$$

- **V**: covariance matrix, $V_{ij} \approx \delta_{ij} c_i$
- D: first difference matrix
- λ : regularization coefficient

Need to solve matrix equation:

$$(\mathbf{R}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{R} + \lambda \mathbf{D}^{\mathsf{T}}\mathbf{D})\mathbf{u} = \mathbf{R}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{c}$$