Author(s)
|
Allton, C.R. (Rome U. ; INFN, Rome) ; Crisafulli, M. (Rome U. ; INFN, Rome) ; Lubicz, V. (Rome U. ; INFN, Rome) ; Salina, G. (Rome U., Tor Vergata ; INFN, Rome) ; Martinelli, G. (Rome U. ; INFN, Rome) ; Vladikas, A. (Rome U., Tor Vergata ; INFN, Rome) ; Bartoloni, A. (Rome U. ; INFN, Rome) ; Battista, C. (Rome U. ; INFN, Rome) ; Cabasino, S. (Rome U. ; INFN, Rome) ; Cabibbo, N. (Rome U., Tor Vergata ; INFN, Rome) ; Marzano, F. (Rome U. ; INFN, Rome) ; Paolucci, P.S. (Rome U. ; INFN, Rome) ; Pech, J. (Rome U. ; INFN, Rome) ; Rapuano, F. (Rome U. ; INFN, Rome ; CERN) ; Sarno, R. (Rome U. ; INFN, Rome) ; Todesco, G.M. (Rome U. ; INFN, Rome) ; Torelli, M. (Rome U. ; INFN, Rome) ; Tross, W. (Rome U. ; INFN, Rome) ; Vicini, P. (Rome U. ; INFN, Rome) |
Abstract
| We present a calculation of $f_B$ in the static limit, obtained by numerical simulation of quenched QCD, at $\beta=6.2$ on a $18 3 \times 64$ lattice, using the SW-Clover quark action. The decay constant has been extracted by studying heavy(static)-light correlation functions of different smeared operators, on a sample of 220 gauge field configurations. We have obtained $f_B {static}=(290 \pm 15 \pm 45)$ MeV, where the first error comes from the uncertainty in the determination of the matrix element and the second comes from the uncertainty in the lattice spacing. We also obtain $M_{B_s}-M_{B_d}= (70 \pm 10)$ MeV and $f {stat}_{B_s}/f {stat}_{B_d}=1.11(3)$. A comparison of our results with other calculations of the same quantity is made. |