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Abstract

We study the transverse momentum distribution for a pair of heavy quarks pro-
duced in hadron-hadron interactions. Predictions for the large transverse momentum
region are based on exact order o QCD perturbation theory. For the small transverse
momentum region, we use techniques for all orders resummation of leading logarith-
mic contributions associated with initial state soft gluon radiation. The combination
provides the transverse momentum distribution of heavy quark pairs for all transverse
momenta. Explicit results are presented for bb pair production at the Fermilab Teva-

tron collider and for cc pair production at fixed target energies.



1 Introduction

The distribution in the transverse momentum ¢, of a heavy quark pair, QQ, produced in
hadron-hadron interactions is of interest for elucidating the underlying quantum chromo-
dynamics (QCD), and its understanding is important in studies of B—B mixing and CP
violation at hadronic facilities. Unlike the case of pairs of heavy quarks produced in ete”
annihilation, QQ pairs created in hadron hadron collisions are often not in a back-to-back
configuration (even in a plane transverse to the beam direction). The net transverse mo-
mentum of the pair measures the imbalance between the transverse momenta of the @ and
the (). In this paper, we examine the quantitative description in QCD perturbation theory
of the expected imbalance. Predictions for the region of large ¢, are based on exact order o
QCD perturbation theory. For the regions of small and modest ¢, we employ an all orders
resummation of leading logarithmic contributions associated with the emission of soft gluons
from the intial-state partons that participate in the hard scattering process. This calculation
addresses a practical question for heavy quark tagging at hadron facilities: if a @) is tagged

with a given transverse momentum, what distribution in transverse momentum should one

expect to observe for the associated () ?

We consider the process hadron + hadron — @ 4+ @ + X. In the simplest parton
model description, the underlying hard scattering process is parton + parton — Q + Q.
At this level of approximation, no bremsstrahlung gluons are radiated from initial-state or
final-state partons. If one neglects intrinsic transverse momentum of initial state partons,
q. is zero. Therefore, in the simplest parton model description, @ and @ pairs would be
produced back-to-back in the transverse plane. However, gluon bremsstrahlung is important

in QCD and in general generates non-zero ¢, .

The single particle inclusive differential cross section for heavy quark production has

been studied in detail at next-to-leading order in QCD. We cite in particular the calculation



of the complete first order corrections to the dominant QCD production channels [1, 2]
and [3, 4, 5] and comparisons with data on inclusive b-quark production from the UA1[6]
and CDF collaborations[7]. We mention also the recent work on resummation of leading
logarithmic contributions for the one particle inclusive cross section[8]. In the single particle
inclusive approach, the kinematical variables of the heavy quark’s (or antiquark’s) partner
and of the final state light partons are integrated over with the attendant limitation that
it is not possible to examine quark-antiquark correlations or the cross section differential
in the transverse momentum ¢ of the QQ pair. Correlations have been studied at leading
order[9] and at next-to-leading order[10, 11]. One may expect that next-to-leading order
QCD should provide reliable expectations for the distribution in g7 at large gr. At small
qr, the relatively large mass mg of the heavy quark () justifies perturbation theory, but the

presence of the two disparate scales, mg and ¢r, requires care.

Perturbative QCD has been used for a successful description of transverse momentum
distributions in massive lepton-pair production, the Drell-Yan process[12]. There one studies
the reaction hadron + hadron — et + e~ + X, where the electron-positron pair is detected
and its transverse momentum ¢, is measured[13, 14, 15, 16]. Important for the quantitative
description of the transverse momentum distribution at modest values of ¢, is the resumma-
tion of logarithmic contributions associated with emission of soft gluons in the initial state of
the hard scattering process quark +antiquark — et +e~ +X. We follow closely the analogy
with the Drell-Yan case for the reaction hadron + hadron — @) + Q + X and concentrate on
the transverse momentum distribution of the QQ quark pair. Heavy quark pair production
is, however, more involved than massive lepton-pair production. New complications arise
from soft gluon emission from the final-state heavy quarks, effects that are absent in the
Drell-Yan reaction. We will argue that the resummation technique for dealing with initial
gluon radiation should still be applicable in our case. Soft gluon emission from final state

heavy quarks has been studied in [17].



For the process hadron + hadron — @ + Q + X, we choose to study the cross section
differential in the variables M? and ¢2; M is the invariant mass of the Q) pair. Knowing M
and ¢, , we can judge how far the QQ system is away from the back-to-back configuration
in the transverse plane. To be more specific, when M is near the mass threshold 2m of the
Q)Q) pair, the momenta of the () and @ are close to zero in the center of mass frame of the
QQ system. Only a small amount of ¢; then suffices to put the ) and ) in a configuration
that is non-back-to-back in the transverse plane in the laboratory system of reference. On
the other hand, at large M, the ) and @ have large relative momentum in the center of
mass frame of the pair. At large M, large ¢, would be needed to produce a Q@) pair that is

not-back-to-back in the transverse plane in the laboratory system.

At large and moderate values of ¢2 ~ O(M?), the QQ pair production cross section
can be computed perturbatively as

do

m :O!?(Cll +a2065+a30(§+"'). (1)

At any fixed order of a; and ¢3 # 0, the cross section is well behaved after the hard scattering
cross section has been properly defined. At low ¢2 # 0, however, the convergence of the
perturbative series deteriorates. For small ¢2 # 0, the dominant contributions (i.e. the

leading logarithmic contributions) to Eq. (1) have the form

do o? M? M?
% (o In(B) + b () 4 ) 2
dM?dg? qi(la n( Qi) QQSH(qi) ) (2)

The convergence of the theory is therefore governed by a,In*(M?/¢?) instead of a;. The
logarithms arise through emission of soft and collinear gluons. At sufficiently low ¢7,
a,In*(M?/¢?) is large even when a; is small and any fixed order calculation breaks down. In

order to obtain a reliable prediction, one must resum the leading contributions to all orders

mn og.



The remainder of this paper is organized as follows. In Sec. 2 we present the pertur-
bative calculation of the ¢ distribution using exact order o? QCD matrix elements. We
describe how to obtain the asymptotic expression at g2 — 0 from the exact order o matrix
elements. In Sec. 3 we discuss the formalism for resumming the initial soft and collinear
gluon contributions. We match the resummed result in the low-¢3 region to the exact O(a?)

result in the high-¢% region. Results and examples of the ¢ distribution for specific hadronic

reactions are given in Sec. 4.

2 Perturbative Calculation

We begin our discussion with the hadronic reaction in which a QQ pair is produced:

p(K1) + p(K2) — Q(p1) + Q(p2) + X (3)

In this expression, p and p denote the proton and antiproton respectively. The quantity X
stands for all the final particle states that we sum over so that the above process is semi-
inclusive with respect to the outgoing final particles. We use capital letters for the momenta
of the proton and antiproton to distinguish them from those of the quarks, antiquarks and

gluons. The corresponding partonic subprocess can be written as

pi(k1) +pi(ka) — Q(p1) + Q(p2) + X, (4)

where p;; are the initial partons from the proton and the antiproton. The relationship

between the momenta of the hadrons and partons is
ki =& Ky, k= 6K (5)
The four-momentum of the system made up of the QQ pair is

¢" = pi + py (6)
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We also define several useful invariants for our calculation:

S = (](1 —|— [(2)2
s = (k1+k2)2 = L1695
M? = ¢ = (p1+p2)

M? M?
1T = S T2 = > (7)
ZQ'IXl QQ'[XQ

1 1
Y = §1H(Q'K2/Q'K1) = ’!/‘|'§1H(51/52)

2q-Kiq- Ky 2q - kiq -k
T Sl N Y L B L
L K, - K, by - by

We remark that /S is the collision energy of the proton and antiproton; M is the invariant
mass of the heavy quark Q@ pair; ¢2 is the square of the transverse momentum of the pair,
equal to the square of the vector sum of the individual transverse momenta of the Q and Q;
Y is the rapidity of the QQ pair in the center of mass frame of the proton and antiproton;

and y is the rapidity of the QQ pair in the center of mass frame of the interacting initial

partons.

The differential cross section for reaction (3), is expressed as a convolution of partonic

cross sections and parton distribution functions:

M: 3 /1 dg/l A&y fin(r, 1) fisl€ )XM (8)
dM2dg? dY A L ) VX P P vy

1,J=4,0,9
Here 7pin = (\/M?+ ¢} + q1)?/S, and d*6;;_ggx/dM?dq}dy is the fixed-order reduced
partonic cross section obtained by first calculating Feynman diagrams up to a given fixed-
order in QCD perturbation theory and then implementing a renormalization scheme to

remove any ultraviolet divergences. The soft divergences at g, — 0 are cancelled between

the virtual diagrams and the bremsstrahlung diagrams. The collinear divergences (mass



singularities) at ¢, — 0 are absorbed into the definition of the parton distribution functions.
Therefore the fixed-order reduced partonic cross section is well behaved for any value of
q3, in particular ¢3 = 0. (Note that the apparent divergence at ¢3 = 0 in Eq. (2) is
cancelled by a é-function that arises from virtual diagrams.) An advantage of calculating
the order o? differential cross section in terms of ¢? is that ¢ can be used as a cutoff variable
for both the infrared and collinear divergences in the bremsstrahlung diagram calculations.
This means that at any finite value of ¢%, the order o? differential cross section can be
calculated by evaluating the bremsstrahlung diagrams without explicit concern about soft

gluon cancellation and factorization of the collinear singularity.

We now consider Q@ pair production in QCD perturbation theory. It proceeds by the

following two reactions in the Born approximation (order o?):

q(k1) + q(ka) — Q(p1) + Q(p2)

g(k1) + g(k2) = Q(p1) + Q(p2) (9)

Symbols inside the parentheses denote the momentum assignments for the partons. The

Feynman graphs that contribute to the Born amplitude are shown in Fig. 1.

The magnitude squared of the Born amplitude, averaged over initial colors and spins

and summed over final colors and spins, can be written as[18§]

4

— 9 gs
Mygq = 5 Crioes
—2 g;l t1u1
(Mlyygo = NZ_ | (CF - OAT) Bgep (10)
with
12 + u? 2m?
Agrp = 1 L4
s s
1 U Am?s m?s
Borp = ST (1 );

Uy ty tiug tiuy



(11)

t; and wuy are defined as
1 = (kz —p2)2 — mQ, U = (kl —p2)2 —m? (12)

It is easy to verity that

do® - (0) M?)
93.992QQ  _ o1 — Ty s(1 — T2y 5(42 Tag,g9 ‘ 13
The total partonic cross sections are[19]
0 2ra? Cp _
d(M?) = ap P 2m M) (14)
2ra?  Cp Am? m?  8m?
0 2 _ 5
7 (M) = RN [‘“*WW—“ 4@‘@”“]
2ra? Oy 1 5m? 4m?
e [ L Y Pt 15
HNYE N2—1[( 37332 T ”1’ (15)

with

1 —
R O (16)

The C4 and Cf are the Casimir invariants for the adjoint and the fundamental representation

of SU(N). For the particular case of SU(3),

N?—1
2N

N=3 Cs=N, Cp= (17)

Observe that the differential cross section Eq. (13) is proportional to 6(¢3 ), because in the
Born approximation the heavy quark pairs are produced with ¢2 = 0. The total partonic

(0)

cross sections o,4 (M?) and aég)(MQ) are inversely proportional to M?. This dependence can



be understood because the lowest order graphs either have only s-channel poles or fermion
exchange lines. Most of the heavy quark pairs are therefore expected to be produced near

threshold, M? = 4m?.

At order o? the contributing partonic subprocesses include gluon bremsstrahlung dia-

grams and (anti)quark-gluon scattering diagrams:

q(k1) +q(ks) — g(ks) + Q(p1) + Q(p2)
g(k1) +g(k2) — glks) + Q(p1) + Q(p2)

g(k1) + q(@)(k2) — q(@)(ks) + Q(p1) + Q(p2)

(18)

plus virtual correction diagrams[20] to the lowest order processes Eq.(9). In Fig. 2 we show

3

s

some examples of the gluon bremsstrahlung diagrams that contribute at order «

In the order a2 processes (18), ¢; is no longer constrained to be zero; a spectrum of
values of ¢} will be produced. The ¢ — 0 limit means that the parton with momentum k3 in
the processes (18), is either soft and/or collinear to one of the initial or final state partons. We
note that in the ¢g channel there are diagrams with a gluon emitted from an initial quark or
antiquark line; these look diagrammatically exactly the same as corresponding graphs in the
Drell-Yan reaction. In addition there are diagrams with a gluon emitted from a final heavy
quark or antiquark line; these are absent in the Drell-Yan reaction. The initial gluon emission
diagrams can be soft and/or collinear divergent at ¢2 — 0. The final gluon emission diagrams
can have only a soft divergence at g3 — 0 because the final state quarks are massive. The
same statements can be made for the gluon gluon initiated subprocesses which are usually
the dominant processes for QQ pair production. The quark-gluon scattering diagrams have
only a collinear divergence from light quark emission. The square of the matrix element for
the order o processes Eq. (18) has been published[21]. We will make use of those results in

our calculation.



To calculate the partonic differential cross section, daf;LQQk/dMquidy, at order a?
we must integrate over variables which are independent of M?  ¢? and y for the gluon

bremsstrahlung and quark-gluon scattering processes. We choose the QQ center of mass

frame in which

¢ = (pl _|_p2)u = (M7 0, 0, O)

pi = (M/2, wosinfysinby, wqsinbycosby, wgcosby)
py = (M/2, —wqsin by sin by, —wg sin b cos By, —wq cos b,)
(19)
with
M
wo = 7\/1—4m2/M2. (20)
We obtain
doM 1 : 2 /02
SO0 ey = L (g gy M
dM?2dq? dy 128 74 sM? & & &1 £ 1+ ¢i/M?
’py 2 2\ Tarr? ‘
< | gr 8 (a=p0)* = m®) M _gq (21)

The integral [ d®p, can be expressed explicitly as

d’p, 2 2\ T2 1 2z [T : o NIk
) ((q —pm)—m ) |M|ij—>QQk = g\/l —4m? /M /0 db, 81n91/0 do, |Z\é[|2.j_>QQ,C7

2p9

(22)
and |M|fj—>QQk is square of the matrix element for the order a2 processes (18), averaged over

spin and color.

It is possible to perform the angular integrals analytically. However, the squared matrix

elements for the Q) production process are lengthy and the integrals are difficult, making
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the calculation formidable. Fortunately, for any finite value of ¢? the order o? differential
cross section Eq. (21) is free from any soft and collinear divergences so that the angular
integrals Eq. (22) can be dealt with numerically. Then the differential cross section for
the proton antiproton reaction Eq. (3) can be calculated by convoluting the partonic cross

section Eq. (21) with the parton distribution functions according to Eq. (8).

A quantity of interest and importance is the average of the square of the transverse

momentum at a fixed invariant mass M. It can be calculated as[22]

do, . d’o, .
<Qi(M)>( Opp QQX) /qu ¢ @ 0p5-QQX

dM? dM?dq*
! ! (s=02)2/(43) &o!)
= d dé, f; , (€3, / da? a2 ZJ—>QQI€7
Z',jzzq;q,g /MQ/S 51 MQ/(&S) 52 f/p(fl ILL) f]/p(fQ IU‘) o qJ_ qJ_ dM?d 2
(23)
where
~ (0) ~ (1)
sz ,qu;qg T O RGOl R VER TV
~(0)
1 ey’ -
= K / dé, f: ’ (&, H=QQ o4
qu;q,g 2/5 M2/(&1S) 2 f/p(fl #) f]/p(& Iu) dM? ( )

Symbol K denotes the familiar K-factor, not necessarily a constant in this case. The
transverse momentum averaged over all values of invariant mass can also be calculated in

the same way.

As remarked in the Introduction, the convergence of the perturbation series deteriorates
in the region ¢3 < M?. For predictions of improved reliability in that domain, one must try
to sum leading contributions from all orders in a;. We will use the procedure for resumming

contributions from initial state soft and collinear gluons developed by Collins and Soper. To
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begin, we must first extract the leading contributions in the region of small ¢4 < M? from
the a? cross section. This is done by calculating the angular integrals in Eq. (22) analytically.
Fortunately, in the limit ¢3 /M? — 0 the squared matrix element simplifies substantially and

the angular integrals can be calculated analytically without too much difficulty[3].

We take the limit g2 — 0 of the exact expressions for the square of the order o matrix
elements and do the integral under the same limit. The calculation is accomplished in two
steps. First, we calculate the soft gluon contributions by setting the gluon momentum k3 — 0
everywhere in the matrix elements except in the denominators that are singular as k3 — 0.
The soft gluon matrix elements have also been derived in the literature (see Eqns.(5.1-5) in
Ref.[3] and Eqns.(2.24-26) in Ref.[4]). In the limit k5 — 0, the 2 — 3 kinematics can also
be approximated by 2 — 2 kinematics, which we can implement effectively by replacing the

6—function in Eq. (21) by

_ Ty oty oM a5 = By e 22 2
5((1 R 1+qi/f\42):”(qi)5(1 R )

The singularities in the denominator can be replaced by

(1 - %)(1 - z—j) — (26)

Second, the hard collinear contributions can be calculated if we replace the first 6 —function

in Eq. (21) by

oy w4 51— /6) | 6(1 - 1/8) |
‘5(“ g g 1+qi/¢2’~’):>(1—xz/£2)++(1—w1/&)+ (27)

The “4” prescription in the above equation, defined as

[ 2t
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ensures that there is no double counting in the phase space region where the soft and collinear
divergences overlap. Both replacements, Eq. (25) and Eq. (27), imply significant simplifi-
cation for our calculation. Their origin has been well demonstrated, e.g. in Eqns.(2.11-13)
of Ref. [23]. After we perform the angular integrals and convolution with the parton dis-
tribution functions we obtain the asymptotic expression for the differential cross section for

process (3) in the form

M

PBo. o5 0 o L oag(M?) 1 1
M(asym) = Z O'(-)(M)—y_{[ftij n(g)+Bz(j)]fi/p(xl)fj/p($2)

dM? dg? dY e S 2r 4

,0=9,9,9

[ Firol21) (Prcs @ fugp) (22)== + (Pica @ fupp) (21) fippl22)] } .
(29)

The symbol ® denotes a convolution of the parton distribution function f and Altarelli-Parisi

splitting function P, defined by

1

(roP)@ = [ fwpE) 2. (30)

T y
The functions Aﬁ}) come purely from initial state soft and collinear gluon radiation:

A =205, AD) =204, A, =0 (31)

The functions BS) can be split into two parts, in terms of initial and final state gluon

radiation:

B = Bl + Bk (32)

with

Inz

By = —3Cr, Byl = 20p +20p=~(1 = 2m*/M?)
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Inz

B;BI = —20o, B;BF = 20r + 20F7(1 — 2m2/M2)
(1) _ (1) _
Byger = 0, Byger =0

(33)

Quantities  and [ have been defined in Eq. (16). Our coefficient 3y of the f-function is

normalized to

1IN - 2N,

Bo = G (34)

To verify our calculation we have checked that the 1/€%, 1/e pole terms generated by di-
mensional regularization from the terms not proportional to the Altarelli-Parisi splitting
functions in the expression Eq. (29) cancel the infrared pole terms from virtual diagram

calculations|[3, 4].

The expressions for the initial state gluon radiation terms for the gg channel, A((;]—)

and B;;)I, are exactly the same as those in the Drell-Yan reaction. For initial state gluon

radiation in the gg channel, our expressions Aglg) and Bg(:}q) also agree with those found by
Catani, D’Emilio, and Trentadue[25] and by Kauffman[23] for production of a color singlet
state from gluon-gluon fusion. The agreement in both cases follows the expectation that
the initial state soft gluon radiation does not depend on the type of hard process under
consideration[26, 27]. It indicates that the effects of initial state gluon radiation can be
resummed to all orders of a, for QQ pair production, as in the cases of the Drell-Yan
reaction[13, 14] or Higgs production through gluon fusion[24, 25, 23]. In the next section we
will attempt the resummation of the initial soft and collinear gluon contributions using the

formalism developed for the Drell-Yan process[28, 29].

The expressions for final state soft gluon radiation, Bé?F and B;BF, are the same for

the ¢qg and gg channels. This can be understood since the final state soft gluon radiation
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occurs from the final state (anti)heavy quark lines in both the ¢g and gg channels. Soft

gluon emission from final state heavy quarks has been studied in Ref. [17].

3 Resummation

The technique for resumming contributions from initial state soft and collinear gluons was de-
veloped by Collins and Soper[29], and it has been applied to massive lepton-pair production[14],
single vector boson production[30, 31], Higgs boson production[24, 25, 23], and ZZ-pair
production[32]. In our case, the appropriate expression analogous to that of Collins and

Soper is

d30' 1 0
Fdray e = % ) 3= [ dbbdo(bas) Wy(M.B),  (35)

,0=9,9,9

where Jy(x) is the zeroth order Bessel function. The function W;;(M,b) sums all the loga-

rithmic terms of the form a?In™(M?b?*) with 1 < m < 2n in the impact parameter b space.

The all orders structure of W is given by the functional form

M gt CIM?
/05/62 qq2 (=

W8 = exp{— | )Aixas(q?))+Bij<as<q2>>]}

2 2

X (C & fi/p)(l’l; %) (C ® fj/ﬁ) (22, %) (36)

The parameters C, Cy and C5 are somewhat arbitrary. They are associated with the choices
of renormalization and factorization scales in a fixed order perturbative calculation. We use

the standard choices

Cl = 03 =2¢ E = bo, 02 = 1, (37)
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where v is Euler’s constant. The symbol & denotes a convolution, defined in Eq. (30). In

the limit ¢, /M — 0, the parton momentum fractions are

| M? | M?
1 = €Y ? 5 T = G_Y ? . (38)

The functions A, B, and C(z) may be expanded in a perturbation series in a:
_ oo (s
Aijlas) = ;AU <$) ;
_ N (s :
Bij(as) = nz::l B;; (ﬂ) ; (39)

> n aS "
Cij(z,a) = 656(1—a)+ Ci(j) <g>
n=1

The reason for the bar over the j in the expression for C;;(x, o) is that the flavors of ¢ and

7 must be the same in the case of ¢q.

We work to first order in the expansions of A and B which corresponds to summing

the first two powers of In(M?/¢?) at every order in ay, i.e, the double-leading logarithm
approximation. The AE;)’S and BZ-(;L)7S depend implicitly on the choices of C 3 5. The simplest

forms result from the choices in Eq. (37). The coefficients AW and BY in Eq. (39) can

1] 1]
be obtained by formally expanding Eq. (35) in a series in «, and then comparing with

the asymptotic perturbative calculation from our previous section. For initial state gluon

radiation, the expressions for AW in Eq. (39) are the Aﬁ}-) of Eq. (31), and the BZ»(J-I) are the

]

BZ(;)I in Eq. (33). For C', we make the simplifying choice CZ»(]Q) = 6;;6(1 — x) since we are
working in perturbation theory to the first non-trivial order in «ay for large ¢,. (Note that

ag-)) in Eq. (35) is proportional to a?.) Our neglect of CZ-(]-l) will only affect the normalization

at ¢ = 0 to O(a?) and the distribution for g5 # 0 to O(al). These statements imply that
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our calculation includes resummation of the double-leading logarithms to all orders in «j,

but the total integrated cross section is accurate only to second order in «s.

We comment that the validity of the resummation formalism[29] was demonstrated for
the Drell-Yan reaction and for W, Z production where there is no final state gluon radiation.
We are making the reasonable assumption here that the same formalism is valid for dealing
with the effects of initial state soft and collinear gluon radiation in the case of heavy quark
pair production. Resummation of soft gluon emission from the final state heavy quarks has

been studied in Ref. [17].

The gluon resummation formula, Eq. (35), provides the cross section in the region of
small ¢, ; for the high-¢, region we use the exact O(a?) perturbative calculation. We will
join the results for the low ¢, and high ¢, regions using a matching procedure employed

previously [24, 23].

do (match) = do (pert)
AM?dg® dy Y T aMzdg dy
do do
M) | —— m)—— m)|.(4

The function

1

flgL/M) = T B /M)

(41)

serves to switch smoothly from the matched formula to the perturbative formula [23]. For
details of the matching procedure we refer to papers by Arnold and Kauffman and subsequent

publications.

Before presenting numerical evaluations, we end this section with a few remarks. As
discussed by Parisi and Petronzio[28], the resummed expression Eq. (36) is ill-defined when
b > 1/Agep because confinement sets in and a5 blows up. Procedures have been proposed

in the literature[28, 29, 14] to deal with this difficulty and parameterize non-perturbative
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effects. In this paper we follow the method used by Collins and Soper[29] and by Davies and

collaborators[14]. We replace W (b) in Eq. (36) by
W (b) — W(b,)e S, (42)

S R (43)

VI+0/8,,

Large values of b are thereby cut-off at some by4.; exp(—Sn,(b)) parameterizes the large-b
dependence due to nonperturbative physics. In principle, exp(—S,,(b)) can be measured,

but in practice one can approximate the function with a simple Gaussian parametrization,
Sup(D) = V(g1 + g2 1n(brau M/2)]. (44)

According to Davies and collaborators[14]
g1 = 0.15GeV? go = 0.4GeV?, bypor = (2GeV) L. (45)

The values of ¢g; and gy are obtained by fitting massive lepton-pair production data at
VS = 27 and 62 GeV. There is no strong reason to believe that the contribution from non-
perturbative intrinsic transverse momentum should be identical for subprocesses initiated
by gluon-gluon scattering, as in our case, and quark-antiquark scattering, as in massive
lepton-pair production. When substantial samples of data become available on cé and bb
production, it should be possible to refine the choices made here. Particularly informative
in this respect will be data on the azimuthal angle (¢) dependence. The extent to which the
quark and antiquark are produced with ¢ near # is particularly sensitive to the net transverse

momentum imparted to the quark-antiquark pair[10, 11].

4 Results and Discussion

In this section we present and discuss some phenomenological applications of our analysis.

We use HMRS parton distribution functions[33] and the one-loop corrected formula for
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the running coupling constant o (p) with Ay = 190 MeV. The factorization scale and the
renormalization scale are chosen to be the same as the invariant mass of the heavy quark

QQ pair, i.e. p = M, unless stated otherwise.

In Fig. 3 we show the lowest order result for the distribution in invariant mass of a bb
pair produced in a pp collision at the Fermilab collider energy /S = 1.8 TeV. The bottom
quark mass is chosen as m, = 4.75 GeV. The distribution peaks at a value of M a few GeV
above the bb pair mass threshold of 2ms. It then decreases quickly as M increases. This
implies that most 0's and/or b's are produced at the Fermilab collider with small momentum
in the bb center of mass frame. Next-to-leading order QCD contributions change the overall
normalization of this curve, but more important for the sake of our present discussion, they

should not change the shape of the lowest order curve except very near threshold or far above

threshold[34].

In Fig. 4, the average quantity < ¢3 (M) > K is plotted as a function of the pair
invariant mass M; the factor K was discussed in Sec. 2. The quantity < ¢ (M) > K is
proportional to the square of the average transverse momentum of the bb pair. Its value is

about 80 GeV? near threshold and rises linearly with M in the range shown in the figure.

At the fixed rapidity value ¥ = 0, the function has the same shape and magnitude as in
Fig. 4, understandable because the bb pairs are produced centrally. (An approximately linear
rise with M of the average transverse momentum in the region 7 = M?/S < 0.05 would
be expected from simple dimensional arguments. The growth of the square in Fig. 4 is less

rapid than quadratic.)

An important inference may be drawn from Figs. 3 and 4. We may estimate from Fig. 3
that the average invariant mass < M >= 15 GeV. Glancing at Fig. 4 we notice that near

and above the pair mass threshold < ¢} (M) >K is larger than 80 GeV?. Using K ~ 2.4(see

ref. [1, 4]), we deduce that bb pairs produced at the Fermilab collider are expected to have
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an average transverse momentum about 5 GeV. As will be discussed below, after integrating
over all values of M, we find that the square of the average transverse momentum < ¢% >
is 36.0 GeV? in the purely perturbative order a? approximation. Taking the square-root,
we deduce < ¢q; >,us~ 6 GeV. This value is comparable to, and slightly larger than, the
typical momentum of an individual b or b in the bb center of mass frame. Correspondingly,
a significant fraction (about a quarter to half depending upon how one defines back-to-
back configuration) of bb pairs at the Fermilab collider are expected to be produced in a

configuration that is not back-to-back in the transverse plane.

The differential cross section do/dMdq, is presented in Fig. 5 for three fixed values
of mass, M = 15, 25 and 50 GeV. The dashed curves are from our fixed order a? per-
turbative calculation. They are most applicable in the region ¢, ~ O(M) where there is
essentially only one hard scale in the problem. The fixed order o? results become inapplica-
ble if ¢, << O(M) where, as discussed earlier, the effects of soft gluon contributions must
be incorporated in order to obtain a more reliable result. The dot-dashed lines show the
asymptotic results, Eq. (29), obtained from the fixed-order o results in the limit ¢, — 0. At
small ¢, the asymptotic results agree with the perturbative results, as expected. At larger
q.1, the asymptotic results manifest unphysical characteristics that can be traced to the fact
that the functions AE;) and BZ(;) have opposite signs (c.f. Eqns. (31) and (33)). Accordingly,
we take the asymptotic results at face value only at small g;. The cross sections obtained

from resummation of the effects of initial soft gluon radiation are shown by the dotted lines.

The resummed results are not expected to follow the asymptotic results because only
the initial-state soft gluon radiation is included in our resummed formalism. The resummed
and the purely perturbative order a2 curves nearly coincide for ¢; about 5 GeV and greater,
as might be expected since the mass of the bottom quark is the relevant physical scale at small
g1 Owing to the effects of resummation, the shapes of the two curves differ significantly for

g1 less than 5 GeV.
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The solid lines in Fig. 5 present our final matched results, obtained from Eq. (40).
The matched results agree with the resummed results in the region of small ¢, and with the
perturbative results at large ;. These three figures demonstrate how the final resummed
and matched results differ from the perturbative results in the small ¢, region. They also

show that the simple matching procedure seems to work adequately in our case[35].

To preclude confusion, we stress that do/dMdq, is presented in Fig. 5; thus, the
vanishing of the resummed curves as g, goes to zero has a kinematic origin. The divergence

apparent in Eq. (2) is not present in the resummed calculation.

In Fig. 6(a), the perturbative, asymptotic, and the resummed results from Fig. 5(a)
are replotted as do/dM/dq% versus ¢5. This figure illustrates the behavior of the cross
section at small ¢, in a different way, without the phase space factor of ¢, that is present
in do/dM/dq, shown in Fig. 5(a). The same results are plotted again in Fig. 6(b) but
with the switching function Eq. (41) included as a multiplicative factor in the asymptotic
and resummed results. A comparison of Fig. 6(a) and 6(b) demonstrates the effects of the
switching function included in the matching formula Eq. (40). At small ¢, the switching
function is close to 1 and does not modify the asymptotic and resummed results. At large
g2 ~ 50 GeV?, the switching function suppresses the asymptotic and resummed results by

almost a factor of 10.

In Fig. 7 our final results are shown for the distribution in the square of the transverse

momentum of the bb pair, do/dg¢?. Here we have integrated over M. As remarked at the

3

start of this section, for consistency, all curves, including the purely perturbative order o

curve (dashed line), are computed with the one-loop evolved form for a;

For ¢, # 0, the differences between the matched (solid curve) and fixed-order o?

S

dashed) results in Fig. 7 are formally of order a? and higher(except that our integrated cross
g s g g

section is valid only to O(a?), as explained in Sec. 2). These differences will affect, among
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other observables, the predicted average transverse momentum of the bb pair. Computations
of the integrals over all ¢, of the product of ¢ times do/dg? are straightforward for both the
solid and dashed curves in Fig. 7 since this product is finite and well behaved as ¢, approaches
zero in both cases. The integral of do/dg? itself is straightforward for the matched case,
where there is no divergence as ¢, approaches zero, but is more involved in the purely o?
case. In the o? case, full account must be taken of virtual diagrams that contribute at ¢% =
0 [19, 1, 3, 4]. Carrying out the computations, we obtain < ¢3 > = 36.0 GeV? in the purely
perturbative order o approximation and < ¢? > = 66.7 GeV? for our matched case. We
have checked that use of the two-loop evolved form for a; changes the purely perturbative

order a? value of < ¢} > by less than 1 GeV?.

Using the numbers in the paragraph above, we note that < ¢3 > is increased by
30.7 GeV? as a result of soft-gluon resummation and matching. Taking square-roots, we
find < g, >,ms~ 8.2G€eV in the matched case, to be compared to ~ 6 GeV in the purely
perturbative order o case. It may seem remarkable that an additional ~ 2 GeV is associated
with soft-gluon resummation. It would be useful to be able to compare this predicted increase
with that expected for < ¢? > in massive lepton pair production (the Drell-Yan process) at
Tevatron energies, at massive lepton pair masses in the vicinity of 10 to 20 GeV, comparable
to those for bb pair production. However, to our knowledge, no calculations have been
published for the resummed ¢, distribution for the Drell-Yan process at such masses at
Tevatron energies. Calculations at lower energies[29, 14] and/or higher masses[30, 31] may
not be a useful guide since the distribution should broaden with energy at fixed mass.
We remark, however, that the ¢, distribution should be significantly broader for bb pair

production because the coefficients in the resummation expression, Eq. (36), are much larger:

Ag? = QCA VS. .A((;j) = ZCF

It would be interesting to compare the solid line in Fig. 7 with data. We comment

that our result is for production of a pair of b and b quarks, not a pair of B and B mesons.
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To compare with measurements of the transverse momentum of a pair of B and B mesons,
one must include effects associated with fragmentation of the b and b quarks, and try to
estimate effects associated with final state gluon radiation. In a Monte Carlo simulation
of the single b or b inclusive spectrum, Kuebel and collaborators showed that the effects of
final-state and initial state gluon radiation tended to compensate in some instances, with
final-state radiation tending to soften the spectrum and initial-state radiation broadening the
distribution[10]. To obtain the b quark inclusive cross section, the UA1 collaboration[6] and
the CDF collaboration[36] use a Monte Carlo procedure to take into account the fragmenta-
tion effects of b quarks into observed B mesons or single leptons before they compared their
data with theoretical predictions. A similar procedure is required before comparison can be

made of data with our theoretical prediction of the pair transverse momentum distribution.

In Fig. 8, we show a distribution in the square of the transverse momentum for produc-
tion of a pair of charm quarks, c¢ pair production in fixed-target proton beam experiment
with Ejeor, = 800 GeV. In the case of charm, the average transverse momentum is so small
that non-perturbative physics may dominate in the region of small ¢, . We will not dwell here

on applications of the resummation method to charm pair production. In another paper, we

plan to present further phenomenological applications for bb pair production.

In this paper, we have focussed on the distribution in transverse momentum of a pair
of heavy quarks. In carrying out our calculation, we integrated over (angular) variables in
the QQ rest frame. Correspondingly, certain limitations must be accepted. In the context of
our calculation, we are not able to describe the fully differential distribution in the momenta
of the @ and () separately, notably the azimuthal angle (¢ )dependence in the transverse
plane nor correlations in rapidity. The limitation on the description of rapidity correlations
appears insignificant since these differ little at leading [9] and next-to-leading order [11]. On
the other hand, the azimuthal angle dependence is sensitive to the net transverse momentum

imparted to the Q@ pair [11, 10], and it would be valuable to develop our approach further
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in order to examine the influence of soft-gluon resummation on the ¢ distribution.

A calculation of the fully exclusive parton cross section for QQ pair production at or-
der a? has been published, along with examples of distributions at collider and fixed-target
energies [11]. As in the calculation reported here, those results include the lowest order o?
cross section for production of a Q@) pair, the order o virtual corrections to the lowest order

cross section, and the order a® cross section for production of a Q@ pair along with a light
parton. That calculation does not include the effects of soft gluon resummation presented
in this paper. On the other hand, included in Ref.[11] is an exploration of certain other
effects that go beyond the pure a? QCD calculation. The parton shower Monte Carlo pro-
gram HERWIG [37] was used to simulate the effects on the ¢ distribution of finite intrinsic
transverse momentum of the initial partons. Substantial broadening of the ¢ distribution
was observed, tantamount to that one would expect if the incident partons carried an intrin-
sic transverse momentum of about 1.7 GeV. While such a large intrinsic contribution was
questioned in Ref.[11] as perhaps an unreliable artifact of the parton shower algorithm, the
notable influence of the added transverse momentum on the ¢ distribution underscores the
importance of the type of study carried out in the present paper. We recall that our soft
gluon resummation introduces substantial additional < ¢; >. As a step in the direction of a
full investigation of the influence of soft-gluon resummation on the ¢ distribution, it might
be possible to incorporate the matched distributions shown in Figs. 7 and 8 into a modified

order a? event generator.

In summary, we have studied the distribution in the transverse momentum of a pair of
heavy quarks produced in hadronic reactions. For large ¢, , the order o perturbative result
should be applicable. In the region of small ¢,, we argued that resummation techniques
developed in the study of the Drell-Yan reaction should apply for initial state soft gluon
radiation. Use of the resummation method, plus a matching of results in the small and large

g1 regions, permits an improved prediction of the full ¢, spectrum. Numerical results for
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the region of small ¢, region were presented for bb pair production at the Fermilab collider

and for cc pair production in fixed target experiments.
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Figure Captions

Fig.

Fig

Fig

Fig.

Fig

Fig.

Fig.

Fig.

1. Feynman diagrams at order o?.

2. Examples of order a? Feynman diagrams with a gluon emitted from an initial quark

or gluon line or from final heavy quark line.
3. bb pair invariant mass distribution computed from lowest-order QCD processes.

4. Average of the square of the transverse momentum of a bb pair, multiplied by the
factor K, as a function of the pair invariant mass M. This curve is obtained from the

purely perturbative order o? calculation.

5. bb pair transverse momentum distributions for three values of invariant mass, M =
15,25, and 50 GeV. We show our fixed order a? perturbative results as dashed lines,
and our initial-state soft gluon resummed results as dotted lines. The asymptotic
results are represented as dot-dashed lines. The final matched results are shown as

solid lines.

6. (a) The perturbative, asymptotic, and resummed results from Fig. 5(a) are plotted
as do/dM/dq3 versus ¢3. (b) The same results are plotted again but with the switching
function Eq. (41) included as a multiplicative factor in the asymptotic and resummed

results.

7. Distribution in the square of the bb pair transverse momentum. Our final matched
results are shown by the solid line. For small ¢* we integrate the leading log resummed
result, Eq.(35), over M. The pure O(a?) result is represented as the dashed curve, the

initial-state soft gluon resummed result as a dotted line, and the asymptotic result as

a dot-dashed line.

8. Distribution in the square of the c¢ pair transverse momentum for proton-proton

collision at v/S = 38.7 GeV (corresponding to fixed target beam energy 800 GeV).



Curves are labelled as in Fig. 7.
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