e ~ELL 33 (1

et

B2

o RGOV
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Y 5 P s

ERN/ECP 93-13

T b

CM-P00049301

CASCADE: A TOOLKIT FOR THE CONSTRUCTION OF DISTRIBUTED,
REAL-TIME, DATA-ACQUISITION SYSTEMS

Y. Perrin, C. Bizeau, W. Bozzoli, D. Burckhart, Y. David, M. Gentile, J-P. Matheys,
J. Petersen, L. Tremblet, P. Vande Vyvre, A. Vascotto and P. Werner

CERN, Geneva, Switzerland

Abstract

CASCADE is a software package developed at CERN for the construction of distributed, real-
time, data-acquisition systems for high-energy physics (HEP) experiments. It aims at providing
a high degree of homogeneity between all levels of the acquisition chain and it allows the
building of a wide range of system configurations. CASCADE is mainly written in C, with
some class libraries in C++. The first implementation supports configurations based on
VMEDbus processors running OS-9 and UNIX workstations interconnected via VICbus and
Ethernet.

Presented at the Eighth Conference on Real-Time Computer Applications in Nuclear,
Particle and Plasma Physics, Vancouver, Canada, 8—11 June 1993

1 INTRODUCTION

The structural and functional analysis of various high-energy physics (HEP) experiment
data-acquisition systems shows that these systems have a great deal of commonality. Whereas
major differences reflect the specificity of the physics studied and of the detector techniques
used, other differences are due to practical constraints, such as budget, laboratory standards,
and technology limitations at a given time.

Starting from these observations, the data-acquisition group of the ECP Division at
CERN is currently developing a new data-acquisition system called CASCADE (CERN
Architecture and System Components for an Adaptable Data-acquisition Environment).
CASCADE is designed to provide physicists with a set of software building blocks so that they
can construct their data-acquisition system in a more homogeneous way.

2 ARCHITECTURE

Most data-acquisition systems in HEP can be viewed as multiprocessor, tree-structured
architectures. Data flow in the system under the form of events which group information related
to a given trigger. All events progress in the tree in the same direction. In their migration,
events are accessed for various reasons, such as filtering, formatting, merging, monitoring,
routing, etc. These operations are performed by processes running in a set of processors
distributed in the architecture. Depending on their role and on their physical environment in the
configuration, these processors may be of different types, may run different operating systems,
and may be linked by a variety of inter-processor links as shown in Fig. 1. To maximize the
overall efficiency, buffering and intelligent entities are distributed in the system so that different
levels of the chain can work concurrently on different events.

To a large extent, CASCADE allows the physicist to concentrate more on the functional
aspects of the data acquisition than on its physical implementation. This is achieved by
grouping the most common functions in a single building element called a stage, which can be
replicated at all levels and which has been implemented on a number of hardware and software
platforms widely used at CERN. ’

Building a distributed data-acquisition system with such an approach consists of the
following steps:

. making a functional representation of the application requirements based on stages as
shown in Fig. 2;

. determining the hardware and software platforms to be used at the various levels;

. writing a configuration file to specify the topology of the system and the mapping
between the logical and the physical representation as illustrated by Fig. 3;

. writing the application-specific code to be linked with the CASCADE software building
blocks and with the appropriate 1/O libraries.

sub-detector #2

Yy

sub-detector #1 sub-detector #3

——

{1l H
— I — FASTBUS é'l —

CAMAC %u- L A VMEbus
| gl _~ il

|
] VYMEDbus T

VMEDbus »” / VMEbus

4~ VICbus 1

Ethernet

Workstation

Fig. 1 The data-flow architecture of a HEP experiment readout system

sub-detector #1 sub-detector #2 sub-detector #3

' { !
D I GD

stage 'tSCl' stage 'LSC2' stage 'LSC3'
stage 'EVB' stage 'TAPE'
stage
'ANALYSIS'

Fig. 2 CASCADE representation of a data-flow architecture

STAGE_NAME =1SC1
CONSTRUCTION_TYPE = DUMMY
NB_INPUTS =1
NB_OUTPUTS =1

INPUT1
CONNECTED_STAGE = NONE
LINK_TYPE = USER

END_INPUT

OUTPUT1
CONNECTED_STAGE =EVB
LINK_TYPE = VIC
FORMAT =RAW

END_OUTPUT

END_STAGE

STAGE_NAME =EVB

CONSTRUCTION_TYPE = EV_BUILDER
NB_INPUTS =3
NB_OUTPUTS =2

INPUT1
CONNECTED_STAGE = LSC1
LINK_TYPE = VIC

END_INPUT

OUTPUT1
CONNECTED_STAGE =TAPE
LINK_TYPE = SH_MEM
FORMAT =ZEBRA

END_OUTPUT

END_STAGE

STAGE_NAME = TAPE
CONSTRUCTION_TYPE = DUMMY
NB_INPUTS =1
NB_OUTPUTS =0

INPUT1
CONNECTED_STAGE=EVB
LINK_TYPE = SH_MEM

END_INPUT

END_STAGE

Fig. 3 Elements of a configuration file

3 THE CASCADE BASIC BUILDING ELEMENT

The stage is the basic building element of a CASCADE-based data-acquisition system. It
can be replicated at all levels and stages can be connected together via interstage links.

3.1 The stage

A stage has the basic functionality of a general single-processor, single-process, data-
acquisition kernel. It is structured and parametrized so that several stages can be grouped
together to form subsystems, such as event builders, farms, etc. As far as the data flow is
concerned, a stage could be viewed as a pipeline with one or more inputs and one or more
outputs as shown in Fig. 4.

output

monitoring

Fig. 4 A stage

Upon reception of a trigger the stage inputs an event, performs a number of possible
operations on this event, and finally passes the results to other stages and to monitoring tasks
that subscribe to this type of event. Inside the stage, events are handled and buffered in the
form of event descriptors. The event data are copied in the stage only if strictly necessary. To
minimize the dead time and to allow operations to take place concurrently on different events so
that the stage can deal with different input and output rates, the stage is organized in several
threads of execution. Each thread corresponds to a given operation to be performed on an event
or to a control action to be done on the stage. Threads directly involved with the main data flow
are called phases.

In a stage, events transit sequentially through:

. the input phase, which creates an event descriptor and, if necessary, copies the event data;
. the construction phase, which, in the case of an event builder, gradually links together the
descriptors of the subevents until a complete event is created.

From there, events are pushed to:

. the access phase where they are made available for monitoring;
. the dispatch phase which formats, and outputs them to one or several other stages.

A scheduler has been developed to control the execution of the threads. It reacts to signals
associated with each thread and issued either externally by other processes (stages, monitoring
programs, control programs) or internally by one of the other threads. If necessary, a thread
can suspend its execution until a global shared resource (e.g. memory space) has been released.
Thread scheduling is done on a priority basis.

3.2 The inter-stage link

Two consecutive stages in the data-flow topology can be linked physically in a number of
ways. A high-level interface and a handshake protocol have been specified, and implemen-
tations have been carried out for a number of hardware and software platforms widely used at
CERN. This approach provides homogeneity in the overall system. It makes the
communication between stages transparent to the application-dependent code. At present,
implementations exist allowing two stages running in the same processor to be linked via
shared memory. If the stages run on different processors they can be linked via VICbus [1].
Communication over Ethernet is being implemented using TCP/IP.

Communication between two stages is initiated by the dispatch phase of the upstream
stage which triggers the input phase of the downstream stage by sending it a signal. The
protocol includes exchange of a message containing the event descriptor, possibly followed by
the transfer of the event data if the type of link makes it necessary or if the user has explicitly
specified it in the configuration file. An acknowledge message is sent by the downstream stage
once it is ready to work on the event.

4 EVENT PRODUCERS

Events are produced by the 'front-end' stages. These stages differ from the others only
by the fact that some application-dependent event production functions have to be linked with
the stage modules when the system is generated. At execution time, when the stage is triggered
on one of its input ports, the input phase calls the event production functions if the input port is
declared to be of type USER in the application configuration file. These functions, for which
templates are available, must read the event data and declare the event to the stage. CASCADE
and a number of I/O libraries, listed later in this paper, are available to read events from a
variety of buses often used in HEP experiments.

5 EVENT CONSUMERS
5.1 Recording

Recording is done by a special type of stage called a recorder, which has as a unique task
the storage of events on a physical device. Recorders have only one input and have no output to
other stages. The interface and the protocol used to communicate with a recorder are the same
as for inter-stage communications. As opposed to a true stage, a recorder does not handle true
events. The dialogue between a stage and a recorder concerns events which, in fact, are fixed-
length portions of one physics event or groups of several events which correspond to physical
records on the storage device.

The organization of events into fixed blocks is actually done by the dispatch phase of the
stage connected to the recorder. Splitting the formatting and the actual recording over two
processes permits concurrent execution of these two operations. CASCADE supports both the
CERN ZEBRA and EPIO formats. At present, recorders exist for the EXABYTE and for the
IBM3480-compatible STK4280 cartridge device under OS-9. The development of a recorder to
store the data on disk files (locally or via NES) is planned.

5.2 Monitoring

Monitoring programs run as separate processes in the same CPU as the stage from which
they retrieve events. A set of functions, provided in the form of a library, is called by the
monitoring programs to connect to a given stage and to specify the event-sampling criteria, to
request an event, to release an event, and to disconnect from a stage. There are two modes of
sampling. In the request mode the monitoring program receives an event as soon as there is one
available but with no guarantee that a minimum percentage of events will be seen. In the fixed
mode the monitoring program is guaranteed to receive at least the percentage of events that it
has specified and more if possible. In both modes the monitoring program is notified
asynchronously as soon as an event of the requested type becomes available.

An event is made available to the monitoring program by means of a pointer. The
monitoring program does not know whether the event data is local to the stage or remote in a
previous stage. The space occupied by the event is automatically locked and must be explicitly
released as soon as the monitoring program has finished with it.

The communication between the monitoring programs and the stage is based on pipes for
the exchange of request and reply messages, and on shared memory for access to events. In the
stage a service thread, called the sampling handler, serves the asynchronous requests issued by
the various monitoring programs. It also handles the event bookkeeping in conjunction with the
stage access phase.

6 RUN CONTROL

The CASCADE control involves a process running in a workstation, server processes in
the target processors, and a control thread in the stages. The run-control program is application-
independent. The human interface is based on MOTIF. A set of menus is used to specify a
number of run parameters and to control the data taking. On selection of a menu item,
commands are sent to the appropriate stages according to an application-dependent control file.

A status display option is available via a menu. When selected it presents the status
information of all the stages involved in the application in a synthetic way.

The communication between the run-control program and the various stages is based on
messages consisting of strings of characters. Routing and asynchronous delivery of these
messages to the destination processors use a commercially available message system called
ISIS [2].

7 INFRASTRUCTURE

As mentioned earlier, CASCADE provides the user with building blocks and tools so that
the data-acquisition architecture can be viewed and handled in a homogeneous way. This goal
has been achieved by the specification and the development of high-level elements which are,
to some extent, platform-independent. In addition, an infrastructure of I/O and system libraries
is necessary to adapt to the various hardware and software environments.

7.1 The BLC library

The suitability of object-oriented techniques in a real-time environment has been assessed
by implementing some basic services as a C++ class library called BLC (Buffer and List-
handling Classes) [3]. These services include the management of event descriptors, linked lists,

space allocation, and shared memory segments. An object display program has been developed
to help with debugging. Implementations of the BLC class library and of the program exist for
ULTRIX and for OS-9.

7.2 The I/O libraries

The first applications of CASCADE will be performed on a multicrate, multiprocessor,
VMEbus-based system connected to workstations. The CPUs in the VMEbus crates —
currently the MC68040-based CES FIC8234 [4] — will run the OS-9 operating system, whilst
the workstations will run either ULTRIX or SunOS.

In order to implement a multistage CASCADE configuration on such systems, a hardware
and software infrastructure is required for physics input/output, intercrate communication, and
data recording.

Front-end stages may read data from CAMAC, Fastbus, or VME. Interfacing to CAMAC
is provided via a VME-to-CAMAC branch interface [5] or via a dedicated CAMAC controller
connected to VICbus [6] with software support in the form of standard NIM/ESONE/IEEE
libraries. A Fastbus-to-VSB interface [7] provides the connection between a VME crate and
Fastbus. A comprehensive multiuser implementation of the NIM Fastbus library has recently
become available for this module [8]. Triggering is possible from CAMAC (lams), Fastbus
(service requests), and VMEbus (via a general-purpose VME trigger module called
CORBO [9]).

To provide a fast channel for data transfers and for the exchange of messages, the VME
crates are interconnected via memory-mapped VICbus links [1]. Ethernet is used for less-time-
critical applications, such as run control and file access, via NFS.

The inter-stage communication across VICbus is based on a message exchange library
developed at CERN [10], whilst the communication across Ethernet uses the standard
NFS/TCP/IP package available on both OS-9 and UNIX. Under OS-9, data may be recorded,
via SCS], either on an IBM3480-compatible STK4280 tape drive [11] or on an Exabyte [12].

7.3 The EMU library

Error reporting is based on the CERN-developed Error Message Utility [13, 14] which is
currently adapted to using TCP/IP for network communications.

8 APPLICATION-DEPENDENT PARTS

In summary, the application-dependent parts in a CASCADE-based data-acquisition
system are:

. the event production functions to be linked with the front-end stages;
. the monitoring programs which may attach to stages;

. the configuration file which specifies the functional and physical characteristics of every
stage as well as the topology of the system;

. the control file which describes the sequence of commands to be sent to stages for each
control action.

9 STATUS

A prototype system has been built and demonstrated. This system was made of two
stages linked via VICbus and a tape recorder, all of them running on CES FIC8234 CPUs
under OS-9. The front-end stage was triggered by a VMEbus CORBO module and the
recording device was a STK4280 cartridge tape. The system was controlled from a DEC
workstation running ULTRIX.

This first test was essentially to check the validity of the overall approach and to verify the
logic of the CASCADE elements which are still in a preliminary form. The project is
continuing, in particular, in the areas of event building, error handling, run control, product
distribution, and system generation. Performance analysis and optimization are still to be done.

10 FIRST APPLICATION

A first prototype of the system will soon be given to the CERN WA96 experiment. This
first implementation will use VMEDbus-based processors running OS-9, VICbus for the inter-
crate data transfer, and a cluster of Sun workstations loosely coupled to the OS-9 systems via
Ethernet.

The complete system to be made generally available is expected to be ready by the end of
1993. Support of CASCADE under LynxOS (as requested by the CERN NA48 experiment) is
foreseen in the longer term.

References

(1]
[2]

(3]
[4]

(3]
(6]
(7]

(8]
[9]

(10]
(11]
[12]
(13]

[14]

Creative Electronic Systems SA, VIC 8251F user's manual, version 0.1, Geneva,
Switzerland.

ISIS Distributed Systems, Inc., ISIS user reference manual, version 3.0, Ithaca, NY,
USA (1992).

P. Vande Vyvre, Buffer and list handling classes, CERN/ECP-DS group note (1992).
Creative Electronic Systems SA, FIC8234 user's manual, version 0.5, Geneva,
Switzerland.

Creative Electronic Systems SA, CBD8210 CAMAC branch driver user's manual,
Geneva, Switzerland.

Creative Electronic Systems SA, VCC 2117/A CAMAC crate controller user's manual,
version 1.1, Geneva, Switzerland.

Creative Electronic Systems SA, FVSBI 9210 Fastbus-to-VSB interface user's manual,
Geneva, Switzerland. ’

Creative Electronic Systems SA, FVSBI Fastbus library, Geneva, Switzerland.

Creative Electronic Systems SA, RCB8047 CORBO VME readout control board user's
manual, Geneva, Switzerland.

F. Meijers, and J. Petersen, A VME intercrate message system based on VICbus and
0S-9, CERN/ECP-DS group note (1992).

J. Petersen, A ‘'high-level' driver for the STORAGETEK STK4280 (SUMMIT),
CERN/ECP-DS 0S-9 SCSI2 group note (August 1991).

J. Petersen, A 'high-level' driver for the Exabyte, CERN/ECP-DS OS-9 SCSI5 group
note (August 1991).

P.C. Burkimsher, EMU — the MODEL error message utility, CERN/ECP-DS group
note (December 1990).

F. Meijers, EMUX — error message utility for OS-9 and POSIX, CERN/ECP-DS
group note (January 1992).

