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1 Introduction and Outline

Planckian-energy collisions represent a problem ideally located between the interests of

particle physics and those of general relativity. At those energies, large gravitational �elds

are both generated and felt by the colliding particles, which can then be used as sources and

probes for classical and quantum gravity e�ects.

By changing the impact parameter b of the collision (or its total angular momentum, J =

bE) one can explore large, intermediate or even short distances, thus progressively increasing

the sensitivity to quantum e�ects.

This is particularly noticeable when the problem is studied within the context of string

theory. String theory possesses a fundamental length parameter of its own

�s �
p
�0�h : (1.1)

While General Relativity expectations are recovered at large distances [1], substantial quantum-

string modi�cations occur [2] at b < �s provided R � GE < �s.
On the other hand, for R > �s, string-size e�ects appear to be negligible [1]. In this

paper we shall assume to be working in the latter regime, so that one is left with just two

dimensionless parameters characterizing the collision:

�G � Gs=�h and Gs=J = 4R=b : (1.2)

By de�nition of Planckian-energy scattering, the parameter �G, the gravitational equivalent
of the �ne-structure constant, will always be taken to be large. This condition ensures that
the scattering amplitude has a large phase, hence that the process is semiclassical. We note
that this condition also implies that R is much larger than both the Compton wavelength of
the colliding particles, �c = �h=E, and the Planck length, lP �

p
G�h.

By contrast, we can still vary at will the second, crucial parameter, R=b. While the process
is always semiclassical, very di�erent physics is expected to emerge depending on the value of
R=b.

The simplest case occurs at R=b� 1. Here a leading eikonal result has been obtained by a
variety of methods [1, 3, 4, 5, 6]. We note in particular, for later comparison, the approach of

Verlinde and Verlinde [5], where the problem is reduced to estimating a \topological" action,
that is, a surface term coming from a reduced two-dimensional action.

Unfortunately, the most interesting semiclassical phenomena that should originate from the

collision|such as gravitational collapse, black-hole formation and Hawking evaporation|are
only expected to occur at values of R=b of O(1) or less. This can be seen in various ways, either
within an S-matrix approach (which gives [7, 6] higher-order corrections as a power series in
R=b) or from the General Relativity point of view (numerical studies of gravitational collapse of

rotating systems [8], collisions of black holes at high energy and small impact parameters [?, 9],
etc.).

It has been pointed out [10] that the approach of ref. [5] cannot be extended in a straight-

forward way so as to be able to cope with this interesting regime. So far, the most promising

way to tackle this di�cult problem is, in our opinion, the one of ref. [7], where, following work

by Lipatov [11], one tries to describe the whole series of corrections in R=b in terms of the
classical solutions of an e�ective two-dimensional action (in the transverse coordinates).

The main criticism that one can raise to such an approach is its insistence in separating
transverse from longitudinal coordinates even in the regime of large angle scattering, which
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necessarily has to precede that of collapse. Besides, the approach is technically quite compli-

cated and, so far, only the next-to-leading correction has been computed and found to agree

with previous direct calculations.

In this paper we propose a completely new approach, which remains genuinely four- di-

mensional at all stages and yet yields a \topological" result for the S-matrix. This approach

is built upon two main ingredients:

� The correct treatment of the gravitational action through the inclusion of an appropriate

surface term;

� A �rst quantized path integral approach to quantum-�eld theory developed by Fradkin

some thirty years ago.

It makes it possible to express the semiclassical phase, to all orders in R=b, just using

surface terms. These come partly from the surface term of the gravitational action and partly

from a boundary term connected to the external particles.

The outline of the paper is as follows: In section 2 we recall some basic facts about the
necessity and form of the surface term to be added to the usual Einstein-Hilbert action. We
also present some general results on how to express such a surface integral for asymptotically
at space-times in terms of Bondi masses. Details of the calculations pertaining to this section
can be found in the Appendix. In section 3 we use Fradkin's approach to quantum �eld theory

in order to give convenient expressions for the full and amputated scalar propagators in an
external gravitational �eld. The eikonal approximation is recovered in the relevant limit, but
we shall not be restricted to it in the following. In section 4 we discuss scattering in an external
gravitational �eld, easily recovering known results. We deal, in particular, with the case of
an external shock-wave and with that of Schwarzschild's metric. In section 5 we combine our

previous results to obtain a simple expression for the S-matrix of two colliding particles, �rst
in the case of elastic scattering and then with the inclusion of gravitational bremsstrahlung.
In both cases the process is completely determined by surface terms. For the case of elastic
scattering we see the external metric approximation emerging at leading order (and failing
beyond) and we recover in an elegant way the leading eikonal result. Section 6 contains some
remarks concerning the possibility of extending the method to the case in which graviton loops

are included.

2 The gravitational action and the S-matrix of massless

particles

Two related facts distinguish the theory of gravitational interaction in an asymptotically

at space-time. First, the Einstein-Hilbert Lagrangian is linearly homogeneous in the metric,

whereas the usual �eld-theoretic Lagrangians are essentially quadratic in the �eld. Second, the

energy of gravitating �elds is given by a surface contribution at the asymptotically at in�nity,

whereas, in the non-gravitational �eld theories, it is the integral of a volume density. These
two properties have not received proper attention in quantum theory. The reason is probably

that, in perturbation theory, the gravitational interaction is really not too di�erent from the

others. It seems, however, that any reasonable attempt at non-perturbative quantum gravity
should rely on the above basic facts. No such attempt will be undertaken in the present work
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but we shall argue that, even in the regime where the gravitational �eld is treated classically,

the use of the above features of gravity can be fruitful.

2.1 The gravitational action

We start by recalling that the Einstein equations with asymptotically at boundary con-

ditions do not follow from the Einstein-Hilbert actiony

SE = � c3

16�G

Z
d4x

p�gR : (2.1)

Indeed, by making a variation of g�� in a compact domain 
, one �nds

�
Z


d4x

p�gR =

Z


d4x

p�g
"�
g��r2�g�� �r�r��g��

�
�
�
R�� � 1

2
g��R

�
�g��

#
; (2.2)

where r2 = g��r�r�. The total derivative in (2.2) can be written in terms of contribu-
tions from the boundary @ 
, but when the spatial boundary is pushed to in�nity with the

appropriate asymptotic behaviour of the metric, these contributions do not vanish. For the
Einstein equations to extremize the action, one should add to the Einstein-Hilbert action some
functional of the metric to compensate the contribution of the total derivative in (2.2). We
denote this functional by SK[g]: The total action is thus of the form

S = � 1

16�G

Z


d4x

p�gR + SK[g] + SSource ; (2.3)

where we have included possible matter sources of the gravitational �eld. The only condition
de�ning SK[g] is that

�SK[g] =
1

16�G

Z


d4x

p�g
�
g��r2�g�� � r�r��g��

�
; (2.4)

which ensures that the variational equations of the action (2.3) are of the form

R�� � 1

2
g��R = �8�GT �� ;

T �� =
2p�g

�SSource

�g��
: (2.5)

Since the action is de�ned up to an additive constant, we impose also the normalization

condition that SK[g] vanishes when the metric is at.

The derivatives acting on �g�� in (2.4) can be decomposed into normal and tangential
components with respect to the boundary @
. Terms with tangential derivatives can be

added and subtracted at will because the action (2.3) is varied under the condition

�g��
���
@


= 0 : (2.6)

yWe use the signature (�;+;+;+), the conventions R �
��� = @��

�
�� � ::: , R�� = R

�

��� , R = g��R�� ;

and, in what follows, put c = �h = 1 :
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For this reason, there are many functionals SK[g] satisfying the above requirements, di�ering

from each other by tangential derivative terms. Addition of such terms a�ects neither the

variational principle nor the value of the action (2.3) computed with an asymptotically at

metric. The action (2.3) with 
 extended to the whole of space-time is thus unique.

By using the freedom in tangential derivative terms, the functional SK[g] can be put in

an elegant form [12], where it is the trace K of the second fundamental form Kij on @ 


integrated over the boundary. However, we will not be able to use this expression, at least

directly, because, as discussed below, we have to deal with null boundaries. We use instead

the simplest expression for SK[g], the one that can be obtained as follows.

Let the boundary @ 
 be given by the equation

@ 
 : � (x) = 0 ; (2.7)

where � (x) is a piecewise smooth function, and let the sign of � (x) be chosen so that the

direction of growing � leads out of 
. Then the Gauss theorem can be put in the form:Z


d4x

p�g r�f
� =

Z
d4x

p�g � (� (x))f�r�� ; (2.8)

which is also valid for null boundaries, (r� (x))2 = 0. Accordingly, eq. (2.4) takes the form:

�SK[g] =
1

16�G

Z
d4x

p�g �(� (x)) r��
�
g��r��g�� � g��r��g��

�
: (2.9)

Since the metric enters SK only near the boundary, and the boundary will be carried to the
domain where space-time is asymptotically at, we can introduce an auxiliary at metric ~g��
in this domain and expand SK as

SK = SK[~g + h] = A[~g] + B[~g; h] + O[h2] ; (2.10)

where A is the zeroth-order term, B the �rst-order term, and O[h2] higher-order terms. With
the above normalization,

A [~g] = 0 ; (2.11)

and the O[h2] terms fall o� at in�nity too rapidly to give a �nite contribution. The result

is that, whatever SK is, it is given by a linear term of its deviation from the at space-time
value. But then we already know it, it is:

SK =
1

16�G

Z
asymptotic
domain

d4x
q
�~g �(� (x))r��

�
~g�� ~r�h�� � ~g�� ~r�h��

�
; (2.12)

where the quantities and operators with tilde refer to the at metric ~g�� , and

h�� = g�� � ~g�� : (2.13)

The components of g�� are calculated in a chart covering the asymptotic domain, and the
components of ~g�� are their at space-time limits.

The reason for the surface term (2.12) to be non vanishing lies in the fact that the expansion
of the Einstein-Hilbert action in the wave �eld (??) starts with a linear term. Hence, the surface

term to be subtracted is also linear in the �eld and, �nally, the �eld itself is not decreasing

su�ciently fast at large distance for giving a vanishing contribution.
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The boundary contribution to the gravitational action has been discussed in the literature

mainly in the context of Euclidean gravity. We need to calculate it for a Lorentzian asymptoti-

cally at space-time. A major requisite of this calculation is the determination of the boundary

of an asymptotically at space-time. If one thinks of space-time as of a \cylinder" bounded by

time-like and space-like hypersurfaces, then, at the space-like portions, the metric will not be

asymptotically at at all. The boundary of an asymptotically at space-time emerges after the

Penrose conformal transformation, bringing in�nity to a �nite distance [13]. It then consists

of the spatial in�nity (I�), where the space-like geodesics begin and end, the past and future

time-like in�nities (I� and I+), where the time-like geodesics begin and end, and the past and

future null in�nities (I� and I+), where the null geodesics begin and end. In the physical

space-time, the I�; I�; I� are understood as in�nite limits of a�ne parameters along the re-

spective geodesics. The metric is asymptotically at at I� ; I+ and I�, but not at I� and I+.

An important fact is, however, that I� ; I� and I+ are single points, whereas I� and I+ are

three-dimensional (null) hypersurfaces. Since the surface term in the action is an integral over

the boundary, we conclude that it is the integral over

@
 = I� [ I+ : (2.14)

If space-time has event horizons, the latter also appear as portions of the boundary. We shall
come back to this point when discussing the S-matrix.

More knowledge about the boundary is given by the behavior of the metric in its neigh-
borhood. The past and future null in�nities are treated similarly. In the appendix we shall
describe I+ following Sachs [14], and build the metric near I+ by considering the congruence
u(x) = const; (ru)2 � 0, of light rays reaching I+. A similar procedure can be followed at
I�. In the same appendix, we then calculate the boundary term in the action and show that

it can be written in the form

SK = �1

2

�Z 1

�1
duM+(u)�

Z 1

�1
dvM�(v)

�
; (2.15)

whereM+(u) and M�(v) are the Bondi masses at I+ and I�, the precise de�nition of which is

given in the appendix, and the retarded and advanced time are normalized by the conditions
(A.17) and (A.31).

2.2 The S-matrix of massless �elds

The S-matrix of the gravitational �eld coupled to a set of matter �elds  is given by the

functional integral

S =
Z
d[g�� ;  ] e

iS ; (2.16)

where S is the full action (2.3), and the integration is carried out over all �elds interpolating

between the asymptotic �elds with �xed operator data. For massless conformal invariant �elds,
these data are at I�. It is assumed that the measure in (2.16) includes all gauge-�xing, ghost

and �(0) contributions.

To leading order in �h, the classical path dominates the functional integral, and the S-matrix
takes the form

Stree = exp
�
iS jsol0n

�
; (2.17)
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where the action is to be calculated on the solution of its variational equations with the appro-

priate boundary conditions. This approximation amounts to a resummation of the Feynman

diagrams illustrated in �g. 1, as discussed further in section 5.

Consider �rst the case of pure gravity. By virtue of the �eld equations (2.5), the volume

density of the Lagrangian in (2.3) vanishes, and the action reduces to the surface term only:

Stree = exp
�
i SK[g] jsol0n

�
: (2.18)

Then, by using the result (2.15), we obtain:

Stree = exp

�
� i
2

�Z 1

�1
duM+(u)�

Z 1

�1
dvM�(v)

��
; (2.19)

which relates the S-matrix elements directly to the Bondi masses of the classical gravitational

radiation.

The vanishing of the Einstein-Hilbert action in (??) is, of course, based on its being

homogeneous in the metric. However, in general, homogeneity alone is not su�cient for the

action to vanish. With S(') homogeneous of degree n in ', and ' in�nite-dimensional (e.g. a
�eld), one can only conclude that:

nS(') =
Z
dx'(x)

� S(')

� '
+ a surface term : (2.20)

The key point here is that the equations of motion are obtained from variations of ' which
vanish at the boundary, while the variation of ' needed in the homogeneity (Euler) equation
for S, being global, does not satisfy this property. With the corrected action (2.3) for pure
gravity, one arrives at the result (2.18), that is to the identi�cation of the surface term in (??)

with SK. We stress once more that the reason for the surface term to be non-vanishing in this
case lies in the fact that, for gravity, the surface term is linear in a �eld which is not decreasing
su�ciently fast at large distance.

If one considers, instead of the S-matrix, the generating functional for Green's functions

Z[J ] =
Z
d[g�� ;  ] exp

�
iS + i

Z
d4x

p�gg��J��
�
; (2.21)

and chooses the �eld variables as g�� or
p�gg�� , the result will again be of the form (2.19), with

the only di�erence that the classical equations will be modi�ed by the presence of an external

source. The total volume density of the Lagrangian in (2.20) is again linearly homogeneous
in g�� , and no additional surface terms appear. With other choices of the �eld variables, the
result (2.19) will hold only on shell.

The result (2.19) remains valid if the gravitational �eld is coupled to non-self-interacting

conformal invariant matter �elds. Indeed, the quadratic actions of these �elds are reduced to
surface terms by their own equations of motion, and, unlike the gravitational surface term, they

vanish provided one chooses the solutions of the source-free equations that vanish at in�nity
and have �nite energies. Since the energy-momentum tensor of conformal invariant �elds is

traceless, the total action is again of the form (2.18) although the solution to be used in (2.18)

is, of course, di�erent. The absence of self interactions combined with conformal invariance of
matter �elds is a su�cient but not necessary condition for the action to reduce to the surface

term SK[g]. For example, the action

�1

2

Z
d4x

p�g g��r� r� (2.22)
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of a scalar �eld  is not conformal invariant but is linearly homogeneous in g�� , so that (2.18)

again holds.

A necessary condition follows from the form of expression (2.19) y. Note that M+(u) has

�nite limits at both u = �1 and u = +1, and similarly M�(v). The limits M+(�1) and

M�(+1) are both equal to the ADM massM0, so thatM0 cancels in the di�erence. If matter

consists only of massless radiation that comes in through I� and goes out through I+, one
has M�(�1) = 0 and M+(+1) = 0: Generally, for the di�erence of the integrals in (2.19) to

be �nite, one should at least have

M�(�1) = M+(+1) ; (2.23)

which means that the energy carried by time-like sources is conserved separately. If this

condition does not hold, there should be a non-vanishing volume density of the Lagrangian to

secure the �niteness of the total action.

A promising feature of writing the action through the Bondi masses, is that it easily allows

for the introduction of the machinery and interpretations of classical gravity theory, thus
making possible the use of solutions [?, 8, 9] that go far beyond at-space perturbation theory.
The S-matrix can then be constructed and used, hopefully, for studying the semiclassical

phenomena discussed in the Introduction. In particular, if the relevant classical solution has
event horizons, then not all the energy entering through I� will appear at I+; a portion of it
will fall into the black hole. Since the S-matrix is calculated only between the states de�ned
at I� and I+, this loss should be felt in (2.19). Alternatively, one may include the horizon as
a portion of the boundary, which means adding the states de�ned at the horizon.

3 Scalar Propagators in Fradkin's Approach

Fradkin [15] has pioneered an approach to quantum �eld theory, in which integration
over a quantum �eld is avoided by writing the propagators as functional integrals of the �rst
quantized theory. Here we use his formulation in the case of the propagator for a scalar �eld
in Einstein's theory of gravity and in the presence of an electromagnetic �eld.

3.1 The Propagator

The Green function (Feynman propagator) for a scalar �eld is de�ned [18] as

G(x; y=g) = hyjH�1jxi = i

Z 1

0
d�hyj exp [�i(H� i�)�] jxi ; (3.1)

where, in the case of propagation in an external gravitational �eld g�� ,

2H = �r�g
��r� +m2 =

�1p�g@�
p�gg��@� +m2 : (3.2)

Equation (3.1) admits a representation as a path integral as [16]

G(x; y=g) = i
Z 1

0
d�
Z X(�)=y

X(0)=x
[dX�] [dP�] exp

�
i
Z �

0
d�
�
P � _X �H

��
; (3.3)

yOne of the authors (G.A.V.) is grateful to Don Page for discussing this point.
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where the dependence of H on P � is given by replacing the covariant derivative r� ! ip�.

The correctness of this procedure can also be veri�ed by considering the action of a relativistic

point in an external metric:

S = �m
Z
d�
q
�g�� _X� _X� : (3.4)

This can also be written as

S = �1

2

Z
d�
h
e�1=2

�
�g�� _X� _X�

�
+ e1=2m2

i
(3.5)

by introducing the auxiliary einbein e. The action (3.5) has the advantage of allowing a

straightforward massless limit m! 0. Eliminating e through its equation of motion:

e = �g�� _X� _X�=m2 (3.6)

one recovers (3.4).
According to (3.5), the conjugate momentum is

P� = e�1=2 _X�g�� (3.7)

so that, upon use of (3.7) and (3.6):

P�g
��P� = g�� _X� _X�=e = �m2 : (3.8)

The reparametrization invariance of the action (3.4) forces the canonical Hamiltonian to
vanish so that the full Hamiltonian reduces to the constraint itself, that is

H =
1

2

�
P�g

��P� +m2
�
: (3.9)

In the de�nition (3.9) we have neglected ordering ambiguities, which give rise to a possible

additional term proportional to the scalar curvature. The coe�cient of such a term can be
�xed, for example, by imposing conformal invariance for the massless, spin-0 wave equation,
to obtain

2H = �r�g
��r� +m2 � 1

6
R : (3.10)

However, in this paper, the functional integral (3.3) will be used only to the lowest-order WKB
approximation, where it is unambiguous, and the problems inherent in its de�nition will not
be discussed further.

The propagator is therefore de�ned by (3.3), which yields, after integrating out the mo-

menta,

G(x; y=g) =
Z 1

0
d�
Z
[
q
�g(X)dX�]�(4) (x�X(0)) �(4) (y �X(�))

� exp

�
(i=2)

Z �

0
d�
�
g�� _X� _X� �m2

��
: (3.11)

The measure in (3.11) and below must be understood as containing the usual factor (2�d�)�2

arising in the integration over [dP�].
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The Green function (3.11) can also be generalized in a straightforward fashion to include

an electromagnetic �eld by the usual substitution p� ! p� � eA� to give

G(x; y=g;A) =
Z 1

0
d�
Z
[
q
�g(X)dX�]�(4) (x�X(0)) �(4) (y �X(�))

� exp

�
(i=2)

Z �

0
d�
�
g�� _X� _X� + 2eA�

_X� �m2
��
: (3.12)

The propagators (3.11) and (3.12) are connected (in the sense that the vacuum diagrams

have been already divided out), but not amputated. In order to properly de�ne the S-matrix

�a la LSZ, we need the on-shell amputated propagator, in which the external legs have been

removed:

Gc(p; p
0=g;A) = (3.13)

lim
p2;p02!�m2

(p2 +m2)(p02 +m2)
Z
d4x d4y exp

h
ip � x� ip0 � y

i
G(x; y=g;A) ;

where the Fourier transform is taken with respect to asymptotically Cartesian coordinates.

The prescription we use for obtaining Gc directly is the following y. The integral over � in

(3.11) and (3.12) is replaced by a limit in which the initial and �nal �'s go, respectively, to
minus and plus in�nity. Accordingly, the amputated propagator is given by

Gc(p; p
0=g;A) = lim

p2;p02!�m2
lim

�i!�1

�f!1

1

�f � �i

Z
[
q
�g(X)dX�] exp

h
iA
i
; (3.14)

where

A = p �X(�i)� p0 �X(�f ) +
Z �f

�i

d�L(� ) (3.15)

and

L(� ) =
1

2

�
g�� _X� _X� + 2eA�

_X� �m2
�
: (3.16)

The prescription (3.14) gives the same result as the de�nition (3.13), as can be readily
checked in perturbation theory.

The form (3.16) of the Lagrangian corresponds to the gauge in which e = 1 and � = �=m,

where � is the particle's proper time. Only a�ne transformations remain as invariances of the
action after such a gauge �xing.

The propagator (3.14) is our starting point. It provides a solution for the quantum motion
of a scalar particle in terms of a functional integral over trajectories. Notice that the measure

[dX�] in (3.14) includes an integration over the initial (X�(�i)) and �nal (X�(�f )) positions.

At Planckian energies the mass term as well as the electromagnetic interactions can be
neglected. Furthermore the action A is large and the stationary phase approximation should

be valid to O(�h�1).
Making A stationary not only with respect to X�(� ) inside the integration region for � but

also, say, with respect to the �nal position gives:

�X� + ����(X) _X� _X� = 0; (3.17)

yThis method, based on a result given in [?], was used within a functional approach in a series of papers on
scattering amplitudes in QED [?].

9



_X�g�� (�f) = _X�(�f )��� = p0�: (3.18)

At this point the only integration left is an ordinary integration over the initial position,

everything else being then �xed by the (null) geodesic. As a result the bulk term in (3.15)

vanishes and the phase of the Green function (3.14) (phase shift) can be computed in terms of

the initial and �nal positions of the particle as:

Gc(p; p
0=g) ' Lim

Z
d4Xi exp i

h
p �Xi � p0 �Xf (Xi)

i

' Lim
Z
d4�exp�i

h
q � � + P ��(�)

i
; (3.19)

where we have introduced the notations:

Xi � X(�i); Xf � X(�f );

� = (Xi +Xf ) =2; � = Xf �Xi ;

P = (p + p0) =2; q = p0 � p ; (3.20)

and we have taken
q
�g(Xi) = 1 since the asymptotic conditions are de�ned far enough from

any gravitation �eld and we are using Cartesian coordinates there. Finally, we have introduced
the short-hand notation:

Lim � lim
p2;p02!�m2

lim
�i!�1

�f!1

1

�f � �i : (3.21)

The �nal expression for the propagator (3.19) only depends on Xi and Xf : it has thus
been reduced to a \boundary" term. The propagator (3.19) appears to take di�erent forms

according to which variables are integrated �rst by means of the saddle-point approximation
(i.e. by using the geodesic) and which are left to the end for a more precise integration method.
In (3.19) we have written two possible forms for the propagator that we will use in the following.
In the second one, we have traded the remaining integration over Xi for the one over �, with
the understanding that � should be expressed in terms of � and of the external �eld.

The �nal outcome of such a procedure may depend, in general, on the above separation
of integration variables, the correct choice being dictated by the particular problem at hand.
In the following, in order to be on the safe side, we shall always imply that our �nal results,
when expressed as integrals, are to be trusted only in the saddle-point approximation, where

the order of integration becomes immaterial and the result is unambiguous.

3.2 Eikonal Approximation

As a check of (3.14) and of (3.19), we can computeGc in the eikonal limit. This corresponds

to a saddle-point approximation for the functional integral in which the classical trajectory

X�(� ) is computed to the lowest non-trivial order. In this case, the Green function (3.14) feels

the change in phase along such a trajectory as a function of the external �eld g��(X) or A�(X).
Let us consider again the massless case m = 0 in the absence of electromagnetism. We

write the metric tensor as

g�� = ��� + 2�h�� ; (3.22)
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where �2 = 8�G :

Solving for the geodesic motion (3.17) to lowest order in � yields:

_X�(�) = _X�(�i)� _X�(�i) _X
�(�i)

Z �

�i

d� ����(X(� )) (3.23)

and thus, after use of (3.18),

X�(�) = X�
i + p�(� � �i)� p�p�

Z �

�i

d�
Z �

�i

d� 0 ����(X(� 0)) : (3.24)

We can now insert the above perturbative results into (3.15) to obtain

A = �q � � + �
Z �f

�i

h�� (X(� )) p�p�d� +O(q2) +O(�q) : (3.25)

In the argument of h�� we may now use the lowest-order (straight) trajectory:

X
�
0 (�) = �� + p� [� � (�f + �i)=2] ; (3.26)

where

p� =
��

�f � �i : (3.27)

Inserting these results into (3.19), the eikonal propagator becomes

Gc(p; p
0=h) = lim

�i!�1

�f!1

1

�f � �i

Z
d4�

� exp

�
�iq � � + i�

Z �f

�i

h��

�
� + p (� � �f + �i

2
)

�
p�p�d�

�
; (3.28)

The component of � parallel to p can be easily integrated since the integrand depends
trivially on it:Z

d4�exp [�iq � �] (: : :) = p0
Z �f

�i

d� exp
�
�iq � p

2
�

� Z
d3� (: : :) : (3.29)

The integration in d� cancels, to leading order in q, the factor 1=(�f � �i) in the limit de�ning

(3.14) and we are left with the integration over the three components of � orthogonal to p.

After a trivial change of variables we �nally obtain:

Gc(p; p
0=h) ' E

Z
d3b exp

�
�iq � b+ i�

Z +1

�1
h�� (b+ p� ) p�p�d�

�
; (3.30)

where we have introduced

b =
�fXi � �iXf

�f � �i
; (3.31)

so that X�
0 (�) = b� + p��, and the remaining integration is with respect to the components of

b others than the one in the direction of p. The above result is in agreement with the known
expression [19].
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The electromagnetic case can also be derived along similar lines to give the old result [20]:

Gc(p; p
0=A) ' E

Z
d3b exp

�
�iq � b+ ie

Z +1

�1
A� (b+ p� ) p�d�

�
: (3.32)

It is perhaps instructive to give a second derivation of the gravitational eikonal starting

directly from (3.14) and using at �rst only (3.17) at �xed X(�i), X(�f ). A straightforward

calculation then gives:

A = �P ��� q � � +
�������

2(�f � �i)
(3.33)

+
����

(�f � �i)2
�

Z �f

�i

d � h��

 
� +�

� � (�f + �i)=2

�f � �i

!
:

The integration over � can be done to lowest order in � by standard perturbative techniques.

� is replaced in the interaction part of the action by a di�erential operator acting on the

remaining integral, which is Gaussian, to obtain:

Gc(p; p
0=g) = Lim

Z
d4� exp (�iq ��) (3.34)

� exp

" �i
(�f � �i)2

@

@P�

@

@P�
�

Z �f

�i

d� h��(� + : : :)

#
exp

h
�iP 2(�f � �i)=2

i
:

Terms in (3.33) obtained by not acting on the exponent can be shown to be sub-leading by
powers of q=P or of 1=P 2(�f � �i) and are thus negligible for small angles. One is therefore
left with the di�erential operators acting only on the exponent and one remaining ordinary
integration variable, which can be chosen to be �. The result (3.30) is thus easily recovered.

4 Scattering in an External Gravitational Field

4.1 General Considerations

Before moving on to the full scattering matrix of the two-body collision, it is useful to

check our framework in the simpler case of the scattering in an external gravitational �eld.

We consider two examples for which an exact solution for the geodesics is known: the (gen-
eralized) Aichelburg-Sexl (AS) shock wave [21] and the Schwarzschild (black hole) metric [22].

Planckian scattering in the Schwarzschild metric has been discussed in perturbation theory

in [23].

4.2 Scattering by a null shock wave

The AS metric is an exact solution for the gravitational �eld produced by a single massless
particle. Its generalization to an instantaneous light pulse of arbitrary energy pro�le �(y; z) is
of the form:

ds2 = �dU dV + f(y; z)�(U) dU2 + dy2 + dz2 ; (4.1)
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where U = t�x, V = t+x are at-space null coordinates and the function f of the transverse

coordinates y; z, the pro�le function of the shock wave, is related to the energy pro�le � by the

Einstein equations:

� f = �2�2� : (4.2)

For the special case of a point particle of energy Eb (b for beam), this gives the well known AS

result, for which

� = Eb �(U) �
(2)(xT ) (4.3)

where xT = (y; z), and

f(xT ) = ��
2

2�
Eb ln(y2 + z2) : (4.4)

The classical trajectory lies in a plane. In a coordinate system in which this is the x� y plane
it is given, in parametric form, by [24]

U(�) = 2pu� + U0

V (�) = f 02U(�)�(U)=4 + f(b)�(U) + V0

xT (�) = (b+ f 0U(�)�(U)=2 ; 0) ; (4.5)

where V (�i) = V0, U(�i) = U0 and xT (�i) = b are the initial conditions.
We take �i = 0 and �f = � to simplify the notation; the propagator can be written according

to (3.19) as

Gc(p; p
0=AS) =

lim
�!1

1

�

Z
d4�exp i

h
(qu�v + qv�u)=2 � qT�T

+(P u�v + P v�u)=2 � PT�T

i
; (4.6)

where, from (4.3), we have:

�v =
1

2

�
f(b) +

1

4
f 02 (2pu� + U0)

�
+ V0 ;

�u = pu� + U0 ;

�T =
�
b+

1

4
f 0
h
2pu� + U0

i
; 0

�
; (4.7)

and we parametrize the momenta as follows:

P =
1

2
(E + E0; �E �E0 cos #; �E0 sin #; 0) ;

q = (E0 � E; E � E0 cos#; �E0 sin#; 0) : (4.8)

Integration over V0 gives a �(q
u) thus enforcing

E = E0(1 + cos #)=2 ; (4.9)

so that

P u = 2E ; qv = 2P v = 2(E0 � E) and 2PT = qT = �E0 sin # : (4.10)

13



Accordingly, the phase becomes

�qT � b+ Ef +

�
(E0 � E) +

1

4
f 02E � 1

2
qTf

0

� eU ; (4.11)

where eU = 2pu� + U0.

The result (4.9) can also be written as

�qT � b+ Ef +
eU
4E

h
qT � f 0E

i2
(4.12)

by means of the mass-shell condition

q2T = 4E(E0 � E) : (4.13)

The above calculation can be repeated, of course, for any initial transverse vector xT (�i) =

(b1; b2). The Green function is therefore

Gc(p; p
0=AS) = Lim

2pu�(qu)

�

Z �

0
d�0

Z
d2b exp

h
�iqT � b+ iEf(b)

i
� exp

h
i�0 (qT � f 0E)

2
i
; (4.14)

which is dominated by a stationary phase at

qT = Ef 0 ; (4.15)

corresponding to the known [24] relation between scattering angle and impact parameter in
the generalized AS metric:

tan #=2 = �f 0=2 : (4.16)

In that saddle approximation we can also use:

lim
�!1

1

�

Z �

0
d�0 exp

h
i�0 (qT � f 0E)

2
i
= 1 ; (4.17)

and therefore obtain for the scattering amplitude

Gc(p; p
0=AS) = 4E�(qu)

Z
d2b exp

h
�iqT � b+ iEf(b)

i
; (4.18)

in agreement with the known result [25].

4.3 Scattering by a black hole

The problem of the scattering of a massless scalar particle by a (Schwarzschild) black hole is
most easily discussed in spherical coordinates. We introduce the Green function for the partial
waves (E; l;m) and (E0; l0;m0) as

G(E; l;m;E0; l0;m0) =
Z
d4x

Z
d4yhl0m0E0jyihxjlmEiG(x; y) (4.19)
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for which, in standard notation,

hxjlmEi = Ylm (�; �)REl (r) exp�iEt
hl0m0E0jyi = Y �

l0m0 (�; �)R
�
E0l0 (r) exp�iE0t ; (4.20)

in order to transform to spherical coordinates.

In this case the propagator for the partial waves can be written as

G(E; l;m;E0; l0;m0) = lim
�f!+1

�i!�1

1

�f � �i

Z
dX�(�i)

� exp [�iEt(�i) + iE0t(�f )]

�Ylm (�(�i); �(�i))Y
�
l0m0 (�(�f ); �(�f ))REl (r(�i))R

�
E0l0 (r(�f )) ; (4.21)

where the measure is

dX� = dt(�i) r
2(�i) dr(�i) d�(�i)d cos �(�i) (4.22)

and one integrates over the initial conditions, the �nal ones being given by the dynamics.
The classical equations of motion are given in parametric form as [26]:

 
dr

d�

!2
= 1 � b2

r2

�
1 � r0

r

�
;

d�

d�
=

b

r2
;

dt

d�
=

�
1� r0

r

��1
; (4.23)

where b = l=E and r0 = 2MG is the horizon radius.
We consider a planar motion with m = 0 and

�(�i) = �(�f ) ; (4.24)

which implies that the integration over the azimuthal initial angle gives a �0;m0.
The integration over the angle �(�i) can also be performed directly, to yield

�ll0 i
2lPl (cos��) ; (4.25)

where

�� = �(�i)� �(�f ) : (4.26)

Similarly, we can integrate over the initial times to obtainZ
dt(�i) exp

h
�i(E � E0)t(�i) + iE 0�t

i
= �(E � E0) exp

h
iE�t

i
; (4.27)

where

�t = t(�f )� t(�i) : (4.28)

15



In this way we �nd:

G(l; E) = lim
�f!+1

�i!�1

1

�f � �i
Z
r2(�i)dr(�i)i

2l exp
h
iE�t

i

�Pl (cos��)REl (r(�i))R
�
El (r(�f )) ; (4.29)

which, for large l, can be approximated by

G(l; E) = lim
�f!+1

�i!�1

i2l

�f � �i
Z
r(�i)dr(�i)

r(�f )

� exp i
h
E�t� prr(�f )� p0rr(�i)� l�

i
�
�
exp

�
il��+ i

�

4

�
� exp

�
�il��� i

�

4

��
; (4.30)

where we have taken, respectively, an incoming wave at the initial time and an outgoing

wave at the �nal time. In our parametrization, and for �i and �f su�ciently large, we have

r(�i) ' r(�f ) = L, in such a way that the argument of the exponential no longer depends on
r(�i). Therefore, the remaining integration over r(�i) can be performed to give

1

�f � �i

Z
dr(�i) ' 1

�f � �i

Z �f

�i

dL �! 1 ; (4.31)

and 2L ' �f � �i. The radial momenta are

pr ' p0r = E
p
L2 � b2=L ' EL : (4.32)

The partial wave amplitude (propagator) S(l; E) is thus given by:

S(l; E) = G(l; E) = exp(2i�l) (4.33)

with:

2�l =
E

�h
[�t� 2L]�

�
l (�� + �) +

�

4

�
: (4.34)

Equation (4.32) is the main result of this section. It expresses the phase shifts in terms
of �t and ��, which are de�ned in (4.26) and (4.24) and can be obtained by integrating the

classical equations of motion (4.21).

The free-motion phase shift is just

2�
(0)
l = �l+

�

4
: (4.35)

Going back to momentum space, the propagator can now be written as

G(E; #=Schw) =
X
l

(2l + 1)Pl(cos #)G(l; E) (4.36)

where # is the scattering angle.

The sum over l is dominated by a stationary phase at

�# =
d�l

dl
: (4.37)
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By using the explicit form of �l, (4.32), we �nd the stationary phase condition (4.35) in the

form (L!1):

�# = b
Z 1

rmin

dr

r2
q
1� (1 � r0=r) (b2=r2)

� � ; (4.38)

which agrees with the classical equation for the orbit found in [26] in terms of an elliptic integral

of the �rst kind.

The shift in the time coordinate in (4.32) is particularly interesting. It can be written as

�t = �f � �i + 2r0

Z
rmin

dr

r � r0

1q
1� (1 � r0=r)(b2=r2)

: (4.39)

We see that for rmin � r0 (corresponding to angular momenta l < E~b, where ~b = 3
p
3r0=2

is the critical impact parameter below which classical capture takes place), �t acquires an

imaginary part:

Im�t = 2�r0 : (4.40)

Thus the incoming wave is almost completely absorbed for b < ~b (recall that, in order for our
approximations to be valid, we are always at r0E >> 1), the transmission probability being

O
�
e�4�r0E

�
= e�E=TH , where

TH = 1=4�r0 ; (4.41)

is the black hole temperature.
Finally, the imaginary part (4.38) gives an inelastic contribution to partial wave cross

sections with l < E~b :

�lin =
�

E2
(2l + 1)

�
1 � exp (�E=TH)

�
: (4.42)

The above results are in full agreement with those obtained in the literature by a more
direct (and involved) computation [27]. In particular, the total inelastic cross section can
easily be evaluated to give

�in =
�

E2

l=E~bX
l=0

(2l + 1) ' 27

4
�r20 : (4.43)

In closing this section we wish to mention that sometime ago Hartle and Hawking [28]

addressed the problem of spontaneous black hole radiation by using an approach where complex
trajectories dominate the path integral.

5 Two-Body Collisions

After having checked our method in the case of scattering in an external �eld, we shall

now turn to our real goal, the Planckian-energy collision of two light (massless) quanta.
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As explained elsewhere [1, 7], the semiclassical approximation should be valid in the Planck-

ian energy regime for any �nite value of the parameter R=b and provides an S-matrix of the

form:

lnS(E; b) = iGs

�h
F (R=b; log s; log b)

�
1 +O(�h)

�
: (5.1)

This approximation corresponds to resumming all Feynman graphs which become (possibly

disconnected) tree diagrams once the scalar-particle propagators are cut. They are illustrated

in �gs. 1 and 2 for the case of elastic and inelastic scattering, respectively. Notice that neither

matter loops nor pure graviton loops are allowed in these diagrams. Simple power counting

arguments show [1, 7] that these loops only contribute to theO(�h) corrections indicated in (??).
In the functional integral, the semiclassical limit corresponds to a saddle point approxima-

tion in which the classical solution for X� and g�� are inserted in the action. The basic idea is

thus quite simple: use the homogeneity in g�� of the bulk terms in the gravitational and scalar

particle actions to reduce the whole action on the classical equations of motion to just surface

terms (the gravitational term SK and the term Spext).

We �rst discuss the case of elastic scattering, reproducing in a simple and elegant way
the known leading-eikonal result, and then briey discuss how the method retains its validity
beyond such approximation.

5.1 Elastic Scattering

In the absence of matter loops, the elastic scattering amplitude is given by

(2�)4�(4) (p1 + p2 � p01 � p02)A (p1 + p2 ! p01 + p02) =

�
Z
[dg�� ] exp

�
iSg

�
G1
c (p1; p

0
1=g)G

2
c(p2; p

0
2=g) : (5.2)

where, for the sake of simplicity, we restrict our attention to the case of two distinguishable
scalar particles, thus avoiding complications with crossed or annihilation diagrams.

By means of (3.14), the right-hand side of eq. (5.1) can be written as

lim
�i!1

p2
i
!0

��i
�1

���i
�2

�Z
[
q
�g(X1)dX

�
1 ][
q
�g(X2)dX

�
2 ][dg�� ] exp

�
iS
�

(5.3)

for

S = Sg + S1 + S2 + Spext ; (5.4)

where

Sg = � 1

2�2

Z p�g R d4x+ SK ;

Si =
1

2

Z �i

0
d�i g��(Xi) _X

�
i (�i) _X

�
i (�i) ;

Spext = p1 �X1(0)� p01 �X1(�1) + p2 �X2(0) � p02 �X2(�2) ; (5.5)

and SK is the surface term (2.15).
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The classical equations of motion are obtained by a variation with respect to g�� :

R��(x)� 1

2
g��R(x) = � �2

2
p�g

X
i=1;2

Z �i

0
d�i �

(4) (x�Xi(�i)) _X
�
i (�i)

_X�
i (�i) (5.6)

and with respect to X�
i :

�X
�
i + ����(Xi) _X

�
i
_X�
i = 0 for i = 1; 2: (5.7)

As we have already discussed in the case of the propagation in an external �eld, the homo-

geneity of Si and, now, of Sg as well, yields an action that reduces, on the equations of motion,

to a surface term:

S
���
sol0n

= SK + Spext : (5.8)

In the semiclassical limit, we therefore have

(2�)4�(4) (p1 + p2 � p01 � p02)A (p1 + p2 ! p01 + p02) =

lim
�i!1

p2
i
!0

�1
�1�2

Z
dX1(0)dX1(�1)dX2(0)dX2(�2) exp (iSjsol0n) : (5.9)

The amplitude (5.8) can be rewritten by introducing the variables

yi = Xi(0) �Xi(�i)

� = (X1(0) +X1(�1)) =2� (X2(0) +X2(�2)) =2

q = (p1 � p01)=2 � (p2 � p02)=2

Pi = (pi + p0i)=2

� =
X
i

Xi (5.10)

after which an integration over � cancels the overall �-function on the left-hand side of eq. (5.8).
We thus obtain

A (p1 + p2 ! p01 + p02) =

lim
�i!1

p2
i
!0

�1
�1�2

Z
d4� exp

h
iq ��+ iP1 � y1 + iP2 � y2 + iSK

i
: (5.11)

It is at this stage that (possibly non-perturbative) approximate solutions for the classical
collision geometries or their generalizations should be used to calculate the amplitude (??). In

this paper we only carry out a �rst non-trivial check of the method by showing how the known

leading eikonal result arises from our surface terms. The derivation is then compared with the
one using perturbation theory in the Newton constant.

5.2 Leading Eikonal Approximation

The leading eikonal approximation corresponds, in our approach, to working out the

surface terms appearing in (??) toO(E2). For the external particle contribution the calculation
is simple since, to this order, one just needs the shifts yi to O(E). To this purpose we can use
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the leading order form of the metric which consists of the two independent AS shock waves

created by the two particles:

h�� = h��(1) + h��(2)

= ��
2E1

2�
~r�U ~r�U �(U) ln

�
y2 + z2

�

��
2E2

2�
~r�V ~r�V �(V ) ln

�
(y � b)2 + z2

�
; (5.12)

where, in suitable coordinates, the transverse vector b can be identi�ed with the transverse

components of the four-vector � appearing in (??).

The calculation of the shifts is now identical to the one used in section 4.2, in the case of

scattering from an external �eld. In a generic boosted frame, in which the two particles are

coming against each other along the x axis, the initial momenta are

p01 ' p1 = (E1; E1; 0; 0) (5.13)

and

p02 ' p2 = (E2;�E2; 0; 0) (5.14)

and we readily �nd (see eq.(??):

P1 � y1 = P2 � y2 = ��
2E1E2

2�
ln b2 : (5.15)

We see that the contribution of the external momenta is twice the desired value because,
unlike in the external metric problem, there are now two identical contributions from each
colliding particle. If the known result is to emerge, the gravitational surface term SK should

contribute as:

SK =
�2E1 E2

2�
ln b2 ; (5.16)

We shall �rst show how this result arises very simply from the Bondi masses and next
compare it with the perturbative calculation. An apparent di�culty in both approaches is that
we need the action to O(E2) whereas the metric (5.11) is valid only to to O(E). Nevertheless,
as we shall see, having the metric to O(E) is actually su�cient.

We recall, from the appendix, the meaning of the Bondi masses. M�(v), at I�, is the

energy brought into the system by the (advanced) time v, while M+(u), at I+, is the energy
present in the system at (retarded) time u. Note the di�erence in notation and meaning:

the arguments v and u of the Bondi masses are exactly null variables and label, respectively,

converging and diverging spherical congruences, whereas the V and U coordinates appearing
in (5.11) are only approximately null (they are such only in the at metric) and label plane

congruences.
To lowest order in E1, E2, the only relevant e�ect is again the above mentioned shift of the

geodesics computed this time in terms of the variables u, v. Consider �rst the case of a single
non-interacting massless particle. In this case, U remains exactly null and the Bondi masses

are of the form:

M�(v) = E1 �(v) ; M+(u) = E1 �(�u) ; (E2 = 0) ; (5.17)
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expressing the fact that a particle of energy E1 comes in through I� at the instant v = 0 and

goes out through I+ at the instant u = 0. There are no further energy uxes either through

I� or through I+.
In the case of two particles, there are still no interactions at past null in�nity. Therefore

the Bondi mass M� is simply

M�(v) = E1 �(v) + E2 �(v) ; (5.18)

which means that both particles show up at I� at the instant v = 0.

The time instants of their arrival at I+ will now be shifted in comparison with (??). By

using the geodesic shifts in U and V and the asymptotic relation between the two sets of

coordinates, it is easy to show that the �rst particle will arrive at I+ at u = u1 and the second

at u = u2 where

u1 = ��
2E2

2�
ln b2 ;

u2 = ��
2E1

2�
ln b2 : (5.19)

The Bondi mass at I+ is, therefore,

M+(u) = E1 �(u1 � u) + E2 �(u2 � u) : (5.20)

It should be stressed here that, while (??) is an exact expression, (??) accounts only for the
lowest-order e�ect of the time shift and neglects higher-order contributions from gravitational

radiation and mass renormalization.
Inserting eqs.(??) and (??) into the expression (2.15) for SK:

SK = �1

2

Z +1

�1
dx
h
M+(�x)�M�(x)

i
; (5.21)

we obtain precisely the desired result (??). Note that the time shifts (??) are to be computed
from the metric only to O(E) since there is already a factor E in the Bondi masses. This is the
way a metric of O(E) leads to an action of O(E2). With Bondi masses limited to �rst order

in E, one would have for M+ an expression similar to (??) and a vanishing result for SK, in

complete agreement with the fact that there is no contribution linear in E in the action.
The perturbative calculation proceeds instead as follows. The surface term SK is trans-

formed back to the volume integral of a total derivative (see (2.12) after using Gauss' theorem)

yielding

SK =
1

2�2

Z


d4x

q
�~g

�
~r2~g��h�� � ~r� ~r�h��

�
; (5.22)

where the tilde stands for at space-time.

For a direct calculation of (5.12) we would need a solution to second order in E since,
again, the insertion of the lowest-order solution (5.11) in (5.12) yields zero. This problem

can be avoided, however, by noticing that for a traceless source|such as our two massless

particles{

R =
�
~r2~g�� � ~r� ~r�

�
h�� +O(h2��) = 0 (5.23)
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and therefore SK can be written as the quadratic part of the Hilbert action plus higher-order

terms, that is

SK =
1

8�2

Z


d4x

q
�~gh��

h
~g��~g�� ~r2 + ~g�� ~r� ~r�

�2~g�� ~r� ~r� � ~g��~g�� ~r2 + ~g�� ~r� ~r�
i
h�� +O(h3��) : (5.24)

The metric (5.11) is now su�cient because (5.14) is quadratic in the solution. We thus

obtain that

SK =
1

8�2

Z
d4x

q
�~g h��

�
~g��~g�� ~r2

�
h�� =

�2E1 E2

2�
ln b2 ; (5.25)

since in this case

~g��h�� = ~r�h�� = 0 : (5.26)

We have thus obtained, by two conceptually di�erent calculations, the same �nal result for
the surface action SK. Comparison of the two methods con�rms the validity of our approach. It
also shows, in our opinion, that working in terms of the Bondi masses is simpler and physically

more meaningful. The crucial test will come, of course, with non-perturbative computations,
something we do not want to attempt here.

The scattering amplitude (??) can now be computed. In order for the two particles to
scatter at all, we have to impose the two conditions

X�
2 (�2) > X�

1 (0) ; X+
1 (�1) > X+

2 (0) : (5.27)

This gives two �-functions that can be written in terms of the variable � as

�
�
�+ � E1�1

�
�
�
�� � E2�2

�
: (5.28)

The condition (5.20) enforces the requirement that between � = 0 and � = �1, as well as
between 0 and �2, the two trajectories cross each other. The integration over the light-like

components of � thus gives

Z
d�+d�� exp

�
i

2
q+�

+ +
i

2
q��

�

�
�
�
�+ � E1�1

�
�
�
�� � E2�2

�
=

4

0
@exp

�
i
2
q+E1�1

�
� 1

iq+

1
A
0
@exp

�
i
2
q�E2�2

�
� 1

iq�

1
A q+;q�!0�! E1 E2�1�2 (5.29)

canceling the factor 1=�1�2 in (5.8). We therefore obtain:

A (p1 + p2 ! p01 + p02) = E1E2

Z
d2b exp

"
iqT � b� i

�2E1E2

2�
ln b2

#
; (5.30)

in agreement with previous results [1, 3, 4, 5, 6].
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5.3 Inclusion of Gravitational Bremsstrahlung

In order to extend the calculations of the previous section to higher orders in R=b, one

has to deal with the problem of gravitational bremsstrahlung (see �g. 2). Equivalently, in the

language of particle physics, one encounters infrared divergences in amplitudes with a given

number of �nal gravitons and some Block-Nordsiek-type treatment becomes necessary in order

to be able to extract �nite, physically meaningful results [7].

The general reasoning given in section 2.2 insures that the surface nature of the semiclassical

S-matrix remains valid even after allowing for the e�ects of gravitational radiation. It is

however instructive to see how this works in detail in the case of two-body inelastic collisions

within a conventional LSZ treatment of the S-matrix.

According to LSZ the amplitude for two scalar particles ( ) to scatter with emission of n

gravitons (h) is given (symbolically) by

A(2! 2 + n) = h    hh � � � hi
���
LSZ

; (5.31)

that is by applying the standard LSZ steps (Fourier transform, truncation of propagators and
going on shell) to the 4 + n-point function shown in (5.25).

These amplitudes are generated by the functional

A(2! 2 ; J) = h    exp(hJ)i
���
LSZ

; (5.32)

through standard functional di�erentiation with respect to the external source J . In the
absence of scalar-�eld loops, the LSZ operation amounts to replacing pairs of scalar �elds by

the corresponding amputated propagators Gc and the source J by �(2)has(x), where �(2) is
the quadratic operator appearing in eq. (5.15). has(x) then becomes the new external source.

Finally, in order for the produced gravitons to be on-shell, the condition

�(2)has(x) = 0 (5.33)

has to be imposed at the end of the computation. This allows us to replace h(x) in eq. (5.26)

with the full g��(x).
We conclude that a power expansion in has of the S-matrix functional

W(has) =
Z
[dg�� ] exp [iSg + iSbr]G

1
c(p1; p

0
1=g)G

2
c(p2; p

0
2=g) ; (5.34)

where

Sbr =
Z
d4x g(x)�(2)has(x) ; (5.35)

gives the amplitudes for emission of any number of gravitons. Following the procedure of

Section 5.1, we can rewrite (5.28) as a functional integral over g�� , X
�
1 and X�

2 with a modi�ed

action S containing, beside the terms in (5.3), the additional bremsstrahlung term (5.29).
The crucial observation at this point is that the additional term (5.29) is still e�ectively

homogeneous of degree one in g�� . Therefore, within the stated approximations, we are still
left with the result (5.7) and

W(has) = exp
h
i (SK + Spext)jsol0n

i
; (5.36)
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as expected from the general arguments of section (2.2)

Note that, while the two surface terms occurring in (5.30) are still the same ones as in

the elastic case, their actual values now include, implicitly, a dependence on gravitational

radiation through has(x). Giving has(x) amounts to specifying a de�nite �nal coherent state

of gravitons, the closest one can get quantum-mechanically to a classical radiation �eld. For a

generic has(x), one will still be plagued by infrared problems. However, as in the analogue QED

problem, a well-de�ned coherent state for which infrared divergences cancel will be chosen by

the dynamics and will represent quantum mechanically the classical asymptotic gravitational

radiation �eld generated in the collision.

In concluding this section, we want again to remark that the validity of (5.7) does not de-

pend on any approximation except the tree approximation, for both the gravitational �eld and

the �rst-quantized particles. The surface term has one and the same form for any interactions

of the gravitating �elds but its value is di�erent for di�erent interactions.

To what extent the surface nature of gravity persist when graviton loops are taken into

account is discussed in the next section.

6 Inclusion of graviton loops

The extension of the above ideas beyond the classical approximation for the metric is

based on [31, 32, 30] which dealt with the quantum uctuations of the conformal mode of the
gravitational �eld. In this section we �rst give a new, more direct, derivation of the result of
these works that also shows at which points care should be taken when using these results;
next, we discuss its relevance for the present work.

Let us write

g�� (x) = �g�� (x)�
2(x) ; (6.1)

singling out the conformal mode of the gravitational �eld, and impose on �g��(x) a constraint

�(�g(x)) = 0 ; (6.2)

such that the equation

�(
2(x)�g(x)) = 0 ; (6.3)

with �g satisfying (6.2), has only one solution


2(x) = 1: (6.4)

We may then reparametrize the ten components of g�� into nine independent components of
�g�� , constrained by condition (6.2), and the conformal mode �(x).

With respect to �g�� , eq. (6.2) plays the role of a gauge-�xing condition, which removes
the arbitrariness of local conformal transformations �g�� ! 
2�g�� . We shall consider only the

transformations that become the identity at the asymptotically at in�nity; the boundary

conditions for the conformal mode are

�(x)
���
I�;I+ ;I�

= 1 : (6.5)
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The choice of the gauge-�xing function �(�g) is limited only by the requirement that the con-

tinuous matrix

�Q(x; y) = �g��(x)
��(�g(y))

��g��(x)
(6.6)

be invertible.

Our goal is to rewrite the functional integral (2.16) in terms of a set of variables containing

the conformal mode �(x) explicitly. However, instead of introducing � and the nine indepen-

dent components of �g�� , we introduce eleven variables|� and the ten components of �g��|and

insert the delta-function �(�(�g)) in the measure. By calculating the relevant Jacobians, we

�nd Y
x;���

dg�� = (det �Q)
Y
x

�19�(�(�g))d�
Y
���

d�g�� ; (6.7)

with �Q given by (6.6). The measure in (2.16) contains local factors in g�� [29] which, after the

substitution of (6.1), will change the total power of � in the transformed measure. However,
in what follows, we shall ignore the local factors in the measure altogether by assuming, for
instance, dimensional regularization.

Next, let us �nd the form of the action (2.3) in the new variables. We have

1

6

p�gR(g) =
p��g

�
� �r2� +

1

6
R(�g)�2

�
; (6.8)

where the quantities and operators with a bar refer to �g�� . The transformation of the bound-
ary term SK [g] is also non-trivial, and its e�ect is that the total action contains no second
derivatives of �:

� 1

2�2

Z
d4x

p�gR + SK [g] =

� 3

�2

Z
d4x

p��g
�
�( �r�)2 +

1

6
R(�g)�2

�
+ SK[�g] (6.9)

so that its variational equation in � is of the form�
�r2 +

1

6
R(�g)

�
� = 0 : (6.10)

As a result, the functional integral (2.16) for the case of pure gravity takes the form

S =
Z
[d�g�� ][d�](det �Q) �(�(�g)) exp

�
� 3i

�2

Z
d4x

p��g
h
�( �r�)2

+
1

6
R(�g)�2

�
+ i SK[�g]

�
: (6.11)

The conformal mode can now be integrated out. Because of the boundary condition (6.5), one
must �rst make a shift

�(x) = �0(xj�g) + '(x) ; (6.12)

where �0(xj�g) is a solution of eqs. (6.10), (6.5), and

'(x)
���
I�;I+ ;I�

= 0: (6.13)
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We have

�0(xj�g) = 1 +
1

6
�G �R ; (6.14)

where �G is the Green function

�G = �
�
�r2 +

1

6
�R
��1

; (6.15)

whose boundary conditions, apart from the fact that the contraction �G �R vanishes at in�nity,

are to be discussed below.

Equation (6.11) takes the form

S =
Z
[d�g�� ] [d'] (det �Q)�(�(�g)) exp

(
iSconf [�g]�

� 3i

�2

Z
d4x

p��g '
 
�r2 +

1

6
R(�g)

!
'

)
(6.16)

with

Sconf [�g] = � 1

2�2

Z
d4x

p��g
�
R(�g) + 1

6
R(�g) �GR(�g)

�
+ SK[�g] : (6.17)

The crucial point is the integration over the �eld '. Its action has a wrong sign, which is
a consequence of the fact that, with Euclidean signature of the metric, the Einstein-Hilbert
action, even with the term SK[g] added, is unbounded from below [30]. It is the conformal mode

that makes it unbounded. The Euclidean functional integral over ' diverges exponentially and
we must rotate the integration contour to imaginary ' [30]. In the Lorentzian context, the
prescription to be used is di�erent: one must take for the propagator of the �eld ', instead of
the Feynman's Green function its complex conjugate:�

�r2 +
1

6
�R
�
!

�
�r2 +

1

6
�R � i�

�
: (6.18)

One thus obtains

S =
Z
[d�g�� ] �(�(�g)) (det �Q)

�
det( �r2 +

1

6
�R � i�)

��1=2
exp

�
iSconf [�g]

�
: (6.19)

The �nal step is the choice of the gauge-�xing function �(�g) satisfying the condition det �Q 6=
0. Equation (6.19) is valid with any such �(�g), but let us choose

�(�g) = R(�g) : (6.20)

Then, for �Q in eq. (6.6), one obtains

�Q(x; y) = 3
�
�r2 � 1

3
�R
�
�(x; y) : (6.21)

Under the condition �R = 0 implied by the delta-function in (6.19), this guarantees that

det �Q 6= 0. Furthermore, under the condition �R = 0, one has from (6.17):

Sconf [�g]
���
�R=0

= SK[�g]
���
�R=0

; (6.22)
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and the functional integral (6.19) takes the form

S =
Z
[d�g�� ] �(R(�g)) (det �r2)1=2 exp

�
iSK[�g]

�
(6.23)

with only the surface term in the action.

The action Sconf [�g] in (6.17) was �rst obtained in [31] and next discussed in [32, 30]. It is

invariant under local conformal transformations that become the identity at the asymptotically

at in�nity:

Sconf [

2�g] = Sconf [�g] : (6.24)

Indeed, the action Sconf [�g] is obtained from the action of Einstein's theory by making the

substitution

g�� (x) = �g�� (x)�
2
0(xj�g) ; (6.25)

Sconf [�g] = S[g]

���� g= �g�2
0
(�g)
; (6.26)

S[g] = � 1

2�2

Z
d4x

p�gR(g) + SK[g] : (6.27)

Since the function �0(xj�g) in (6.14) transforms as [31, 32]

�0(xj
2�g) = 
�1(x)�0(xj�g) ; (6.28)

the combination on the right-hand side of (6.25) is conformal-invariant, and hence any func-
tional of this combination is conformal invariant. The action Sconf [g] may be regarded as a
conformal-invariant part of Einstein's action. By rewriting eq. (6.17) in the form

S[g] = Sconf [g] +
1

12�2

Z
d4x

p�g RGR ; (6.29)

one makes it obvious that Einstein's action is the broken action Sconf with the gauge-�xing
function (6.20) introduced in the action quadratically. Since the action Sconf [g] does not contain
the harmful conformal mode, one may expect that, with Euclidean signature of the metric,
this action is already positive-de�nite. This is indeed the case. In fact, by using the conformal

invariance, the action Sconf [g] can be brought to the gauge R = 0 where

Sconf [g] = SK[g]
���
R= 0

; (6.30)

and it has been proved [33] that

�SK[g]
���
R=0

� 0; sign g = (+ +++) : (6.31)

In the derivation above, the �nal result in eq.(6.23) appears to be obtained by identically
transforming the original functional integral. However, even apart from the problem with the

propagation of the conformal mode, one reserve remains: the bar on the integration variables
�g�� in eqs. (6.19) and (6.23) is kept because the asymptotic �elds for g�� and �g�� need not be

one and the same. Equation (6.19) looks like the result of the quantization of the invariant

action Sconf obtained by the usual rules of gauge theory with �(�) the gauge-breaking term
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and detQ the ghost term. The only apparent di�erence from the usual rules is that, because

the action Sconf is non-local, there appears an additional invariant measure

�
det

�
r2 +

1

6
R � i�

���1=2
: (6.32)

However, gravity theory is not conformal-invariant, and the choice of the conformal gauge

is relevant for the physical metric. There is no other place in the integral (6.19) except the

asymptotic condition where the conformal invariance can be broken. On the other hand, there

is one and only one choice of the conformal gauge with which the metric measures distance.

For pure gravity or gravity coupled to conformal-invariant matter �elds, this choice is R = 0.

At the classical level, the variational equations of the action Sconf [g], supplemented with the

equation R = 0, are equivalent to the Einstein equation. It is, therefore, plausible that, for �g��
in (6.23), the original asymptotic conditions apply and, generally, �g�� in (6.23) can be identi�ed

with the operator of the physical metric. The functional integral (6.23), or its generalization

to the presence of massless matter, could then be used directly for calculating the expectation

values of the gravitational-�eld observables and the scattering matrix.
The relevance of the result (6.23) is that, after integrating out the conformal mode, the

action in the functional integral becomes a pure surface term. Therefore, this action can be
written again in terms of Bondi masses, those pertaining, this time, to the virtual gravitational
�elds that are summed over in the functional integral. By extending the approach advocated in

this paper one can try to use the above result to account for the contributions to the scattering
amplitude from non-perturbative virtual �eld con�gurations.
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Appendix

A Calculation of the boundary term

Let us introduce on each null surface, where u is constant, two coordinates �a; a = 1; 2,

which label the light rays, and a third coordinate r, which is a parameter along the rays. The

coordinates �a take values on a 2-sphere and can be chosen so as to ensure orthogonality, that

is (ru; r�a) � 0. The parameter r can be chosen to be the luminosity distance along the rays

by considering the induced metric y on u = const :

ds2
���u=const = gab d�

ad�b ; (a; b = 1; 2) ; (A.1)

where

gab = gab(�; r; u) ju=const ; (A.2)

and requiring that the area of the two-dimensional section u = const; r = const beZ
2�sphere

d2�
q
det gab = 4�r2 : (A.3)

The functions u; r; �a can serve as local coordinates. Four components of the metric in
this coordinate frame are already known. Three of them are

guu = (ru)2 � 0 (A.4)

gu�
1

= (ru; r�1) � 0; (A.5)

gu�
2

= (ru; r�2) � 0; (A.6)

and the fourth is �xed by the constraint (A.3). The remaining six components of the met-
ric characterize the gravitational �eld. We introduce six unknown functions 	; W; ; � and
Ua (a = 1; 2), so that

gur = (ru; rr) =
1

	
; (A.7)

grr = (rr)2 =
1

	2
W; (A.8)

gr�
a

= (rr; r�a) =
1

	
Ua (a = 1; 2) ; (A.9)

where

�1 = � ; �2 = ' 0 � � � �; 0 � ' � 2� ; (A.10)

and

(rr; r�) =
1

	
U �; (rr;r') = 1

	
U' : (A.11)

yThe induced metric on u = const is two-dimensional because, along the rays, the interval is zero.
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Next

g�
a�b = (r�a; r�b) = gab = (gab)

�1 ; (A.12)

where

gab d�
ad�b = r2

�
1

2
(e2 + e2�)d�2 + (e�� � e��) sin � d � d'

+
1

2
(e�2 + e�2�) sin2 �d'2

�
; (A.13)

and

det gab = r4 sin2 � ; (A.14)

in agreement with (A.3). Then the metric takes the form

ds2 = �W du2 + 2	dudr + gab(d�
a � Uadu) (d�b � U bdu) (A.15)

with gab given by (A.12), and its determinant is

g = det g�� = �	2r4 sin2 � : (A.16)

As seen from (A.15), the chart u; r; �a breaks down when 	 becomes zero or in�nity. The
reason for that can be understood by considering the null geodesic u = const; �a = const. Let

� be an a�ne parameter along this geodesic, growing towards the future. From the geodesic
equation one �nds

dr

d�

���� u=const
�=const

/ (ru; rr) = 1

	
; (A.17)

from which it follows that, at the point where 	 becomes zero or in�nity, r stops being a
monotonic parameter along the light ray passing through this point. At this point the light
ray hits the apparent horizon. If, during the history of an outgoing light ray, dr=d� changes
its sign an odd number of times or if dr=d� ! 0 as � ! 1, this light ray will never reach

the asymptotic domain of in�nite luminosity distance, where the metric becomes at. By
de�nition, this light ray will not come to I+.

By considering only a portion of the full congruence of null geodesics that come to I+,
we automatically guarantee that the chart u; r; �a covers the asymptotic domain near I+.
Equation (A.14) gives the general form of an asymptotically at metric near I+, and I+ is
reached at the limit r!1 with �xed u and �a. The remaining arbitrariness in the choice of

the variable u is �xed by the normalization condition

(ru; rr) jI+ = �1 : (A.18)

Then

(ru; rr) =
1

	
< 0 (A.19)

everywhere in the domain covered by the chart u; r; �a. The u and �a act as coordinates on

I+, which is topologically a product of the time axis by the 2-sphere. Because of (A.17), the
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retarded time u grows along I+ towards the future and coincides with the proper time of an

observer at rest at large and constant r. The metric at I+ behaves as follows (r!1)

W

�����I+ = 1 � 2GM+(u; '; �)

r
+ O

�
1

r2

�
; (A.20)

 + �

2

�����I+ =
C+
1 (u; '; �)

r
+ O

�
1

r2

�
; (A.21)

 � �

2

�����I+ =
C+
2 (u; '; �)

r
+ O

�
1

r2

�
; (A.22)

U �

�����I+ =
2N �

+(u; '; �)

r2
+ O

�
1

r3

�
; (A.23)

U'

�����I+ =
2N '

+ (u; '; �)

r2
+ O

�
1

r3

�
; (A.24)

	

����I+ = �1 + O
�
1

r3

�
; (A.25)

where M+; C
+
1 ; C

+
2 ;N �

+;N '
+ are �nite functions of u; '; �.

According to (A.8),

(rr)2
�����I+ = 1 � 2GM+(u; '; �)

r
+ O

�
1

r2

�
; (A.26)

and M+ averaged over the two-sphere gives

M+(u) =
1

4�

Z 2�

0
d'

Z �

0
d� sin �M+(u; '; �) ; (A.27)

which is the Bondi mass at I+, that is, the energy that remains in the system by the instant

u of retarded time. Its limit at u!�1,

M+(�1) = M0 (A.28)

is the ADM mass which is the full conserved energy stored in space-time and measured at

spatial in�nity I� . The di�erence

M0 � M+(u) =
Z u

�1
du

 
�dM+

du

!
(A.29)

is the energy radiated away through I+ by the instant u of retarded time. This is a sum of the
energy carried away by the gravitational waves and the energy radiated by massless sources.

The energy conservation law following from the Einstein equations in (2.5) is of the form

� d

du
M+(u) =

1

4�

Z 2�

0
d'

Z �

0
d� sin �

2
4 @

@u
C+
1

!2

+

 
@

@u
C+
2

!2
3
5

+
Z 2�

0
d'

Z �

0
d� sin �

�
1

4
r2 T��r�vr�v

�����
I+

(A.30)
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where v = const is the null congruence parallel to I+:
(rv)2 � 0 ; (rv; ru) jI+ = � 2 : (A.31)

The derivatives @C+
1 =@u and @C+

2 =@u of the functions appearing in (A.20), (A.21) and (A.29)

are the Bondi-Sachs news functions. They determine the manifestly positive energy ux of

the gravitational radiation. They are also the data (�nal data in the case of I+, initial data
in the case of I�) for the two degrees of freedom of the gravitational �eld counted for a

three-dimensional point. The three-dimensional points for which the degrees of freedom of the

asymptotically at gravitational �eld are counted are points of I+ or I�. Finally, the last term
in (A.29) is the energy ux of the source. It will be non-vanishing at I+ only if the source

contains a massless component.

The metric near I� is of a form similar to (A.14) but, in this case, one considers a converging

null congruence

(rv)2 � 0 ; (rv; rr) jI� = 1 ; (A.32)

and the limit of in�nite luminosity distance r is reached by going along the light rays towards
the past. Equations similar to (A.19){(A.21) and (A.25){(A.26) de�ne the Bondi massM�(v)
and news functions @C�

1 =@v; @C
�
2 =@v at I�. The Bondi mass M�(v) is the energy brought to

the system by the instant v of advanced time, and its limit at v! +1 is the full ADM mass:

M�(+1) = M0 : (A.33)

The di�erence M0 � M�(v) is the energy brought to the system by the incoming radiation
after the instant v of advanced time. Again, this is a sum of the energies of the incoming
gravitational radiation and of an incoming ux of massless sources. The energy conservation

law at I� is obtained from (A.29) by changing the notation and the sign of the left-hand side.
Of interest are also the limitsM�(�1) and M+(+1). Since we have

M0 = M�(�1) +
Z 1

�1
dv

dM�

dv
; (A.34)

M0 = M+(+1) +
Z 1

�1
du

 
�dM+

du

!
(A.35)

and the integrals on the right-hand sides are, respectively, the energy brought by radiation and

the energy carried away by radiation during the whole history, we conclude that M�(�1) is

the energy brought to the system by massive (time-like) sources coming from I�. Similarly
M+(+1) is the remainder that goes to I+ with time-like sources after the total emission of
radiation.

By assuming that T �� satis�es the dominant energy condition, it has been proved [34] that

not only the radiation uxes, both gravitational and matter, are non-negative, but also that
the ADM mass and Bondi masses are always non-negative, which means, in particular, that

the asymptotically at system cannot radiate more energy than initially stored.
The functions N �

+ and N '
+ appearing in eqs. (A.22) and (A.23) and the functions N �

� and

N '
� similarly de�ned at I�, are associated with radiated angular momentum.

To calculate the surface integral (2.12) over the boundary

I� [ I+ : � (x) = 0 (A.36)
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one may �rst go over to the Penrose space where I� and I+ really exist as three-dimensional

null surfaces, but one may also do this calculation directly in the physical space-time by

considering the null surfaces close to in�nity and, next, going over to the limit of I� or I+
respectively. The contribution of I+ is then of the form

SK jI+ = lim
c!0

1

16�G

Z
d4x

q
�~g �

 
� 1

v(x)
+ c

!
A� ~r�

 
� 1

v(x)
+ c

!
; (A.37)

with v(x) de�ned in eq. (A.30), and

A� = ~g�� ~r�h�� � ~g�� ~r�h�� : (A.38)

We shall carry out the calculation of (A.36) by using the Bondi-Sachs frame, where the

metric has the form (A.14). Accordingly, the at metric ~g�� has the form

~g��dx
�dx� = �du2 � 2dud r + r2

�
d�2 + sin2 �d'2

�
; (A.39)

and the components of h�� that do not vanish identically can be read o� from (A.19){(A.24):

huu =
2GM+

r
+ O

�
1

r2

�
; (A.40)

hur = hru = O
�
1

r3

�
; (A.41)

hu� = h�u = �2N �
+ + O

�
1

r

�
; (A.42)

hu' = h'u = �2 sin2 �N '
+ + O

�
1

r

�
; (A.43)

h�� = r2
 
2C+

1

r
+ O

�
1

r2

�!
; (A.44)

h'' = r2 sin2 �

 
�2C+

1

r
+ O

�
1

r2

�!
; (A.45)

h�' = h'� = r2 sin �

 
2C+

2

r
+ O

�
1

r2

�!
: (A.46)

In the asymptotic domain near I+, eqs. (A.30) are solved by

v(x) = 2r + u; r !1 at �xed u: (A.47)

This makes it possible to carry out the integral over r in (A.36) with the aid of the delta-

function, and the result is the limit r!1 of the remaining three-dimensional integral:

SK

����I+ = lim
r!1

1

16�G

Z 2�

0
d'

Z �

0
d� sin �

Z 1

�1
du r2A� ~r�

�
r +

1

2
u

�
: (A.48)

For the integrand in (A.47) we have

A� ~r�

�
r +

1

2
u

�
=

 
1

2

@

@r
� @

@u

!
(~g��h��)�

�
1

2
��r � ��u

�
( ~r�h��) : (A.49)
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By calculating the covariant derivatives in the metric (A.38), one obtains

��r

�
~r�h��

�
= �@rhur � 2

r
hur � 1

r3
h�� � 1

r3 sin2 �
h'' ; (A.50)

��u (
~r�h��) = �@rhuu � 2

r
huu + @r hur � @uhur +

2

r
hur +

1

r2
@�hu�

+
1

r2
cos �

sin �
hu� +

1

r2 sin2 �
@'hu' ; (A.51)

and

~g��h�� = �2hur +
1

r2
h�� +

1

r2 sin2 �
h'' : (A.52)

It is now easy to insert the asymptotic behaviors (A.39){(A.45) to get, for (A.48):

lim
r!1

r2A� ~r�

�
r +

1

2
u

�
= �2GM+ � 2 @'N '

+ � 2
1

sin �
@�
�
sin �N �

+

�
: (A.53)

Upon integration over the sphere in (A.47), the contribution of N '
+ ;N �

+ vanishes, and we obtain

SK

����I+ = � 1

8�

Z 2�

0
d'

Z �

0
d� sin �

Z 1

�1
duM+(u; '; �) : (A.54)

A similar result, but with the opposite sign, is obtained at I�. The �nal expression for SK[g]

can thus be presented in the form

SK = � 1

8�

�Z
I+
M+ �

Z
I�
M�

�

= �1

2

�Z 1

�1
duM+(u)�

Z 1

�1
dvM�(v)

�
; (A.55)

where M+(u) and M�(v) are the Bondi masses at I+ and I�, and the retarded and advanced
time are normalized by the conditions (A.17) and (A.31).
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Figure Captions

Fig. 1: Tree diagrams (after cutting the scalar propagators) which are resummed by our
method in the case of elastic scattering. The blob represents all (including disconnected) trees.

Fig. 2: Same as in �g. 1 for the case of inelastic processes.
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