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Abstract

We study the effect of integrating out the heavy fields in a supersymmetric GUT
which does not contain small mass parameters in the limit of exact supersymmetry. The
trilinear (A) and bilinear (B) coefficients of the supersymmetry soft-breaking terms of the
low-energy effective theory are related in a simple and model-independent way to those
of the underlying theory. From these relations, we obtain the bound |B| ≥ 2, which,
together with the requirements of stability of the potential and electroweak symmetry
breaking, imposes severe constraints on the space of allowed supersymmetric parameters.
In models based on supergravity with a flat Kähler metric, we obtain B = 2, instead of
the relation B = A − 1 usually used in phenomenological applications. The low-energy
theory contains also a supersymmetric mass term µ for the two Higgs doublets, which is
of the order of the supersymmetry-breaking scale.
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Low-energy supersymmetric theories of fundamental interactions contain, in addition
to the parameters of the Standard Model (SM), a set of new unknown parameters, which
can only be the subject of theoretical speculation until we are able to derive them from
experimental data. These parameters appear in the supersymmetry soft-breaking terms
and are directly related to the mechanism of supergravity breakdown. Their typical mass
scale is expected to be O(MW ), if supersymmetry is to solve the naturalness problem of
the SM.

Even more obscure is the origin of the µ-term, the mixing-mass of the two Higgs
doublet superfields of the Minimal Supersymmetric Standard Model (MSSM). This mass
term is invariant under supersymmetry and therefore it seems unrelated to the weak scale,
although it is phenomenologically required to be O(MW ). It has been previously proposed
that a term µ ∼ O(MW ) can be accommodated in models with an extra gauge-singlet
superfield [1] or generated as a supergravity-breaking effect in theories with non-trivial
Kähler metrics [2], or induced by higher-dimension operators [3].

Here we want to concentrate on models where the solution of the µ-problem lies at
some Grand Unified Theory (GUT) scale. This is of particular interest after measurements
at LEP have revealed the remarkable property of the MSSM that gauge couplings unify at
a scale MX ∼ 1016 GeV. We will therefore consider theories with a GUT threshold at MX

and assume that, at that scale, µ = 0 in the absence of supersymmetry-breaking effects.
This is dictated by a naturalness criterion, since, if non-vanishing, µ should be of the order
of the only available scales, MX or MP l. The relation µ = 0 can be the result of some
symmetry at the GUT level (as, for example, in the pseudo-Goldstone bosons model of ref.
[4]), of the specific field content of the heavy theory (as in the “missing partner” models
[5]) or of a mere fine-tuning of the parameters (as in the ordinary supersymmetric SU(5)
model [6]). Whatever the reason is, very little information on the structure of the GUT
theory is needed in order to derive the form of the soft-breaking terms of the effective
low-energy theory, as was shown in ref. [7]. By extending the analysis of ref. [7], we
connect with simple relations the supersymmetry-breaking parameters of the GUT with
the low-energy ones and with the induced µ-term. From these relations, some constraints
on the low-energy supersymmetry-breaking parameters can also be derived.

In the limit MP l → ∞ after supergravity breaking, the theory at the GUT scale is
defined by a softly broken supersymmetric Lagrangian. In particular, the potential for
the complex scalar fields z is [8]:

V (z∗, z) =

∣
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∣

∂f

∂z

∣

∣

∣

∣

∣

2

+ m2 |z|2 + m(AXf (3) + BXf (2) + h.c.) +
1

2

∑

k

D2
k, (1)

where Dk = z†T(k)z, T(k) are the gauge group generators, AX , BX , m are the soft-breaking
parameters, f (2) and f (3) are the terms in the superpotential respectively bilinear and
trilinear in the fields z. For simplicity, we assume that the superpotential does not contain
terms linear in the fields, and thus f = f (2) + f (3). If the underlying supergravity theory
has a flat Kähler metric, then [8]:

BX = AX − 1. (2)

For general supergravity couplings, eq. (2) does not hold, and m, AX and BX are
no longer universal but become matrices. This is usually the case in theories derived
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from superstrings [9]. Motivated by the observed suppression of flavor-changing neutral
currents, we will assume universal couplings in eq. (1), allowing only for BX 6= AX − 1.
We will briefly comment later on the general case.

At MX the GUT is spontaneously broken to the Standard Model. We define
z̄ ∼ O(MX) to be the vacuum expectation values of the fields z in the limit of exact
supersymmetry. Since supersymmetry is not spontaneously broken at the scale MX :

∂f

∂z
(z̄) = Dk(z̄) = 0. (3)

Since we are assuming that all mass parameters entering the superpotential f are O(MX),
we can distinguish the fields za appearing in the potential in three classes. In the limit of
exact supersymmetry, zA are complex scalars with mass O(MX), zα are massless complex
scalars with 〈z〉 = 0 (which corresponds to the low-energy fields), and zK are real scalars
belonging to the massive vector supermultiplets of the broken generators. We now want
to integrate out the heavy fields zA and zK in order to obtain the low-energy effective
theory, following the same procedure as in ref. [7]1. Using a series expansion in m/MX

to solve the equations of motion for the heavy fields, we obtain:

zA = z̄A + ΦA − (f−1)AB

[

m
(

B∗
X +

1

BX − AX

)

Φ∗
B

+
1

2
fBCDΦCΦD +

1

2
fBαβzαzβ

]

+ O
(

m3

M2
X

)

, (4)

zK = −1

2
(M−1)KLDL(ΦA, zα) + O

(

m3

M2
X

)

, (5)

ΦA ≡ m(BX − AX)∗(f−1)AB z̄∗B, MKL ≡ z̄†{T(K), T(L)}z̄, (6)

where fAB = ∂2f
∂zA∂zB |z=z̄, fabc = ∂3f

∂za∂zb∂zc |z=z̄, etc.
Plugging these expressions back in eq. (1), we obtain the potential of the low-energy

effective theory

Veff =

∣

∣

∣

∣

∣

∂feff

∂zα

∣
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∣

∣

∣

2

+ m2|zα|2 + m(Af
(3)
eff + Bf

(2)
eff + h.c.) +

1

2

∑

k′

D2
k′, (7)

where the index k′ runs over the unbroken generators and

f
(3)
eff =

1

6
fαβγz

αzβzγ , f
(2)
eff = µαβzαzβ , feff = f

(3)
eff + f

(2)
eff , (8)

A = AX , (9)

B = AX − BX +
1

(AX − BX)∗
, (10)

µαβ = m(AX − BX)∗Cαβ, Cαβ ≡ −1

2
fαβA(f−1)AB z̄∗B. (11)

1We have tacitly assumed MX ≪ MPl. This is just to simplify the calculation, but our results are
valid also for MX ∼ MPl, since, as shown in ref. [7], the renormalizable interactions of the low-energy
effective theory do not contain any power of MX/MPl.
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Therefore, the potential of the low-energy theory, eq. (7), has the same form as eq.
(1), with the soft-breaking parameters related by eqs. (9) and (10) and an induced µ-term
as in eq. (11). Notice that the case of a flat Kähler metric, eq. (2), corresponds to

B = 2. (12)

For generic AX and BX we obtain from eq. (10):

|B| ≥ 2. (13)

The constraints in eqs. (12) and (13) apply to the low-energy B parameter and are
relevant to phenomenological applications.

All the dependence on the details of the GUT model is contained in the parameter
Cαβ in eq. (11). There is a class of theories in which Cαβ turns out to be independent
of the details of the model: the supersymmetric GUT with Higgs as pseudo-Goldstone
bosons [4].

In these models, the Higgs sector is globally invariant under a group Ggl larger than
the GUT gauge group Gloc. At MX , Gloc is broken to Hloc (the SM gauge group) and
Ggl to Hgl. The Goldstone bosons corresponding to the broken generators of Ggl/Hgl,
not contained in Gloc/Hloc and therefore not eaten by the Higgs mechanism, are physi-
cal particles belonging to massless chiral supersymmetric multiplets. After inclusion of
supersymmetry soft-breaking terms, these particles, interpreted as the low-energy Higgs
bosons, acquire masses O(m). The simplest model of this kind is based on Gloc =SU(5)
and Gloc =SU(6) [4], but models based on Gloc =SO(10) [10] or larger gauge groups with
an automatic Ggl invariance [11] have also been proposed. We want now to compute Cαβ

in this class of models.
The invariance of the superpotential under Ggl implies:

∂f

∂za
T a

(i)bz
b = 0, (14)

where T (i) are the generators of Ggl. By differentiating eq. (14) at z = z̄, we get

facT
a
(i)bz̄

b + faT
a
(i)c = 0. (15)

Since supersymmetry is not spontaneously broken at the scale MX (fa = 0), any non-
vanishing combination T a

(i)bz̄
b corresponds to a massless (in the limit of exact supersym-

metry) mode. We can now construct the orthonormal Goldstone states Gα as follows:

Gα = U∗α
a (za − z̄a), (16)

Ua
α ≡ NαiT

a
(i)bz̄

b, Nαi ≡
Vαi√
πα

, (17)

where πα and Vαi are respectively the non-zero eigenvalues and associated orthonormal
eigenvectors of the matrix Πij ≡ z̄∗aT

a
(i)bT

b
(j)cz̄

c. These definitions ensure that

U∗α
a Ua

β = δα
β . (18)

3



By differentiating eq. (14) with respect to zc and zd at z = z̄, and then multiplying the
result by U c

αNβi(f
−1)DE z̄∗E , we obtain from the definition of Cαβ, eq. (11):

Cαβ =
1

2
δαβ , (19)

a result which is independent of the details of the GUT model.
In the case of the MSSM, f

(2)
eff consists of only one term, the two Higgs doublet mixing

mass µH1H2, and therefore there is only one C parameter. With the definition

H1 =
1√
2
(z1 + iz2), H2 =

1√
2
(z1 − iz2), (20)

we obtain, from eq. (19), C = 1 and from eq. (11):

µ = m(AX − BX)∗. (21)

This coincides with the relation µ = m obtained in ref. [4] in the case of a flat Kähler
metric.

If the low-energy Higgs doublets are not Goldstone bosons of some global symme-
try spontaneously broken at MX , the parameter C will generally depend on unknown
couplings of the GUT. As an example consider the simplest GUT, SU(5), with Higgs
superpotential

f =
MΣ

2
TrΣ2 +

MH

2
H1H2 +

λ

3
TrΣ3 +

α

3
H1ΣH2, (22)

where H1 (5̄) and H2 (5) contain the low-energy Higgs doublets and Σ (24) spontaneously
breaks SU(5) into the SM:

〈Σ〉 =
MΣ

λ















2
2

2
−3

−3















. (23)

The condition that µ = 0 at MX , in the absence of supersymmetry breaking, is achieved
by a fine-tuning of the parameters:

2α

λ
=

MH

MΣ
. (24)

The parameter C can be directly computed from its definition in eq. (11) and is equal to:

C = − α

2λ
= − MH

4MΣ
. (25)

In the context of this minimal SU(5) model, measurements of the low-energy parameters
can give information on the coupling constants of the GUT.

We want to stress that the relations (9)–(11) follow only from our assumption that the
low-energy fields, in the limit of exact supersymmetry, are exactly massless at the scale
MX . However if the GUT couplings do not induce a µ-term, in other words if C = 0,
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then eqs. (10) and (11) do not contain any information. This is the case, for instance, of
the GUT models with “missing partners” [5], where no single term of the superpotential
contains both H1 and H2, and therefore C = 0 at tree level. It is possible that loop
corrections induce a C 6= 0 or that the origin of the µ-term in these models is completely
unrelated to the GUT scale.

If the soft-breaking masses in the second term of eq. (1) are not universal, a new
model-dependent coefficient enters in eq. (10), generally invalidating the constraint of eq.
(13). However if deviations from universality are small, as seems to be required by the
strong observed suppression of flavor-changing neutral current processes, our conclusion
should not be drastically modified. A non-universality of the A-term is important only if
H1H2 is coupled to superheavy fields in more than one term.

In the case of the MSSM, we can derive further constraints from eqs. (9)–(11). Since
the D-terms for the neutral components of the Higgs doublets vanish in the direction
|H1| = |H2|, the stability of the potential, eq. (7), requires:

m2 + |µ|2 ≥ |Bmµ|. (26)

From eqs. (9)–(11), this implies

∣

∣

∣

∣

µ

m

∣

∣

∣

∣

≤
√

|C| ≤ 1

|AX − BX |
if |C| < 1

1

|AX − BX |
≤
√

|C| ≤
∣

∣

∣

∣

µ

m

∣

∣

∣

∣

if |C| > 1 (27)

and any value of AX − BX and µ/m is allowed for |C| = 1.
One of the most attractive aspects of the MSSM is that the renormalization of the

parameters of the theory from MX to low energies induces the breaking of the electroweak
symmetry. We can therefore investigate the constraints imposed by SU(2)×U(1) breaking
with the additional relations among the parameters that we have found here. For a fixed
value of the top-quark Yukawa coupling constant, we run the Renormalization Group
Equations (RGEs) from MX to the low-energy scale and study the region of the soft-
breaking parameters where: i) the potential is bounded from below at any energy between
the weak scale and MX ; ii) electroweak symmetry is spontaneously broken; iii) the mass
spectrum of the supersymmetric particles satisfies the present experimental bounds. We
have also corrected the potential with the dominant one-loop contribution coming from
the top–stop sector, and we have verified the stability of our results under variations of
the scale where we stop the running of the RGE. Figure 1 shows the allowed regions for
the parameters A and µ/m for three choices of B: B = 2 (flat Kähler metric), B = 5,
and B = (1 + |µ/m|2)/(µ/m) (Higgs as pseudo-Goldstone bosons). Figure 2 shows the
allowed regions for the parameters B and µ/m for A = 0 and A = 5. The constraints of
eq. (13) and eq. (26) are also shown in fig. 2; notice that they respectively correspond
to the cases of a flat Kähler metric and of Higgs as pseudo-Goldstone bosons. In figs.
1a and 2a the top-quark Yukawa coupling constant is chosen such that mt = sin β · 140
GeV and in figs. 1b and 2b mt = sin β · 180 GeV, where tanβ = v2/v1, the ratio of the
two vacuum expectation values; in the MSSM, sinβ is forced to satisfy 1/

√
2 < sin β < 1.

These figures show the strong existing constraints, especially for mt = sin β · 180 GeV,
where the top-quark Yukawa is close to its infrared fixed-point.
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In conclusion, we have shown that in theories where µ = 0 at MX , in the limit of exact
supersymmetry, the GUT couplings together with the supersymmetry-breaking effects
can, and generally will, induce a non-vanishing µ-term, which turns out to be O(MW ). The
supersymmetry-breaking parameters of the low-energy effective theory are simply related
to those of the GUT by eqs. (9)–(11). We obtain the model-independent bound |B| ≥ 2,
and B = 2 in the case of flat Kähler metrics. All the dependence of the GUT model in
the low-energy theory is contained in a single parameter C, which can be experimentally
measured, if supersymmetry is discovered. In the class of models where the Higgs are
pseudo-Goldstone bosons, C = 1, but in general C depends on coupling constants of the
GUT. The stability of the potential and the electroweak symmetry breaking can be used
to further constrain the soft-breaking parameters.

We thank J. Louis for useful discussions.
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Figure captions

Fig. 1. The regions of parameter space A–µ/m allowed by the consistency conditions
i)–iii) described in the text, for B = 2 (flat Kähler metric), B = 5, and |B| = |µ/m| +
|m/µ| (PGB – hypothesis of Higgs as pseudo-Goldstone bosons). The top-quark Yukawa
coupling constant is chosen such that mt = sin β · 140 GeV (1a) and mt = sin β · 180 GeV
(1b).

Fig. 2. The regions of parameter space B–µ/m allowed by the consistency conditions
i)–iii) described in the text, for A = 0 and A = 5. The constraints |B| ≥ 2 of eq. (13)
and |B| ≤ |m/µ| + |µ/m| of eq. (26) are also shown. The top-quark Yukawa coupling
constant is chosen such that mt = sin β · 140 GeV (2a) and mt = sin β · 180 GeV (2b).
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