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Abstract

The strong coupling constant, �s, has been determined in hadronic decays of the Z0 resonance, using

measurements of seven observables relating to global event shapes, energy correlations and jet rates.

The data have been compared with resummed QCD calculations, which are combined with the O(�2s)
theory. The seven measurements agree to about 10%, and the �nal result, based on a weighted average,

is:

�s(MZ0) = 0:120� 0:006 ;

where the error includes both experimental and theoretical uncertainties. This value corresponds to

renormalization scale � = MZ0 and the error includes the uncertainty in this choice of scale. The

present measurement complements previous determinations using the O(�2s) QCD matrix elements

alone, and yields a compatible result, with comparable errors.
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1 Introduction

The measurement of the strong coupling constant, �s, is a basic test of the strong interaction sector of

the Standard Model, Quantum ChromoDynamics (QCD) [1]. The predictions of QCD are governed by

just one fundamental coupling strength. It is therefore important to measure �s in as many di�erent

ways as possible, since consistency between the measurements would serve as a test of the theory.

Knowledge of the value of �s and an understanding of QCD are also important ingredients of many

electroweak tests at LEP. Furthermore, an accurate determination of �s is an important constraint

in speculations about uni�cation of the electroweak and strong interactions at very high energies (see

e.g. Ref. [2]).

The conventional method by which �s has been determined involves comparing experimental data

with QCD calculations based on an order-by-order expansion in powers of �s. In the case of the pro-

cess e+e� �! hadrons the QCD matrix elements are fully known to O(�2s) [3], corresponding to �nal

states containing no more than four partons. Predictions for the distributions of many observables to

O(�2s) based on these matrix elements have been given in Ref. [4]. In a recent publication [5] the Opal

collaboration determined �s(MZ0) from 13 di�erent observables in O(�2s), and after making reason-

able estimates of experimental and theoretical uncertainties found that the values were compatible.

The �nal uncertainty on the value of �s(MZ0) was about 5%, the accuracy being mainly limited by

theoretical uncertainties, particularly relating to higher order e�ects and hadronization. Other mea-

surements of �s at LEP to O(�2s) have been presented in Refs. [6]{[17]. Measurements of �s at LEP to

O(�3s) using the total hadronic cross-section and the hadronic decays of the � -lepton are summarised

in Refs. [18, 19].

This standard procedure, based on the O(�2s) matrix elements, is unsuccessful in describing the

back-to-back two-jet region of phase space. In this region multiple emissions of soft gluons may be

expected to be important. An alternative approach may be taken to the QCD calculations of hadronic

�nal states in e+e� annihilations, based on the resummation of leading logarithms which arise from

soft and collinear singularities in gluon emission. The consequence is that the e�ective expansion

parameter is not simply �s, but �sL
2 (to leading order in L), where L = ln(1=y) and y is some

generic observable which tends to zero in the two-jet region. At small y the value of �sL
2 is not

small, and therefore these terms must be summed to all orders in �s in order to provide a satisfactory

calculation. For certain observables it has proved possible to sum both the leading and next-to-leading

logarithms, which we refer to as the \Next-to-Leading Log Approximation" or NLLA. In the present

paper we consider seven observables describing the �nal state in e+e� �! hadrons for which NLLA

calculations are available: thrust [20, 21], heavy jet mass [22, 21], two measures of jet broadening [23],

energy-energy correlations [24, 25], two-jet rates [26] and average jet multiplicities [27] (though in the

latter two cases the next-to-leading terms have been only partially resummed). First results using the

thrust and heavy jet mass observables were given in a previous Opal paper [5], and other analyses of

LEP data in the NLLA framework have been presented in Refs. [28, 29, 30]. A recent compilation of

measurements of �s based on both the O(�2s) and the NLLA approaches is given in Ref. [18].

The NLLA calculations are expected to be most reliable in predicting the parton distributions in

the two-jet region. Unfortunately this region is subject to particularly large hadronization e�ects,

which introduce signi�cant uncertainties when confronting the theory with data. We therefore do

not determine �s simply from the NLLA calculations. Instead the NLLA calculation is combined

with the O(�2s) matrix element approach to provide a calculation which includes the full knowledge of

the O(�2s) terms, together with the leading and next-to-leading logarithmic parts of the higher order

terms in �s. One expects that this will provide a more complete calculation than either the O(�2s)
or the NLLA approach separately, and might therefore allow a reduction in the systematic error in
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�s. We explore this possibility in the present paper. By applying the method to a wider range of

observables than has hitherto been possible we can look for consistency between the di�erent values of

�s obtained, which will give an indication of the reliability of this approach to the QCD calculations.

By comparing the results with those from the conventional O(�2s) technique we hope to gain further

insight into higher order e�ects.

The present paper is organized as follows: a brief account of the Opal detector and the data selec-

tion procedures is given in Sect. 2, and the observables used and the methods adopted for correcting

the data are described in Sect. 3. The application of the NLLA and O(�2s) QCD calculations to the

determination of �s is presented in Sect. 4. Finally Sect. 5 contains a summary and some discussion

of the results.

2 The OPAL Detector and Data Selection

A detailed description of the Opal detector has been presented in Ref. [31], and therefore only a short

account of some of its features relevant to the present analysis will be given here.

The momenta of charged particles are measured in the central tracking detectors. For this analysis

we use three drift chamber systems. A precision vertex chamber, of radius 24 cm and length 100 cm

provides space points with resolution about 50 �m in the r� � plane�. This is surrounded by a large

jet chamber, of radius 185 cm and length about 400 cm, which provides up to 159 digitizations with an

r�� resolution of around 130 �m. Outside this lies a system of z-chambers, to improve the resolution

in �. The central detector lies within an axial magnetic �eld of 0.435 T.

The electromagnetic calorimeter consists of a barrel of 9440 lead glass blocks oriented so that they

nearly point to the interaction region, and two endcaps of 1132 lead glass blocks each, aligned along

the z-axis. Each block subtends approximately 40�40 mrad2 at the origin, and the overall coverage is

about 98% of 4�. In addition to measuring the energies of electrons and photons, the electromagnetic

calorimeter records a signi�cant fraction of the energy of charged and neutral hadrons.

The Opal trigger [32] has a high degree of redundancy, so that the e�ciency for accepting multi-

hadronic events is extremely high, greater than 99:9%. The online �lter and o�ine selection procedures

are described in Refs. [33, 34], and are again highly e�cient. For the present analysis further cuts

were applied to remove residual background and provide a sample of well contained events. The

collision energy was required to lie within 0.5 GeV of the Z0 mass, and those parts of the detector

essential for the present analysis (central detector and electromagnetic calorimeter) were required to

be fully operational. Charged tracks accepted for this analysis were required to satisfy the following

criteria: transverse momentum with respect to the collision axis greater than 0.15 GeV/c, at least 40

reconstructed points in the jet chamber, extrapolation to the collision point within 2 cm in r� � and

25 cm in z and measured momentum less than 60 GeV/c. The number of such tracks was required

to be at least �ve to reduce �+�� background. Clusters of electromagnetic energy were used if their

observed energy was greater than 0.25 GeV, and known noisy channels in the detector were removed.

The thrust axis (Sect. 3.1) was determined using all tracks and clusters satisfying these criteria, and

required to ful�l the condition j cos �j < 0:9 in order that the event be well contained. Using these

selection criteria, Monte Carlo studies indicate that, within the chosen range of cos �, 99.86�0.07% of

hadronic Z0 decays are accepted, with a contamination of about 0.14% from �+�� events, and around

�The Opal coordinate system is de�ned so that z is the coordinate parallel to the e� beam, r is the coordinate normal

to this axis, � is the polar angle with respect to z and � is the azimuthal angle about the z-axis.
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0.07% from two-photon interactions. Using the Opal data collected in 1990 and 1991 a data sample

of 336 247 events remained for analysis after these cuts.

3 Experimental Procedure

3.1 The Observables used for Analysis

Our determination of �s is based on measurements of the following variables, for all of which resummed

QCD calculations are available:

Thrust: The thrust T is de�ned [35] by

T = max
n̂

�P
i jpi � n̂jP
i jpij

�
; (1)

where i runs over all the �nal state particles, and the axis n̂ is chosen to maximize the value

of the expression in parentheses; this axis n̂T is referred to as the thrust axis. In the present

analysis we use the observable (1� T ), which tends to zero in the two-jet region.

Heavy Jet Mass: This variable has been proposed in Ref. [36]. We divide the particles in an event

into two groups by the plane orthogonal to the thrust axis, n̂T , and compute the invariant mass

of each group. We de�ne the heavier mass to be MH . For the determination of �s we use the

scaled variable MH=
p
s, where s is the square of the centre-of-mass energy. In our previous

publication [5] we also considered an alternative way of separating the particles into two groups.

It transpired that the results from the two approaches, including all their systematic errors, were

virtually identical, so in the current study we use only the simpler method based on the thrust

axis. To �rst order in �s the heavy jet mass and thrust are related by (1� T ) =M2
H=s.

Jet Broadening measures: These observables have been suggested in Ref. [23]. Again the event

is divided into two hemispheres, S�, by the plane orthogonal to the thrust axis, n̂T . In each

hemisphere, the quantity:

B� =

X
i2S�

jpi � n̂T j

2
X
i

jpij
(2)

is computed, where the sum in the denominator runs over all particles, whilst that in the nu-

merator runs over one hemisphere. The observables used for the study of �s are

BT = B+ +B� and BW = max(B+; B�) ; (3)

referred to as the \total jet broadening" and \wide jet broadening" respectively. To leading

order in �s, BT = BW = 1
2
O (where O is the oblateness [37]). Both BT and BW tend to

zero in the two-jet region. These variables are sensitive to the transverse structure of jets, and

may therefore be complementary to (1 � T ) and MH=
p
s, which are more dependent on the

longitudinal momenta.

Energy-Energy Correlation: The energy-energy correlation function �EEC [38] is de�ned in terms

of the angle �ij between two particles i and j in a multihadronic event:

�EEC(�) =
1

�� �N
X
N

Z �+
1
2
��

��
1
2
��

X
i;j

EiEj

E2
vis

� �(�0 � �ij) d�
0 ; (4)
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where Ei and Ej are the energies of particles i and j, Evis is the sum over the energies of all

particles in the event, �� is the angular bin width and N is the total number of events. The

normalization ensures that the integral of �EEC(�) from � = 0� to 180� is unity.

Jet Rates: For the present analysis we de�ne jets through the \Durham" scheme [26, 39, 40]. A jet

resolution variable yij is de�ned for each pair of particles i and j by:

yij =
2min(E2

i ; E
2
j )(1� cos �ij)

E2
vis

; (5)

where Ei and Ej are the energies of the two particles or jets i and j, �ij is the angle between

them and Evis is again the sum over the energies of all particles in the event. If the smallest

value of yij is smaller than some cuto� ycut then particles i and j are replaced by the sum of

their four-momenta. The process is repeated until all remaining pairs satisfy yij > ycut, and the

groups of particles at this stage are called \jets". Resummed QCD calculations are available for

two observables related to these jet rates; the two-jet rate:

R2 =
�2�jet

�tot

and the average number of jets:

N =
1

�tot

1X
n=2

n�n�jet

as a function of ycut in both cases. When performing �ts to the data we have used the di�erential

jet rate D2(ycut) � dR2(ycut)=dycut instead of R2.

3.2 Correction of Data

The observables described above were calculated from the data using both charged tracks and clusters

of electromagnetic energy. A Monte Carlo simulation of the Opal detector [41] was then used in

order to correct for experimental resolution and acceptance. In this correction the e�ects of initial

state photon radiation were also removed, although these e�ects are small since only data at the

Z0 peak energy were used. The data were further corrected for the e�ects of hadronization using

QCD parton shower Monte Carlo models. The procedure closely followed Ref. [42]. The simplest

technique employed bin-by-bin correction factors. Two Monte Carlo samples were used: a sample

(I) with no initial state photon radiation and no detector simulation, and a sample (II) using the same

Monte Carlo but including detector simulation and initial-state radiation. The QCD parton shower

model Jetset [43], version 7.3, with parameters tuned to Opal data on global event shapes [42], was

used to derive the default correction factors. The events of sample (II) were processed by the same

reconstruction programs and subjected to the same event selection cuts as the real data. De�ning

Ti to be the value of the quantity which is being investigated (e.g. the normalized di�erential cross-

section) in bin i of a distribution for sample (I), and Di to be the corresponding quantity for the

events which survive after event reconstruction and selection, in sample (II), the correction factor Ki

for bin i is then given by Ki = Ti=Di. The experimental measurement, for bin i of the distribution, is

corrected by multiplying it by the factor Ki. The distribution for the Monte Carlo sample (I) may be

computed using the stable particles (those with lifetimes greater than 3 � 10�10 s), in which case the

procedure corrects only for detector e�ects, and we refer to these as data corrected to the hadron level.

Alternatively, if the partons in sample (I) are used instead then the correction procedure accounts for

both detector e�ects and hadronization, and we refer to these as data corrected to the parton level.

We use the expression detector level to refer to the uncorrected data.
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As discussed in Ref. [42], this simple bin-by-bin correction procedure is reliable only if the bin

width selected for the data is greater than or comparable with the experimental resolution, so that

migration between bins is small. In the case of the event shape variables (1�T ),MH , BT and BW the

e�ective resolution resulting from hadronization and detector e�ects is quite large, which requires that

a large bin width be employed in the bin-by-bin procedure. Therefore an alternative approach was

adopted for these observables in order to be able to use a somewhat �ner binning. Using the events

in sample (II) which pass the selection criteria at the detector level, one can compute the matrix P ,

in which the element Pji gives the probability that an event in bin i at the hadron (or parton) level

is found to lie in bin j when the detected tracks and clusters are used. Then, if Ci is the number of

events in bin i at the hadron (or parton) level, we may infer the probability Qij that an event found

in bin j at the detector level originated from bin i at the hadron (or parton) level:

Qij =
PjiCiP
k PjkCk

: (6)

The data may then be corrected to the hadron (or parton) level by:

C0
i =

X
j

QijDj ; (7)

where Dj is the number of observed events in bin j in the data. It is clear from eqn.(6) that the

matrix Q depends on the true distribution C, initially taken from the Monte Carlo. If the corrected

data C0
i di�er signi�cantly from the assumed distribution Ci, then C0

i may be substituted for Ci in

eqn.(6) and the correction procedure iterated. It was found that the value of �s was extremely stable

under such an iterative procedure, as expected since the Monte Carlo was already tuned to �t the data

well. Finally a bin-by-bin correction was applied to account for the e�ects of initial state radiation

and losses of events in the selection procedure { this correction turned out to be very small. We found

that the data corrected using this matrix method yielded values of �s which were entirely compatible

with those from the bin-by-bin method. Therefore we show the matrix corrected results for (1� T ),

MH , BT and BW in this paper.

In Table 1 we present data for the observables used in the present analyses, corrected for detector

e�ects (i.e. at the hadron level). The errors include a statistical part, arising from �nite statistics

in both data and Monte Carlo, and a (dominant) contribution from experimental systematic e�ects,

estimated as described in Sect. 4.3. The errors are in general correlated between bins; these e�ects were

estimated by dividing the data and Monte Carlo samples into a number of independent subsets and

computing the covariance matrix. The errors quoted in Table 1 are based on the diagonal terms of the

covariance matrix, but the full matrix was available when �tting the data. In Fig. 1 we show the hadron

level data for the observables which we have not presented in previous publications [5, 8], namely BT ,

BW and N , compared with the predictions of the parton shower models Jetset version 7.3 [43] and

Herwig version 5.5 [44], with parameters tuned to Opal data as described in Ref. [42, 45].

4 Determination of �s

4.1 Combination of Resummed and Fixed Order QCD Calculations

For the present analysis, the NLLA and O(�2s) calculations have to be combined before they are �tted

to data. There are a number of di�erent schemes by which this may be done, which we describe

here, following the discussion in Refs.[28, 46, 21]. We consider four schemes, which we refer to as

`ln(R)-matching', `R-matching', `modi�ed R-matching' and `modi�ed ln(R)-matching', though not all
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schemes are applicable to all seven observables. The various matching schemes all embody the full

O(�2s) result, together with the resummation of leading and next-to-leading logarithms, but they di�er
in higher orders. The technical details of these schemes are given in the remainder of this section.

For all the variables we are considering for which resummation is possible, with the exception of

the average jet multiplicity N , the cumulative cross-section may be written in the general form:

R(y) �
Z y

0

1

�

d�

dy
dy = C(�s) expG(�s; L) +D(�s; y) ; (8)

where y is (1� T ), M2
H=s, BT or BW in the case of the event shapes, cos2(�

2
) in the case of �EEC

y,

and ycut for the jet rates, and L = ln(1=y). D(�s; y) is a remainder function which should vanish as

y ! 0. The general structure of the cross-section in powers of �s and of large logarithms is indicated

in Table 2. The functions C and G may be written:

C(�s) = 1 +
1X
n=1

Cn�s
n (9)

and

G(�s; L) =
1X
n=1

n+1X
m=1

Gnm�s
nLm � Lg1(�sL) + g2(�sL) + �sg3(�sL) + �2sg4(�sL) � � � ; (10)

where for brevity we write �s for (�s=2�). The functions Lg1(�sL) and g2(�sL) represent the sums of

the leading and next-to-leading logarithms respectively, to all orders in �s (see Table 2). The NLLA

calculations give an approximate expression for R(y) in the form:

RNLLA(y) = (1 + C1�s + C2�
2
s) exp[Lg1(�sL) + g2(�sL)] : (11)

The functions g1 and g2 are given by the NLLA calculations; the coe�cient C1 is known exactly from

the O(�s) matrix elements and C2 is known (in the case of (1�T ),MH , BT and BW ) from numerical

integration of the O(�2s) matrix elements; their values are summarized in Table 3. The full O(�2s)
calculation yields an approximate expression for R(y) of the form:

RO(�2s)(y) = 1 + A(y)�s + B(y)�2s ; (12)

where the coe�cients A(y) and B(y) are equivalent to the A and B coe�cients tabulated in Ref.[4],

but integrated to correspond to the cumulative distribution R(y). In the case of �EEC , BT and BW

we have run the program EVENT, which was used by the authors of Ref. [4], to derive values of the

coe�cients.

The simplest matching scheme involves taking the logarithm of eqn.(12) and expanding as a power

series, yielding:

lnRO(�2s)(y) = A(y)�s + [B(y)� 1
2
A(y)2]�2s + O(�3s) ; (13)

and similarly rewriting eqn.(11) as:

lnRNLLA(y) = Lg1(�sL) + g2(�sL) + C1�s + [C2 � 1
2
C2
1 ]�

2
s +O(�3s) : (14)

Removing the terms to O(�2s) in the NLLA expression eqn.(14), replacing them by the O(�2s) terms
from eqn.(13) and neglecting non-logarithmic terms of higher order yields (c.f. Table 2):

lnR(y) = Lg1(�sL) + g2(�sL)� (G11L+ G12L
2)�s � (G22L

2 +G23L
3)�2s

+ A(y)�s + [B(y)� 1
2
A(y)2]�2s : (15)

yAn additional factor 1
2
precedes the exponential for �EEC , in this and subsequent equations.
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This procedure will be referred to as ` ln(R)-matching'. Alternatively the analogous procedure may

be carried out for the functions R(y) instead of ln(R(y)), yielding:

R(y) = (1 + C1�s + C2�
2
s) expfLg1(�sL) + g2(�sL)g � (C1 +G11L+ G12L

2)�s

� �
C2 + G22L

2 + G23L
3 + (G11L+ G12L

2)(C1 +
1
2
(G11L+ G12L

2))
�
�2s

+ A(y)�s + B(y)�2s : (16)

This procedure will be referred to as `R-matching'. It would be expected thatR-matching would be less

reliable than the ln(R)-scheme, because the subleading termG21�
2
sL, which does not vanish as y ! 0, is

not exponentiated in eqn.(16), whereas it is exponentiated in eqn.(15) because it is implicitly included

in the B(y) coe�cient. This leads one to consider a modi�ed form of eqn.(16) in which the G21�
2
sL

term is included in the argument of the exponential, and subtracted after exponentiation. We refer to

this as the `modi�ed R-matching' scheme (called `intermediate' matching in Ref. [28], and R-matching

in Ref. [21]). The coe�cient G21 is not known analytically, but may be inferred approximately from

numerical integration of the O(�2s) matrix elements. The relevant Gnm coe�cients, insofar as they

are known, are given in Table 3, based on Ref. [21] for (1 � T ) and MH , Ref. [23] for BT and BW ,

Ref. [24] for �EEC
z, and on the expressions in the appendix to Ref. [28] for R2

x.

A further problem is that the NLLA calculations are not guaranteed to satisfy the necessary

constraints, R(y) ! 1 and dR=dy ! 0, at the kinematic limit, ymax, corresponding to the region

of hard gluon emission. In consequence the combined NLLA+O(�2s) calculation may �t data less

well than the O(�2s) expression in the hard region. It has been proposed [46, 21] that this di�culty

could be overcome in the ln(R)-matching scheme by replacing L in the NLLA part of eqn.(15) by

L0 = ln(y�1 � y�1max + 1). We refer to this possibility as `modi�ed ln(R)-matching'. {

All four matching schemes described above may be applied to the observables (1 � T ), MH , BT

and BW . The value of G21 is not known for R2, and cannot be estimated until a complete calculation

of G22 is available, so the modi�ed R-matching scheme is not applicable to R2. The �EEC exhibits a

particular problem because the O(�2s) di�erential distribution diverges at both small and large y, so

that the cumulative coe�cients A and B cannot be reliably determined. This precludes the use of the

ln(R)- and modi�ed ln(R)-schemes for �EEC . However, the other matching schemes are applicable to

the di�erential �EEC distribution because they depend only on di�erences between values of A and B
across a bin. It should also be noted that the coe�cient C2 is not known for �EEC nor for R2.

The situation is slightly di�erent in the case of the average jet multiplicity N , since it cannot be

written in the exponentiated form of eqn.(8). The calculation to O(�2s) gives a prediction of the form:

NO(�2s) = 2 +A(y)�s + B(y)�2s ; (17)

and the NLLA calculation yields:

NNLLA = 2 +
1X
n=1

Hn(L)�s
n ; H1(L) = H12L

2 +H11L ; H2(L) = H24L
4 +H23L

3 +H22L
2 : (18)

The equivalent to the R-matching scheme is:

N = NNLLA �H1(L)�s � H2(L)�
2
s + A(y)�s +B(y)�2

s ; (19)

zThe calculations of Ref. [24] rather than those of Ref. [25] are used for �EEC because the former are in a suitable

form for matching to the O(�2
s) calculations.

xIt should be noted that the coe�cient G22 for the R2 variable is not expected to be correct, since not all next-

to-leading terms have been resummed in this case; the value given in Table 3 is simply the coe�cient of �2
sL

2 in the

expansion of the expression given in Ref. [28], which should be the correct value to use in the matching procedure.
{The value of ymax was taken to be 0.5 for (1� T ), 0.42 for MH=

p
s, 0.41 for BT , 0.325 for BW and 0:333 for R2.

The actual kinematic limit depends on the number of partons in the �nal state, and is not precisely known for some of
the variables. However, the �tted values of �s were found to be insensitive to the precise value chosen for ymax.
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while a procedure analogous to ln(R)-matching is [47]:

N = NNLLA exp
�
�H1(L)�s � (H2(L)� 1

2
H1(L)

2)�2s +A(y)�s + (B(y)� 1
2
A(y)2)�2s

	
: (20)

The coe�cients H12, H11, H24 and H23 are contained in eqn.(8) of Ref. [27], and by expansion of the

NLLA expressions in Ref. [27] one can obtain H22 =
40
6561

nf (7nf � 27) [47].

A �nal consideration is the choice of renormalization scale. To O(�2s) the strong coupling constant
may be written (following the convention of Ref. [48]):

�s(�) =
1

�0 ln(�2=�
2
MS

)

"
1�

�1 ln(ln(�
2=�2

MS
))

�20 ln(�
2=�2

MS
)

#
; (21)

where �0 = (33�2nf)=12�, �1 = (153�19nf)=24�2 and nf is the number of quark 
avours, taken to be
5. The QCD scale �MS refers to the MS renormalization scheme. One can relate the renormalization

scale � to the e+e� centre of mass energy by

� = x� �Ecm; (22)

where x� is the renormalization scale factor. Na��vely x� would be expected to be of order unity.

However, using O(�2s) QCD the experimental data for most observables tend to be better �tted with

a value x� � 1 (see e.g. Ref. [5]). This is generally understood to be a consequence of missing higher

order terms in the O(�2s) approach, and it is therefore anticipated that the inclusion of higher order

terms in the NLLA calculations should reduce the dependence on x�. In order to account for the

dependence on x�, the above formul� have to be modi�ed by the replacements [4, 21]:

B(y) �! B(y) + A(y)2��0 ln x2�
g2(�sL) �! g2(�sL) + �0�

2
sL

2dg1(�sL)

d(�sL)
ln x2�

G22 �! G22 + 2��0G12 ln x
2
� : (23)

An equivalent procedure for N [47] involves substituting throughout:

�s �! �s + �2s2��0 ln x
2
� : (24)

4.2 Measurement of �
s
(MZ0)

After correcting the data to the parton level as outlined in Sect. 3.2, the NLLA+O(�2s) QCD cal-

culations were �tted to the data using a least �2 method. For comparison we also �tted the O(�2s)
QCD predictions. A number of considerations were taken into account in determining the range over

which the data were to be �tted. We required that the detector and hadronization correction factors

should be reasonably uniform across the �t range, and that the hadronization correction should not

be strongly model dependent. This generally determined how far into the two-jet region (y ! 0) the

NLLA �ts could reliably be performed, and also set the upper limit on most of the O(�2s) �ts. We

also required that the value of �2 be \reasonable", in the sense that the contributions to �2 should

be distributed fairly evenly across the �t range, and not dominated by the extreme bins. Generally

the lower limit for the O(�2s) �ts had to be placed higher (further from the two jet region) than for

the NLLA �ts, and in some cases the upper limit had to be placed lower for the NLLA �ts than for

the O(�2s) �ts (because the NLLA calculations do not necessarily fall o� correctly toward the hard

kinematic limit). A further constraint for �EEC was the presence of an unphysical pole introduced in

the NLLA calculation [24], at around � = 178�; the chosen �t range was well away from this point.
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The �t ranges chosen are given in Table 4. We con�rmed that the results for �s were not signi�cantly

altered if the �t range was moved by one or two bins (though in some cases the value of �2 was sig-

ni�cantly worse), and therefore no additional error was assigned resulting from possible uncertainties

in the choice of �t range.

Only statistical errors on the data were included in the calculation of �2 (including the e�ect of

limited Monte Carlo statistics). Systematic uncertainties on the data (Sect. 4.3.1) were not taken

into account in calculating �2 since their de�nition is essentially arbitrary, and their correlations

could not be estimated reliably. Nor were errors on the QCD coe�cients taken into account. Fits

were performed with the renormalization scale factor x� �xed to 1, and also with x� treated as an

additional free parameter. When using a value x� 6= 1 the �tted value of �MS is converted into an

equivalent value of �s at scale MZ0 using eqn.(21); throughout the rest of this paper �s should be

taken to refer to �s(MZ0). We used the ln(R)-matching scheme to combine the NLLA and O(�2s)
calculations, except for �EEC where the modi�ed R-matching scheme was used instead. The use of

other matching schemes will be discussed in detail below. The �t results are listed in Table 5. The data

corrected to the parton level are shown in Figs. 2 and 3, with the NLLA+O(�2s) �ts superimposed.
The dependence of �s and �2/d.o.f. on x� is shown in Fig. 4. The �ts with x� = 1 yield acceptable

values of �2/d.o.f. (less than 10 for all observables except BW ), though they are all greater than

unity, as might be expected since the theory is known to lack some higher order terms, and also since

experimental systematic errors have not been included at this stage. In the case of MH , BW and BT

the theory is seen to diverge from the data at high values; this arises because the NLLA calculations

are not constrained to fall to zero at the upper kinematic limit; the introduction of the modi�ed

ln(R)-matching scheme substantially reduces this problem. Five of the observables give very similar

values of �s, while BW gives a rather lower value, and �EEC a higher result. In the �ts where x� is

treated as a free parameter, we �nd that only the jet broadening measures favour values of x� much

smaller than one, while several observables yield a best �t with x� > 1. The dependence of �2/d.o.f.

on x� is particularly weak for (1�T ) and R2, so that the �tted parameters are very poorly determined.

For comparison, Table 6 shows corresponding �t results using O(�2s) QCD. The dependence of �s
and �2/d.o.f. on x� is shown in Fig. 5. Generally the O(�2s) calculations give a signi�cantly better

�2 when a value x� � 1 is adopted, the only exception being BT . This strong scale dependence is

an indication of substantial missing higher order contributions. Comparing with the NLLA �t results

in Table 5 we note that in several cases the inclusion of the NLLA terms in the QCD calculation

improves the �t to the data for x� = 1. However, the O(�2s) �ts with optimised scale generally yield

values of �2/d.o.f. as good as those obtained from the NLLA calculations. The most striking aspect

of the NLLA �ts is the elimination of the preference for very small x� values.

In Table 7 we show the e�ect of using di�erent matching schemes to combine the NLLA and

O(�2s) calculations. As discussed above, and in Ref. [23], the R-matching scheme is theoretically less

favoured, since it fails to exponentiate some terms which are exponentiated in the ln(R)- or modi�ed

R-schemes. The �ts to the data are poor in the R-scheme for BW and BT (for which the coe�cient

G21 is particularly large), and to a lesser extent forMH , R2 and N . The modi�ed R-scheme, in which

the de�ciencies of the na��ve R-scheme are remedied by exponentiating the G21 term, yields results

which are very close to the ln(R)-scheme. The modi�ed ln(R)-scheme, in which correct behaviour of

the NLLA calculations is enforced near the kinematic limit, gives a signi�cantly improved �t to the

data for MH , BT , and particularly BW , though the value of �s is scarcely a�ected. We therefore use

the ln(R)-matching scheme to obtain our standard results throughout this analysis, except for �EEC,

where the modi�ed R-scheme is used instead.
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4.3 Estimation of Systematic Uncertainties

The values of �s(MZ0) for the seven observables together with their statistical errors are given in

Table 8. Before a meaningful value of �s can be quoted it is necessary to investigate various possible

sources of systematic uncertainty. With the present amount of data these systematic e�ects prove

totally to dominate the small statistical errors. The systematic e�ects may be grouped under the

following headings:

4.3.1 Experimental uncertainties

The corrections for detector acceptance and resolution depend upon the Monte Carlo simulation giving

a faithful description of the real data. In our standard analysis both measured tracks and electromag-

netic energy clusters were used. The analysis was repeated using tracks alone or the electromagnetic

calorimetry alone, thus yielding samples of corrected data with completely independent detector cor-

rections. The analysis was also repeated with several independent modi�cations to the event selection

criteria: �rstly restricting the thrust axis to lie within the barrel region of the detector (j cos�j < 0:7),

secondly increasing the minimum track multiplicity cut to 7 to eliminate background more securely,

and �nally using a cut on missing momentum (jpvisj=Evis < 0:4), where pvis is the vector sum of all the

detected particle momenta. Values of �s were computed from each of these alternative analyses and

the largest di�erence between any pair was assigned as a systematic error. In all cases this proved to

result from the di�erence between tracks alone and electromagnetic calorimetry alone. The systematic

error derived for each observable is given in Table 8.

4.3.2 Hadronization uncertainties

Since the NLLA QCD calculations are based on the leading logarithm approximation it is most ap-

propriate to correct for hadronization e�ects using parton shower QCD Monte Carlo models which

are based on essentially the same approximation. However, this correction is far from unambiguous,

since the parton shower Monte Carlo models incorporate mass e�ects and cuto�s in ways which are

di�erent from the analytic NLLA calculations. Furthermore di�erent models are available for the

hadronization process, which involve many free parameters determined from �ts to data.

We have considered several di�erent models for the hadronization correction, retaining the standard

detector corrections based on the full simulation of the Opal detector using Jetset 7.3. The resulting

changes in �s for each observable are given in Table 8. The following have been investigated:

� Some of the parameters of the Jetset 7.3 model [43] were determined from a �t to Opal data on

global event shapes [42]. This �t procedure yielded values of the parameters with some range of

uncertainty, so we have independently varied the two parameters which are speci�cally related

to hadronization, �q=PARJ(21)=0.37
+0:03
�0:05 GeV and a=PARJ(41)=0.18+0:12�0:05, by �1 standard

deviation about their optimized values. The e�ect of these changes was generally found to be

modest.

� The Opal standard version of Jetset uses the Lund symmetric fragmentation model. An

alternative which is favoured for many heavy 
avour studies is the form proposed by Peter-

son et al. [49], which is available as an option in Jetset. We have therefore tried using an

alternative set of fragmentation parameters [45], again derived by �tting Opal data, in which
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the Peterson form is used for heavy 
avour fragmentation. The e�ect on the �tted �s value is

small.

� The analytic QCD calculations assume the partons are massless, and therefore predict the same

distributions for any quark 
avour. The parton shower Monte Carlo programs assign masses to

the quarks, and indeed the parton level distributions exhibit some di�erences between heavy and

light quarks for the observables considered here. We have therefore, in Jetset 7.3, investigated

the e�ect of performing the hadronization correction by excluding bb events at the parton

level, whilst including all 
avours at the hadron level. In this way the corrected parton level

distribution corresponds to u,d,s,c quarks only. The resulting value of �s was found to be

systematically larger (by about 0.002 on average) for all observables.

� The parton shower Monte Carlo programs incorporate a minimum value, Q0, for the parton

virtuality; for example Q0 = 1 GeV in Jetset 7.3 with the Opal parameter set. In contrast the

NLLA calculations impose no such cuto�. We have therefore tried varying the value of Q0 in

Jetset between 4 GeV and the mimimum value permitted (Q0 = 2:2�� = 0:638 GeV). We �nd

that, within this range, the value of �s derived from the data varies approximately linearly with

the value of Q0 used in the hadronization correction. We therefore take the di�erence between

the values of �s corresponding to Q0 = 1 GeV and Q0 = 2 GeV as a (symmetric) systematic

error resulting from this source; insofar as the linear approximation is valid this would encompass

the value Q0 = 0. As seen from Table 8, the value of �s is not strongly dependent on Q0.

� The Herwig program [44] uses a cluster fragmentation model which is quite di�erent from the

string model [50] employed in Jetset. We have used version 5.5 of Herwig, with parameters

based on a tuning to Opal event shape data [45]. In several cases, this constitutes the largest

hadronization uncertainty in �s, though the e�ect is not in the same direction for all observables.

� The Ariadnemodel [51] uses a colour dipole formulation of the parton shower, with the standard

Lund string model for hadronization. We used Ariadne version 3.1 with parameters tuned to

Opal data [42]; in most cases the in
uence on �s is small.

� The Cojets model [52] uses an incoherent parton shower with independent fragmentation. We

used version 6.23 with default parameters. However, the parton shower in this model does

not evolve so far as in the other models considered (the average number of partons is 3.3,

compared to 9.1 in Jetset). It therefore appears that Cojets, with its present parameters, is

not appropriate at the parton level for comparison with the NLLA calculations, which implicitly

incorporate multi-parton �nal states. For this reason, and for other reasons outlined in Ref. [5],

we exclude Cojets from the �nal assignment of systematic errors, though we show the e�ect of

using it in Table 8.

It is arguable that the hadronization e�ects listed above are not altogether independent (for ex-

ample, Jetset and Herwig use di�erent e�ective cuto�s in the parton shower). However, none of

the models is likely to be perfect, so in order not to underestimate this uncertainty we de�ne a to-

tal hadronization error for each observable by adding in quadrature the following: the larger of the

changes in �s when a is changed by +1 and �1 standard deviation, the larger of the changes in �s
when �q is changed by +1 and �1 standard deviation, the change in �s when only u,d,s,c quarks are

considered in Jetset, the change in �s when Peterson fragmentation is used in Jetset, the change

in �s when Q0 = 2 GeV is used in Jetset, the change in �s when Herwig is used and the change in

�s when Ariadne is used. This total error is given in Table 8. It appears that the single hemisphere

variables, BW and MH , are the least sensitive to hadronization, while BT is the most sensitive of the

observables considered here.
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4.3.3 Renormalization scale uncertainties

The choice of the value of x� is a signi�cant source of systematic uncertainty, but the precise way to

quantify this error is essentially arbitrary. This uncertainty is generally understood to be connected

with higher order contributions missing from the QCD calculations. In our previous O(�2s) analysis [5]
we discussed various procedures to de�ne x�, but �nally chose to average the values of �s(MZ0)

obtained with x� = 1 and with x� �tted to data, and to quote half their di�erence as a systematic

error. However, this procedure does not seem appropriate for the present NLLA+O(�2s) analysis.
In some cases the optimal �tted value of x� is close to 1, in which case the previous method would

underestimate the scale uncertainty. Furthermore, in some cases �2 does not show a well de�ned

minimum, falling slowly but monotonically with increasing x�. We therefore choose to de�ne the scale

uncertainty to be the variation in �s(MZ0) as the renormalization scale factor is varied in the range

0:5 < x� < 2. The case x� = 1 is taken to be the central value, so the scale error is asymmetric in

general.

4.3.4 Matching scheme uncertainties

Di�erent matching schemes were discussed in Sect. 4.1; they are equivalent so far as the leading and

next-to-leading terms are concerned, but di�er in the higher order terms generated by exponentiation.

Therefore the di�erences between the results in Table 7 represent a further measure of possible higher

order e�ects. In those cases where more than two matching schemes were available, we observe that all

the matching procedures except for the R-scheme yield very similar values of �s. Since the R-scheme

is disfavoured both theoretically, and in many cases by the �2/d.o.f. values of the �ts, we choose to

discount it. The remaining uncertainty in �s resulting from di�erent matching procedures is much

smaller than the error already assigned on the basis of x� dependence. Since the two e�ects may be

expected to be correlated because both relate to missing higher orders, we assign no additional error

resulting from the choice of matching scheme.

4.3.5 Explicit inclusion of subleading logarithms

As a �nal check of possible higher order e�ects, we have investigated the possibility of including a

subleading logarithmic term in the �t. In the case of (1 � T ), MH , BT , BW and �EEC, and for all

matching schemes except R-matching, the leading and next-to-leading logarithms and the subleading

term G21�
2
sL are all resummed, and hence the �rst subleading logarithmic term to be absent from

the resummation is G32�s
3L2. We have therefore performed �ts to the data including a term of this

form in the exponentiation, treating G32 as a free parameter to be determined in the �t. The results

are summarized in Table 9. The values of �2/d.o.f. are substantially improved by the inclusion of

the subleading term, suggesting that higher order e�ects might in large part account for the values of

�2/d.o.f. in the standard analysis being greater than unity. The �tted values of G32 are di�erent for

di�erent matching schemes, indicating that this term is e�ectively parametrizing a mixture of higher

order terms. Na��vely one might guess that the values of G32 could be greater than G21 by a factor of

order 2� (since a factor (2�)�1 appears in �s), and the �tted values are therefore not of unreasonable

size. By reference to Table 5, we note that varying G32 in the �ts yields better �2/d.o.f. values than

varying x�. Also the values of �s for the di�erent variables tend to move slightly closer together when

G32 is �tted, in contrast to their behaviour when x� is �tted. The most important feature is that

the changes in the �tted values of �s when G32 is �tted are small, and contained within the errors

already assigned from the study of x� dependence. We therefore assign no additional sytematic error

as a result of this study.
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4.3.6 Final errors on �s(MZ0)

Finally, the statistical error, the experimental systematic uncertainty, the hadronization error, and

the scale uncertainty are all combined in quadrature to yield the errors given in the �nal row of

Table 8. The values are also shown in Fig. 6. If only experimental errors are taken into account, the

results (in particular those from BW and �EEC) are not compatible with a common value, especially if

correlations between the systematic contributions are taken into consideration. If the full systematic

errors are considered then there appears to be no inconsistency, but again the observables are not fully

independent, as discussed below.

4.4 Combined Result

A particular emphasis of this analysis was to study all the observables for which resummed QCD

calculations are available. It is therefore instructive to combine the measurements of �s from the

seven variables considered in this analysis, in order to assess the degree of consistency with which

QCD describes the data, and in order to arrive at a \best estimate" of �s(MZ0). We have considered

three methods:

4.4.1 Weighted Mean

This method is essentially identical to that employed in the previous Opal paper [5]. A weighted

mean was formed:

b�s = 7X
i=1

wi�s
(i)=

7X
i=1

wi

where �s
(i) is the value of �s derived from the ith observable, and the weight wi is equal to the reciprocal

of the square of the total error on �s
(i) as given in Table 8. In order to estimate the error on the

weighted mean statistical correlations between the di�erent observables were ignored, but correlations

in the systematic uncertainties were taken into account by forming the mean b�s of the values obtained
in each of the di�erent systematic checks described in Sect. 4.3. A systematic uncertainty on b�s was
then derived from the di�erent mean values following the same procedure as for the individual �s

(i)

measurements.

Applying this procedure to all seven observables we obtain the value:

�s(MZ0) = 0.120 � 0.003 (expt.) +0:006
�0:004 (theor.)

where the �rst error includes statistical and experimental systematic e�ects, while the second includes

the hadronization and scale uncertainties. If the BW variable, which gave a rather low value of �s and

also the smallest overall error, were excluded the mean would increase to 0.123, if �EEC were excluded

the mean would be 0.118, while if both were removed the mean would be 0.121. The NLLA calculations

are arguably less reliable for �EEC (an unphysical pole is introduced in the calculation, though well

outside the �t region) and for the jet rates (the next-to-leading resummation is incomplete); if we were

to average the other observables, (1� T ), MH , BT and BW , we would obtain 0.116. Thus the overall

mean of all seven observables yields a value and an error which comfortably encompasses the mean of

any reasonable subset.
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4.4.2 Minimization of �2

In order to account for the correlation between observables in a more formal way, we have estimated

the value b�s which is most consistent with all the measurements, by minimizing

�2 =
7X
i=1

7X
j=1

(b�s � �s
(i))(V�1)ij(b�s � �s

(j))

with respect to b�s, where V is the covariance matrix of the seven individual measurements. The

statistical part of V was estimated by dividing the data and Monte Carlo samples into ten subsamples,

determining values of �s
(i) from each, and measuring the covariances between them. To this was added

a matrix associated with each of the detector and hadronization systematic e�ects listed in Sect. 4.3k.

Following this procedure for the case x�=1 we �nd an unacceptable value of �
2/d.o.f.=34, with a value

of b�s=0.113 which lies below most of the measurements on account of strong positive correlations

between the systematic errors. The large value of �2/d.o.f. is associated with �EEC , and to a lesser

extent BW ; restricting the procedure to the other �ve observables we could obtain �2/d.o.f.=0.3 andb�s=0.121, showing that these �ve are very compatible.

Thus the NLLA+O(�2s) theory appears to be unable to describe �EEC and BW simultaneously

with the other �ve variables, if the systematic errors and their correlations are estimated as described

above, and if the value of x� is �xed to the same value for all observables. However, if the scale error

given in Table 8 is included in the diagonal terms of V then a satisfactory value of �2/d.o.f.=1.7 may

be obtained using all seven observables, with b�s=0:119� 0:004, in agreement with the weighted mean

in Sect. 4.4.1. This procedure e�ectively allows the �s value corresponding to each observable to vary

independently by an amount corresponding to the range 0:5 < x� < 2. However, it does not address

the extent to which the �2/d.o.f. of the �t to the data depends on x�; this is considered in the next

section.

4.4.3 Combined �t

In a previous Opal paper [5] we introduced a method for investigating the consistency of QCD by

performing a simultaneous �t to the distributions of many observables using a common value of �MS.

In the case of O(�2s) QCD we found that such a simultaneous �t could be successful, but only if the

renormalization scale factor, x�, was allowed to vary independently for each observable, most of the

�tted values of x� being much smaller than unity.

Accordingly we have attempted a similar �t of NLLA+O(�2s) QCD to the present data. The same

�t ranges were used as for the standard �ts, but in order that each observable carry equal weight in the

�t, bins in the data were combined so as to form an equal number of bins, seven for each observable.

Correlations between the errors on di�erent observables were neglected. As usual, the ln(R)-matching

scheme was used except for �EEC , where the modi�ed R-scheme was taken. The result of a combined

�t to all seven observables with x� = 1 was �s=0.122, in good agreement with the weighted mean

described in Sect. 4.4.1. However, the combined �t gave an unacceptable value of �2/d.o.f.=93, some

ten times greater than expected from the sum of the �2 values of the separate �ts. This large value of

�2 was mainly contributed by the �EEC and BW variables; if these two were removed a combined �t

to the remaining �ve variables yielded �s=0.121 with �
2/d.o.f.=8.8. The procedure of allowing the x�

kIf the change in �s
(i) resulting from a particular systematic check was ��s

(i) then ��s
(i)��s

(j) was added to the

element Vij of the covariance matrix. This corresponds to assuming correlation coe�cients of �1 in the error matrix

associated with each individual e�ect.
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values to vary is not so obviously reasonable in the NLLA case as in the O(�2s) analysis. Nevertheless,
if such a �t is performed, an acceptable �2 may be achieved with all seven observables, but with a large

value �s=0.143 and x� � 1 for all observables. This seems to be needed in order to accommodate

�EEC , where a reduction of �s to around 0.120 would lead to a large increase in �2/d.o.f.. A �t to

the remaining six observables with x� free gives �s=0.121, with �2/d.o.f.=7.7 and all x� values in

the vicinity of unity. Alternatively, a �t to all seven observables, but using the R-matching scheme

for �EEC yields �s=0.124 with �2/d.o.f.=7.9 and x� values close to unity. Similar results may be

obtained from a combined �t (excluding R2 and N ) in which x� is �xed to 1 while the subleading

coe�cient G32 is allowed to vary independently for each observable.

Thus, these combined �ts indicate that, given the presently available calculations, �EEC , and

to a lesser extent BW , cannot be described by NLLA+O(�2s) QCD simultaneously with the other

observables, particularly if x�=1 is assumed. Nonetheless, an average value of �s(MZ0) around 0.120

seems quite reliable.

5 Discussion and Summary

Resummed QCD calculations have been introduced in an attempt to describe the two-jet region

in e+e� hadronic �nal states. In this region the previously available O(�2s) QCD matrix elements

were clearly insu�cient because of the presence of large logarithms connected with soft and collinear

singularities. Resummed calculations are now available for seven observables, which we have studied

in this analysis. Two of the observables, BT and BW , had not been studied in e+e�annihilation before

the calculations were performed, and therefore constitute a new test of the theory. Although jet rates

have been extensively studied before, the Durham jet �nder is comparatively new and measurements

for R2 and N were not available before the calculations. The calculations should be most secure for

(1�T ), MH , BT and BW , for which complete resummation of leading and next-to-leading logarithms

was done. For the jet rates only part of the next-to-leading logarithms were resummed, while the

analytic solution of the �EEC calculation in Ref. [24] introduced an unphysical pole which limits the

region of applicability of the theory.

Comparison of the theory with data in Figs. 2 and 3 shows that a good qualitative description of the

data in the two-jet region is obtained. However, in this region the corrections which relate the observed

hadron level to the parton level where the QCD calculations are relevant are, at present energies, large

and subject to signi�cant uncertainties. We have therefore chosen to combine the NLLA and O(�2s)
calculations, and �t to data in the region where the hadronization corrections are reasonably small and

reliable. However, in the more extreme hard region the higher order contributions which are absent

from the O(�2s) theory are not necessarily dominated by the leading logarithms which we include in

the present approach, and the leading logarithmic terms could even have an opposite sign from the

uncomputed higher orders. Thus in this region the inclusion of the NLLA terms could even degrade

the description of data, as seen particularly for MH and BW in Fig. 2.

The NLLA+O(�2s) QCD calculations, with renormalization scale factor x�=1, were found to give

reasonable �ts to the Opal data. In some cases the �ts were better than those obtained using O(�2s)
QCD alone with x�=1, though no better than O(�2s) �ts with optimized scale. However, the O(�2s)
�ts where x� was optimized generally yielded values x� < 0:1, whilst such low values of x�were clearly

disfavoured by the NLLA+O(�2s) calculations. The dependence of �s(MZ0) on the choice of x� was

slightly weaker when the resummed theory was included, but still remained the principal source of

systematic uncertainty.
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Table 10 shows the �nal results for �s(MZ0) obtained from each of the seven observables using

NLLA+O(�2s) QCD, with the corresponding results obtained from the same data using O(�2s) QCD
alone for comparison. The experimental errors were essentially the same for both approaches, and the

same as in our previous publication [5]. The hadronization uncertainties were estimated in the same

way for both sets of measurements, though a larger range of hadronization models was considered

than in our previous paper [5]. As in our previous work a wider variation of 1 < Q0 < 6 GeV was

considered for the O(�2s) analysis. The principal di�erence between the NLLA and O(�2s) analyses
was however the treatment of the renormalization scale uncertainty; in the NLLA+O(�2s) case we

took x�=1 as the central value, assigning an error by considering the range 0:5 < x� < 2, while in the

O(�2s) analysis we followed our procedure in Ref. [5], taking the central value to be the mean of the

values of �s(MZ0) from x�=1 and x� �tted, and quoting half their di�erence as the error. Figures 6

and 7 show the values of �s so obtained, together with their weighted means.

Neither the O(�2s) nor the NLLA+O(�2s) calculations give a consistent description of the data with

x�=1 if only experimental errors are taken into account. After making due allowance for systematic

uncertainties the O(�2s) measurements are compatible with a common mean value of 0:122� 0:007.

These conclusions are consistent with our previous study of thirteen observables to O(�2s) [5], only
three of which (T ,MH and R2) are shared with the present study. The value obtained here is very close

to that obtained in Ref. [5], 0:122+0:006�0:005. When the systematic uncertainties are taken into account in

the NLLA+O(�2s) analysis, we �nd that the individual measurements are compatible with a common

mean of 0:120 � 0:006, which is in excellent agreement with the O(�2s) analysis. However, because

the systematic uncertainties are correlated it is not clear that the values of �s obtained from the BW

and �EEC variables are really compatible with this value. The case of BW is somewhat disappointing,

since this variable has the smallest overall error, with a particularly weak hadronization uncertainty.

Nonetheless, the values derived from BW and �EEC lie within two standard deviations of the weighted

mean, which therefore seems a reasonable estimate of �s. In the O(�2s) analysis the BW and �EEC

observables exhibit no anomalous behaviour.

In previous measurements of �s based on O(�2s) QCD the main uncertainty was the e�ect of missing

higher order terms, manifested particularly in the renormalization scale dependence. In the present

study the NLLA calculations have been used to supplement the O(�2s) theory with some higher order

information. However, the NLLA+O(�2s) calculations have not brought about a dramatic reduction in
the error on �s. This is partly because the observables which showed the smallest scale dependence in

O(�2s) (such as the asymmetry in the EEC or the jet mass di�erence) have not so far proved amenable

to resummation. Nevertheless, the inclusion of the NLLA terms has removed the need to consider very

small renormalization scales; indeed the data are incompatible with such scales. After investigating

several ways to combine the measurements of �s we quote as our �nal result that based on a simple

weighted average:

�s(MZ0) = 0:120� 0:006 :

The error is competitive with, but marginally larger than that obtained in our previous O(�2s) mea-
surement [5]. It also agrees well with the NLLA+O(�2s) measurement in Ref. [5], and with other

measurements of �s at LEP and elsewhere, summarized in Ref. [18]. The error is however slightly

smaller than that resulting from an O(�2s) analysis performed on the present data. This new result

based on NLLA+O(�2s) QCD is therefore an important measurement, complementary to those ob-

tained from O(�2s) QCD; the fact that they are in such good agreement gives us con�dence that higher
order uncertainties are under control at the level of the errors which we quote.
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0.005 1:36� 0:23 0.02 0:009� 0:007 0.01 0:028� 0:018 0.005 0:04� 0:03

0.015 11:81� 0:90 0.05 0:075� 0:009 0.025 0:31� 0:06 0.015 0:96� 0:16

0.025 18:42� 0:57 0.07 0:182� 0:028 0.035 2:28� 0:45 0.025 10:33� 1:17

0.035 14:38� 0:12 0.09 0:915� 0:097 0.045 6:83� 0:90 0.035 17:20� 0:76

0.045 10:03� 0:16 0.11 3:10� 0:22 0.055 10:49� 0:75 0.045 13:65� 0:08

0.055 7:33� 0:15 0.13 5:88� 0:26 0.065 11:26� 0:32 0.055 10:36� 0:13

0.065 5:62� 0:15 0.15 7:00� 0:17 0.075 9:98� 0:07 0.065 8:31� 0:18

0.075 4:57� 0:14 0.17 6:19� 0:06 0.085 8:46� 0:16 0.075 6:70� 0:19

0.085 3:76� 0:12 0.19 4:88� 0:05 0.095 7:06� 0:21 0.085 5:46� 0:19

0.095 3:14� 0:10 0.21 3:87� 0:06 0.105 6:02� 0:22 0.095 4:56� 0:17

0.105 2:64� 0:08 0.23 3:19� 0:07 0.115 5:17� 0:20 0.105 3:84� 0:15

0.115 2:22� 0:07 0.25 2:66� 0:06 0.125 4:46� 0:18 0.115 3:23� 0:13

0.125 1:90� 0:06 0.27 2:25� 0:06 0.135 3:83� 0:16 0.125 2:73� 0:11

0.135 1:67� 0:06 0.29 1:87� 0:06 0.145 3:34� 0:14 0.135 2:31� 0:10

0.145 1:44� 0:05 0.31 1:58� 0:06 0.155 2:94� 0:12 0.145 1:97� 0:09

0.155 1:26� 0:05 0.33 1:32� 0:05 0.165 2:51� 0:10 0.155 1:65� 0:08

0.165 1:12� 0:05 0.35 1:09� 0:05 0.175 2:23� 0:10 0.165 1:40� 0:08

0.175 0:979� 0:042 0.37 0:92� 0:05 0.185 1:99� 0:08 0.175 1:18� 0:07

0.185 0:872� 0:037 0.39 0:77� 0:05 0.195 1:70� 0:07 0.185 0:99� 0:06

0.195 0:781� 0:036 0.41 0:60� 0:04 0.205 1:52� 0:07 0.195 0:83� 0:06

0.205 0:672� 0:031 0.43 0:490� 0:032 0.215 1:32� 0:07 0.205 0:67� 0:05
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0.225 0:550� 0:028 0.47 0:307� 0:022 0.235 1:00� 0:05 0.225 0:439� 0:030

0.235 0:471� 0:024 0.49 0:223� 0:016 0.245 0:84� 0:05 0.235 0:344� 0:025

0.245 0:413� 0:021 0.51 0:154� 0:012 0.255 0:75� 0:04 0.245 0:244� 0:018

0.255 0:373� 0:020 0.53 0:094� 0:008 0.265 0:641� 0:034 0.255 0:157� 0:011

0.265 0:346� 0:022 0.55 0:052� 0:004 0.275 0:546� 0:030 0.265 0:094� 0:006

0.275 0:300� 0:020 0.57 0:019� 0:002 0.285 0:459� 0:024 0.275 0:039� 0:004

0.285 0:250� 0:018 0.295 0:364� 0:018

0.295 0:214� 0:013 0.305 0:284� 0:015

0.305 0:192� 0:014 0.315 0:201� 0:015

0.315 0:150� 0:013 0.325 0:152� 0:009

0.325 0:119� 0:009 0.335 0:089� 0:005

0.335 0:102� 0:010 0.345 0:044� 0:003

0.345 0:068� 0:005

Table 1: Distributions of the variables de�ned in the text. The data are corrected for the �nite

acceptance and resolution of the detector and for initial state photon radiation. No corrections for

hadronization e�ects are applied. The errors include statistical and experimental systematic uncer-

tainties, added in quadrature.
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�(deg.) �EEC �(deg.) �EEC

0.9 3.24 � 0.18 90.9 0.076 � 0.002
2.7 1.30 � 0.03 92.7 0.076 � 0.002
4.5 1.38 � 0.03 94.5 0.076 � 0.002
6.3 1.197 � 0.016 96.3 0.078 � 0.002
8.1 0.974 � 0.017 98.1 0.078 � 0.002
9.9 0.796 � 0.019 99.9 0.079 � 0.003
11.7 0.661 � 0.019 101.7 0.080 � 0.002
13.5 0.553 � 0.016 103.5 0.082 � 0.002
15.3 0.461 � 0.011 105.3 0.083 � 0.002
17.1 0.390 � 0.011 107.1 0.085 � 0.002
18.9 0.334 � 0.011 108.9 0.087 � 0.002
20.7 0.289 � 0.010 110.7 0.089 � 0.002
22.5 0.255 � 0.011 112.5 0.091 � 0.003
24.3 0.227 � 0.009 114.3 0.094 � 0.002
26.1 0.206 � 0.007 116.1 0.096 � 0.003
27.9 0.188 � 0.007 117.9 0.099 � 0.003
29.7 0.174 � 0.007 119.7 0.102 � 0.002
31.5 0.161 � 0.006 121.5 0.107 � 0.003
33.3 0.150 � 0.006 123.3 0.110 � 0.004
35.1 0.141 � 0.004 125.1 0.116 � 0.004
36.9 0.133 � 0.005 126.9 0.121 � 0.004
38.7 0.127 � 0.004 128.7 0.125 � 0.003
40.5 0.121 � 0.004 130.5 0.131 � 0.003
42.3 0.116 � 0.004 132.3 0.138 � 0.003
44.1 0.110 � 0.003 134.1 0.146 � 0.003
45.9 0.106 � 0.003 135.9 0.155 � 0.004
47.7 0.102 � 0.003 137.7 0.164 � 0.004
49.5 0.099 � 0.002 139.5 0.174 � 0.003
51.3 0.096 � 0.003 141.3 0.186 � 0.003
53.1 0.093 � 0.002 143.1 0.200 � 0.004
54.9 0.091 � 0.003 144.9 0.213 � 0.002
56.7 0.089 � 0.002 146.7 0.230 � 0.002
58.5 0.087 � 0.002 148.5 0.250 � 0.003
60.3 0.085 � 0.003 150.3 0.272 � 0.004
62.1 0.083 � 0.003 152.1 0.299 � 0.003
63.9 0.081 � 0.003 153.9 0.329 � 0.005
65.7 0.081 � 0.003 155.7 0.365 � 0.005
67.5 0.079 � 0.003 157.5 0.410 � 0.005
69.3 0.078 � 0.002 159.3 0.457 � 0.009
71.1 0.077 � 0.002 161.1 0.521 � 0.006
72.9 0.076 � 0.002 162.9 0.595 � 0.010
74.7 0.076 � 0.002 164.7 0.682 � 0.012
76.5 0.075 � 0.002 166.5 0.783 � 0.007
78.3 0.075 � 0.002 168.3 0.906 � 0.008
80.1 0.075 � 0.002 170.1 1.049 � 0.014
81.9 0.075 � 0.002 171.9 1.19 � 0.02
83.7 0.074 � 0.002 173.7 1.31 � 0.02
85.5 0.074 � 0.002 175.5 1.34 � 0.04
87.3 0.074 � 0.001 177.3 1.12 � 0.04
89.1 0.075 � 0.002 179.1 0.46 � 0.02

ycut N

0.0001 8.60�0.24
0.0002 6.76�0.17
0.0007 4.36�0.10
0.001 3.87�0.07
0.002 3.16 �0.05
0.005 2.63 �0.03
0.007 2.51 �0.02
0.01 2.41 �0.02
0.02 2.258�0.013
0.03 2.188�0.009
0.04 2.147�0.008
0.05 2.118�0.007
0.06 2.098�0.006
0.07 2.083�0.006
0.08 2.070�0.004
0.10 2.051�0.003
0.12 2.038�0.002
0.14 2.028�0.002
0.17 2.018�0.002
0.20 2.011�0.001

ycut D2

0.001{0.002 161. � 10.

0.002{0.005 73.6 � 0.6

0.005{0.010 26.7 � 1.4

0.01{0.02 11.5 � 0.6

0.02{0.03 5.9 � 0.4

0.03{0.04 3.74 � 0.19

0.04{0.05 2.64 � 0.09

0.05{0.06 1.93 � 0.10

0.06{0.08 1.37 � 0.08

0.08{0.10 0.93 � 0.05

0.10{0.12 0.63 � 0.04

0.12{0.14 0.47 � 0.03

0.14{0.17 0.33 � 0.02

0.17{0.20 0.23 � 0.03

Table 1: (contd.)
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Leading Next-to-Leading Subleading Non-logarithmic

logs logs logs terms

lnR(y) = G12�sL
2 +G11�sL +�sO(1) = A(y)�s

+G23�s
2L3 +G22�s

2L2 +G21�s
2L +�s

2O(1) = (B(y)� 1
2
A(y)2)�s2

+G34�s
3L4 +G33�s

3L3 +G32�s
3L2 + � � � + � � � O(�s3)

+G45�s
4L5 +G44�s

4L4 +G43�s
4L3 + � � � + � � � O(�s4)

+ � � � + � � � + � � � + � � �
= Lg1(�sL) + g2(�sL) + � � � + � � �

Table 2: Decomposition of the cumulative cross-section, lnR(y), in powers of �s = (�s=2�) and

L = ln(1=y). The NLLA calculations provide the terms in the �rst two columns, while the O(�2s)
calculations yield the sums of the terms in the �rst two rows. The matching procedures involve

combining these without double-counting the terms in common.
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Variable C1 C2

(1-T) (�5
2
+ �2

3
)CF = 1:053 �42� 22

MH=
p
s (�5

2
+ �2

3
)CF = 1:053 �48� 20

BT (�17
2
+ �2)CF = 1:826 �126� 16

BW (�17
2
+ �2)CF = 1:826 �182� 8

�EEC (�11
2
� �2

3
)CF = �11:72 �

R2 (�5
2
+ �2

6
� 6 ln 2)CF = �6:69 �

Variable G12 G11 G23 G22 G21

(1-T) �2CF 3CF �11
3
CFCA +

2
3
CFnf �4

3
�2C2

F + (�
2

3
� 169

36
)CFCA + 11

18
CFnf +30� 8

=�8
3

=+4 =�10.22 =�24.94
MH=

p
s �2CF 3CF �11

3
CFCA +

2
3
CFnf �2

3
�2C2

F + (�
2

3
� 169

36
)CFCA + 11

18
CFnf +36� 11

=�8
3

=+4 =�10.22 =�13.24
BT �4CF 6CF �88

9
CFCA + 16

9
CFnf �16

3
�2C2

F + (2�
2

3
� 35

9
)CFCA + 2

9
CFnf +201� 16

=�16
3

=+8 =�27.26 =�81.33
BW �4CF 6CF �88

9
CFCA + 16

9
CFnf �8

3
�2C2

F + (2�
2

3
� 35

9
)CFCA + 2

9
CFnf +219� 8

=�16
3

=+8 =�27.26 =�34.55
�EEC �CF 3CF �11

9
CFCA +

2
9
CFnf (�

2

6
� 35

36
)CFCA +

1
18
CFnf �58� 7

=�4
3

=+4 =�3.41 =3.06

R2 �CF 3CF �11
9
CFCA +

2
9
CFnf

11
4
CFCA � 1

2
CFnf {

=�4
3

=+4 =�3.41 =7.67

Table 3: QCD coe�cients used in the matching of the NLLA and O(�2s) QCD calculations. For

QCD CF = 4
3
, CA = 3 and nf is taken to be 5. The C1 coe�cients take into account the di�erence

between the Born and the O(�s) hadronic cross-section. Coe�cients derived from �ts to the full O(�2s)
coe�cient B(y) are shown with errors. In the cases where coe�cients are unknown they were taken

to be zero.
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Variable NLLA+O(�2s) �ts O(�2s) �ts
(1-T) 0.06 � 0.30 0.08 � 0.30

MH=
p
s 0.18 � 0.40 0.20 � 0.52

BT 0.09 � 0.23 0.14 � 0.28

BW 0.07 � 0.17 0.08 � 0.21

�EEC : � 43:2� � 162:0� 43:2� � 162:0�

R2 : ycut 0.005 � 0.20 0.01 � 0.20

N : ycut 0.005�0.05 0.02�0.10

Table 4: Ranges used for QCD �ts to the data.

(1-T) MH BT BW �EEC R2 N
x� = 1

�MS (MeV) 267� 7 246� 6 259� 6 139� 4 459� 4 289� 7 285� 5

�s(MZ0) 0.1211 0.1195 0.1197 0.1099 0.1322 0.1225 0.1226

�2/d.o.f. 2.3 9.4 5.1 18.8 6.5 6.8 2.4

x� �tted

�MS (MeV) 990+790�370 162� 9 92� 7 80� 2 568� 8 900+600�320 316� 6

�s(MZ0) 0.1521 0.1124 0.1040 0.1021 0.1372 0.1493 0.1246

x� 10.0+15:2�5:4 0.34�0.04 0.13�0.03 0.17�0.01 1.89�0.09 23.6+48:1�14:2 1.37�0.25
�2/d.o.f. 1.9 4.5 2.6 2.0 3.5 5.1 0.7

Table 5: Results of �tting the NLLA+O(�2s) QCD calculations to the data, using the ln(R)-matching

scheme in all cases except �EEC, where the modi�ed R scheme is used.

(1-T) MH BT BW �EEC R2 N
x� = 1

�MS (MeV) 532� 16 386� 10 630� 19 354� 10 348� 3 277� 8 378� 12

�s(MZ0) 0.1356 0.1284 0.1397 0.1266 0.1263 0.1217 0.1283

�2/d.o.f. 7.4 18.4 2.7 10.3 9.7 4.4 10.4

x� �tted

�MS (MeV) 146� 7 219� 5 445+69�57 209� 7 181� 6 193� 11 203� 6

�s(MZ0) 0.1107 0.1174 0.1315 0.1166 0.1141 0.1152 0.1164

x� 0.055�0.007 0.071�0.004 0.59+0:14�0:11 0.070�0.006 0.18�0.01 0.092�0.015 0.067�0.014

�2/d.o.f. 2.4 3.0 2.5 2.4 7.8 1.8 0.4

Table 6: Results of �tting the O(�2s) QCD calculations to the data.
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(1-T) MH BT BW �EEC R2 N
ln(R)-matching : �s(MZ0) 0.1211 0.1195 0.1197 0.1099 � 0.1225 0.1226

: �2/d.o.f. 2.3 9.4 5.1 18.8 6.8 2.4

R-matching : �s(MZ0) 0.1243 0.1243 0.1279 0.1203 0.1283 0.1120 0.1280

: �2/d.o.f. 1.6 27.5 226. 250. 4.3 26.9 9.4

Modi�ed R-matching : �s(MZ0) 0.1209 0.1192 0.1229 0.1116 0.1322 � �
: �2/d.o.f. 1.8 12.5 7.7 19.7 6.5

Modi�ed ln(R) matching : �s(MZ0) 0.1207 0.1190 0.1189 0.1099 � 0.1226 �
: �2/d.o.f. 5.5 4.7 2.2 2.6 6.6

Table 7: Values of �s(MZ0) and �
2/d.o.f. derived by �tting the NLLA+O(�2s) QCD calculations to the

data, for x� = 1, using di�erent matching schemes. As explained in the text, the matching schemes

have a slightly di�erent meaning for N .

(1-T) MH BT BW �EEC R2 N
�s(MZ0) 0.1211 0.1195 0.1197 0.1099 0.1322 0.1225 0.1226

Statistical �0.0005 �0.0005 �0.0005 �0.0004 �0.0002 �0.0005 �0.0003
Experimental Syst. �0.0024 �0.0017 �0.0032 �0.0026 �0.0031 �0.0042 �0.0034
Jetset / a + 1 s.d. �0.0006 �0.0022 �0.0013 �0.0004 �0.0014 +0.0002 +0.0002

Jetset / a � 1 s.d. +0.0006 +0.0009 +0.0009 0.0000 +0.0005 �0.0001 �0.0002
Jetset / �q + 1 s.d. �0.0006 �0.0005 �0.0006 �0.0007 �0.0008 +0.0001 +0.0001

Jetset / �q � 1 s.d. +0.0020 +0.0010 +0.0018 +0.0003 +0.0009 +0:0002 +0.0001

Jetset / Peterson +0.0010 +0.0010 �0.0006 �0.0003 +0.0005 +0.0014 +0.0014

Jetset / udsc only +0.0022 +0.0003 +0.0042 +0.0020 +0.0017 +0.0026 +0.0025

Jetset / Q0 = 2 GeV �0.0012 +0.0001 �0.0008 +0.0001 �0.0009 +0.0016 +0.0019

Herwig 5.5 �0:0040 +0.0031 �0.0090 �0.0014 �0.0041 +0.0018 +0.0052

Ariadne 3.1 +0.0005 +0.0018 �0.0022 +0.0004 �0.0012 �0:0042 �0.0024
Cojets 6.23 �0.0357 �0.0235 �0.0399 �0.0275 �0:0404 �0:0247 �0.0202

Total Hadronization �0.0053 �0.0044 �0.0105 �0.0026 �0.0050 �0.0057 �0.0067
x� = 0:5 �0.0058 �0.0050 �0.0066 �0.0039 �0:0045 +0:0019 �0.0035
x� = 2 +0.0072 +0.0066 +0.0080 +0.0049 +0.0054 +0.0023 +0.0048

Total error +0:0093

�0:0082

+0:0082

�0:0069

+0:0136

�0:0128

+0:0061

�0:0054

+0:0080

�0:0074

+0:0075

�0:0073

+0:0089

�0:0083

Table 8: Systematic errors on the value of �s(MZ0) derived from each of the seven observables. In

all cases the NLLA+O(�2s) QCD calculations were �tted to the data assuming x� = 1. The ln(R)-

matching scheme was used except for �EEC, where the modi�ed R-scheme was taken. In the cases

where a signed value is quoted, this indicates the direction in which �s(MZ0) changed with respect to

the default analysis when a certain feature of the analysis was changed.
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(1-T) MH BT BW �EEC

ln(R)-matching : �s(MZ0) 0.1195 0.1208 0.1212 0.1133 �
: �2/d.o.f. 1.5 3.4 1.5 1.5

: G32 �370� 85 575� 70 1330� 180 2380� 170

Modi�ed R-matching : �s(MZ0) 0.1200 0.1206 0.1249 0.1149 0.1300

: �2/d.o.f. 1.6 4.3 1.4 1.5 4.4

: G32 �190� 80 670� 70 1650� 170 2420� 170 �210� 20

Modi�ed ln(R) matching : �s(MZ0) 0.1175 0.1198 0.1179 0.1111 �
: �2/d.o.f. 1.5 2.6 1.2 1.0

: G32 �725� 85 315� 65 �640� 190 590� 150

Table 9: Values of �s(MZ0) and �2/d.o.f. derived by �tting the NLLA+O(�2s) QCD calculations to

the data, for x� = 1, allowing the subleading coe�cient G32 to be determined in the �t.

�s(MZ0) �s(MZ0)

NLLA+O(�2s) O(�2s) only
(1� T ) 0.121+0:009�0:008 0.123�0:013

MH 0.119+0:008�0:007 0.123�0:007
BT 0.120+0:014�0:013 0.136�0:015
BW 0.110+0:006�0:005 0.122�0:007

�EEC 0.132+0:008�0:007 0.120�0:009
R2 0.122�0:007 0.119�0:010
N 0.123+0:009�0:008 0.122�0:012

Weighted Mean 0.120�0:006 0.122�0:007

Table 10: Summary of values of �s(MZ0) derived from each of the seven observables using the

NLLA+O(�2s) QCD calculations. Values based on simple O(�2s) QCD are given for comparison.
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Figure 1: Data corrected to the hadron level for: (a) BT , (b) BW , (c) N . The curves show the

predictions of the QCD parton shower models Jetset (solid) and Herwig (dotted) as described in

the text.
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Figure 2: Normalized cross-sections 1
�

d�

dX
, corrected to the parton level, where the observable X is: (a)

(1�T ), (b)MH=
p
s, (c) BT , (d) BW . The curves show the QCD �ts using NLLA+O(�2s) calculations

combined with ln(R)-matching, at scale x�=1. The dotted lines indicate the �t ranges used.
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Figure 3: Data corrected to the parton level for: (a) �EEC , (b) R2, (c) N . The curves show the QCD

�ts using NLLA+O(�2s) calculations combined with ln(R)-matching, or modi�ed R-matching in the

case of �EEC , at scale x�=1. The dotted lines indicate the �t ranges used.
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Figure 4: Dependence of �s(MZ0) (solid curves) and �
2/d.o.f. (dashed curves) on x� for NLLA+O(�2s)

�ts to the Opal data. In all cases ln(R)-matching was used, with the exception of �EEC, for which

modi�ed R-matching was chosen.
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Figure 5: Dependence of �s(MZ0) (solid curves) and �2/d.o.f. (dashed curves) on x� for O(�2s) �ts to
the Opal data.
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Figure 6: Values of �s(MZ0) derived from NLLA+O(�2s) �ts to the Opal data. The solid error bars

denote the experimental uncertainties, while the dashed error bars show the total errors, including

hadronization and higher order e�ects. The vertical line and the shaded region represent the weighted

mean value and its error.
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Figure 7: Values of �s(MZ0) derived from O(�2s) �ts to the Opal data: (a) values at x�=1, where the
error bars denote the experimental uncertainties only, (b) values based on the average of x�=1 and

optimised x�, where the total errors, including hadronization and higher order e�ects, are shown. The

vertical line and the shaded region represent the weighted mean value and its error.
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