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In the CERN ISR, it was possible to have stable beams for 50h or more without cooling, which corresponds

dt 3Pi dt 8qi
(1) and(2)Qu - E E - QE -and -

p) and tis an independent variable such as time. H is chosen so that,
momentum (P distinguishes the conjugate momentum from the more usual kinetic momentum
H (q, P, t), where q is the position vector, P is known as the canonically conjugate

The motion of a single particle under an extemal force can be described by a Hamiltonian

2 . LAGRANGIAN/HAMILTONIAN FORMALISM

formalism.
safe method for treating more complicated cases. This method is the Lagrangian/Hamiltonian
therefore imperative to be sure that the basic equations are phase-space conserving and to find a
and instability for very large numbers of oscillations in the presence of nonlinear fields. It is
research, motivated by the design of new accelerators, to determine the limit between stability
do not violate the conservation of phase space that can be accepted. At present, there is a lot of
through extremely large numbers of oscillations. In both cases, it is only approximations that
equations of motion are required to accurately represent the motion of a planetary system

nscrvation of Dh The same problem reappears in celestial mechanics where the
however slightly, a fundamental principle of physics, which for accelerators would be the
the consequences may no longer be negligible. In such cases the approximations are violating,
compared to the desired accuracy, but in some cases, after very many oscillations of a system*,
approximations, which are justified as having very small effects. Usually this is satisfactory
applied physics, the final expressions are relatively simple, but only as a result of making some
applied, but behind this economy of the truth there are some pitfalls. As often happens in
motivation for doing them in the ways presented. The final results are valid and are universally
and for the transverse motion [2, 3] appear very simple and easy to understand, which was the

The derivations given in the basic course for the phase equation (longitudinal motion) [1]

1 . INTRODUCTION

various choices for the conjugate variables are discussed.
case of replacing the magnetic guide field with an electric one, and
a velocity-dependent potential to accotmt for magnetic fields, the special
a particle beam that is bunched by the action of an rf cavity. The use of
phase equation that describes the longitudinal, or energy oscillations, of
equations of motion. In this paper, this technique is applied to the
using the La gran gian/Hamiltonian formalism when deriving the
rigorously conserves phase—space density. This can be assured by
study of these systems requires a mathematical description that
feature of making extremely large numbers of cycles. The long-term
Particle accelerator beams and celestial systems often share the common
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equation is via the well·known Lagrangian equations of motion OCR Output
conjugate variables for the azimuthal (longitudinal) motion. The most direct route to the motion
where pg is the tangential component of the kinetic momentum. Thus (G), S) are canonically

(9)S=i(p9+eA9)

s = moyzzfo + eRA6

conjugate to ®. This is known as the general angular mgmentgm §,
Partial differentiation of (5) with respect to 6) gives the momentum, which is canonically

machine circumference. The latter is the preferred formulation since C is directly measurable.
where s is the distance along the central orbit, R is the average machine radius and C is the

G) = s/R = 21: s/C (8)

where the azimuthal angle is defined as,
For the phase equation, it is convenient to use the cylindrical coordinates (R, (9, z),

3 . DERIVATION OF THE PHASE EQUATION

motion and the analysis is based on Refs. [9] and [10].
nonlinear resonances by Wilson [8]. ln the present paper, the emphasis is on the longitudinal
motion in a synchrotron is dealt with by Bell [5], Hagedoom [6] and Montague [7] and for

The development of the above theory in a curvilinear coordinate system for the transverse

work on mechanics, such as Ref. [4].
condensed explanation of Hami1ton's equations should be supplemented by studying a standard
mg is the particle‘s rest mass, c is the speed of light and Y = (1-v2/c2)‘l/2. This rather

$*1; (7)E —— VQ —
BA

and ¢(q) is the scalar potential of the electrical field such that,

(6)B = V x A

where A(q) is the vector potential of the magnetic field such that,

(5)L=—m0c2y‘1—e(¢—A.v)

and taken as the starting point, i.e.,
relativistic charged particle in an electromagnetic field is well—known and will be simply quoted
In practice, the construction of the Lagrangian may not be easy, but the Lagrangian of a

(3) and (4). _ IZ=§E‘ and H=2_}2q,-L
BL

Lagrangian is the key to finding the conjugate momenta and the Hamiltonian via,
of coordinates is convenient and then constructing the Lagrangian denoted by L. The
equations. The Hamiltonian can be found by expressing the system in whatever generalised set
Thus in a system with n degrees of freedom the dynamics will be described by 2n first-order
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as shown below, OCR Output
such a field would still not have an azimuthal component. Thus the terms in (12) are assigned
The special case of a radial electric guide field will, however, be discussed later, but note that
electric bending and focusing forces, but this is not very usual and this term will be put to zero.
to the synchrotron wavelength, which is generally the case. The term oguidc field could contain
Approximations (ii) and (iii) rely on the transitions between magnets being very short compared

fields by potential functions is discussed further in Appendix B.
represented by a time-varying potential, ¢(z). The representation of electromagnetic
In this region the rf magnetic field is essentially zero and the electric field can be
(iv) Only the paraxial region of the cavity, where the beam passes, will be considered.

(iii) It will be assumed that the guide field is constant and therefore BAE;/99 = O.

be derivable from Ag alone.
(ii) The magnetic guide field will be taken as purely two-dimensional and will therefore

Q) Z ¢guide field + ¢cavity.
guide field cavityA = A+ A

be considered in (12), i.e.,
(i) Inter-particle forces will be neglected, so that there are only two sources of field to

So far all equadons are exact, but certain assumptions and approximations are now needed:

(12)(p9+eA6)=—e(¢—A.v).d C $[51-; 3 ;l%

With the use of (9), this can be expanded into

dt GQ—-e (¢—A.v)
dS 8

variables (9, S) gives,
The application of (11) to the azimuthal motion in a synchrotron with the conjugate

and shown to be the potential for the Lorentz force in Appendix A.
potential when magnetic fields are not present. The generalised potential is further discussed
expression that equates the rate of change of kinetic momentum to the gradient of a scalar
the gradient of the generalised potential. This is a more general formulation of the simpler
Equation (ll) shows that the time rate of change of the conjugate momentum can be guated to
conjugate momentum different from the kinetic momentum in the presence of a magnetic field.
where U = <|>—A.v and is called the generalised potential. It is this term that makes the

dI{ (ll)U, =——£[e(¢—A.v)] or ;;=-eVUdP‘ 1

The first term on the right-hand side is not an explicit function of position, so that,

2gt 5: %j—m0c’y`l — e(¢ - AJ')

By virtue of (3) and (5), (10) can be rewritten as,

10 ( )9. Ei - Q df Bq; aq;
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orbit therefore stays constant OCR Output
phase 6 with respect to the rf is such that its energy gain matches the change in the guide field and its closed
The synchronous particle is an ideal particle whose revolution frequency is synchronised with the rf and whose

po ac 0 21:

(17) is then linearised by retaining only the frrst-order terms to give,
orbit. Further, AgC can be expanded in a series of AC in the median plane. The expression
The absolute value of ASC has no meaning and it can be chosen to be zero on the synchronous

(17)AS=S·—SO =[(p,,+eA,,)C—(p0+eA0)C0]/(21:).

expanded as,
variable from that of the synchronous particle. The tenn AS on the left-hand side of (15) can be
The subscript 0 denotes the synchronous particle and A is used to denote the deviation of a

(16)0 = no - I our

where the argument of the cosine in (14) has been replaced by 6, so that

(15)dz 21:
AS = 2(cosf) — cos9,,)

d

and forming the difference equation to give,
particle*. This is achieved by applying (14) to an arbitrary particle and a synchronous particle
how a given particle behaves with respect to a reference particle called the synchronous
variables (E-), S). In order to demonstrate that a beam will be focused it is necessary to show

Equation (14) describes the azimuthal motion of a single particle using the conjugate

dz 21:
S=cos(h®— load:)iQ

with the help of the active wave component of the electric freld derived in Appendix C.
acceleration. The right—hand side contains only the action of the rf cavity and can be rewritten
On the left-hand side, S contains both actions of the guide field, i.e. deflection and betatron

at ao
13 ( )9¢ = —— 8

equation reduces to
With the approximations made concerning Ag and since v does not explicitly depend on 9, this

guide fieldguide field

magnetic rf cavity magnetic

(12)

d C 8 ——— = ——— A. dt[2n(P9+¢A9)] ¢a®( ¢ v)
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Magnetic guide field AS = ii Ap = R0Ap (26) OCR Output

magnetic guide field by the substitution of (24) into (20) to give,
which is the usual form of the phase equation. The expression for AS is also simplified for a

(25)M8gH€tlC guide field JAB : ((:059-QQSBOi @CgE; dt 21:hn dt C0

The substitution of (24) into (23) simplifies the equation to

2Rp0
(24)_ eC0B0 -1 - ————

give

When the guide field is purely magnetic the cyclotron relation, p = — eB0p0 can be applied to

1+ 1+-9- -A0 :2- (cos9—cos90). (23)2 A A gigEdt hn 21: 21:pO dt 21:

equation describing the phase oscillations.
relative to the synchronous particle. They can be combined to give a single second-order
and (22) are therefore the first-order canonically conjugate equations for the particle motion
also preserve phase-space area and can be considered as canonically conjugate. Equations (15)
Since A9 differs from A® by a constant, A0 = hA® from (16), the variables (A0, AS) will

(22):1 h 2 2 c B ` —A0=-1 i 1+ 1+iMu dr moy C0 21:pO

momentum spread and h is the harmonic number The substitution of (21) into (20) yields,
where 1] is the fractional change in revolution frequency per unit of fractional change in

_ P ‘ mm dr * (21)mgfxcg dA 9
attice.lnlflppendix D an expression is derived that links the Ap to A6 via the optical properties of the

21:pO 21:
(20,

The substitution of (19) into (18) gives,

ac 0 21:

B

only,
uniform, or close enough that average values can be used, and that the field is derived from Ag

where0t·themomentumc ' S` `h alr d b edthtA i — C0 AD, ompaction. mce it as ea y een assum a 9 s
*t&£
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Thus AW is equivalent to AS in this particular case. OCR Output
Equation (32) yields the same result as (26) for AS in a machine with pure magnetic bending.

AW = AE/Q0 = R0 Ap (32)
momentum). The equivalent form of (31) for a small change in W about the central orbit 1s,
which shows more clearly why W was called an action variable earlier (dimensions of angular

(31)
W = R , <p>¤pP [0

The substitution of (30) into (28) gives the relationship between W and p, i.e.,

(30)

2E = 2cp
z

When differentiated (29) becomes,
(29)E2 = czpz + E5

to the variables used earlier.
The well-known relativistic expression (29) for the total energy of the particle, provides the link

. E., Q(E)
(28)W ; IE .9.}*;;

variable 9 has already been defined in (8) and the action variable W is defined [15] as,
In much of the literature, the canonically conjugate variables (G), W) are used. The angle

4 . CHOICE OF VARIABLES (9, W)

[14].
for a combined Hamiltonian treatment of the longitudinal and transverse motions Refs. [13] and

Those readers interested in further details could try the papers in Refs. [11] and [12] and

be small, especially in large strong focusing machines (remember, ot 5 Q;2).
synchrotron oscillations are different in the two cases, although these differences are likely to
be the same whichever equation is used. However, the amplitudes and frequencies of the
factor (1+0t), between the two equations, is independent of time, so that the damping law will
This equation differs from (25) because the betatron acceleration force has been removed. The

anemia guide new . (1+a)..A9 Z -(c05B—cos9O (27)9@€*€Edt 21clm dt C0

and the phase equation would become,
field. This would not appear in the above azimuthal motion equations, but B0 would be zero
unnecessary, but suppose for a moment that the guiding force was provided by a radial electric

The reservation made above, that the guide field should be magnetic, may seem a little

coherent instabilities in a coasting beam.
on the problem. For example, (AG), Ap) is a convenient choice for the analysis of the onset of
(A9, AS) will conserve phase-space area and be conjugate. The choice of variables depends
Thus AS and Ap differ only by a constant in this case and (A9, Ap) and (AO, Ap) like
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machines than (A9, Ap).
The variables (At, AE) are better adapted to the description of beam transfers between

(33)AE=x/(1·Y`2) CAP =B€ AP

2MhB2mh,/(1- W)
Am = -—-YL-A0 = JL A9

relations between this choice and (A9, Ap):
since this pair of variables (A1, AE) appears frequently in the literature, it is worth giving the

Another sct of canonically conjugate variables that can be used is time and energy and

5 . CHOICE OF VARIABLES (·c, E)
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i.e., the Lorentz force on a moving charge. OCR Output

F=e{E+v><V><A}=e{E+vxB}
so that

v><V><A = V(A.v)-(v.V)A

matched to the above equation gives
The triple vector product can be written as, a x b x c = b(c.a) — (a.b)c, which when

F = e{E + V(A. v) - (v. V)A}

8:
E = —V —— , Q)

BA

Since

F = e ——V¢ - A + V(A.v) — (v.V)A8 E

'I'he operator § can be expanded to $ + (WV) so that,

F = e{ ·—V¢ + V(A.v) + (—A)£}

where U = ¢— A.vF = e{·-VU +
generalised potential. This is demonstrated below.
particle in an electromagnetic field is found by applying the operator —e[V — d/dt(8/8v)] to the
operator —eV to the scalar potential. In an analogous way, the Lorentz force on a charged
dependent term. In a scalar electric field E, the force on a particle is found by applying the

The generalised potential (q>—A .v) has the somewhat unusual feature of a velocity

GENERALISED POTENTIAL

APPENDIX A
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volume of interest by ¢. OCR Output
region of interest would then be derived from A and that arising from the fields outside the
say half the volume of the cavity. The electric field arising from the rf magnetic field in the
interest. Although it would be unnecessarily complicated, it would also be possible to consider
currents and magnetic fields, but these are considered as totally extemal to the region of
This is the choice made for the simple accelerating gap. The time-variation of ¢ does imply
region is considered the electric field can be represented by a time-dependent scalar potential ¢.
cavity is such that the axis is virtually free of rf magnetic field. Hence if only the paraxral
where A describes the rf magnetic field in the cavity. However, the field distribution in a
wall will induce arr electric field on the axis. The electric field can therefore be derived from A
cavity then Faraday's law says that the azimuthal magnetic field concentrated on the outer cavity
example is the electric field on the axis of an rf cavity. If one considers the full volume of the
former implies that the source of the field is totally extemal to the region of interest. A second
This can equally well be expressed using a scalar potential 4)*, or a vector potential A. The

A simple example is the magnetic field in the current—free gap of an accelerator magnet.

and the nature of the problem.
due to the sources inside the region of interest. The formulation used is a matter of convenience
A* and ¢* are the potentials set up by sources outside the region of interest while A and ¢ are

B = VxA — lL%~—|.lV¢* and E =-Vo -% -éVxA*i

are symmetric between B and E. Thus general solutions will be of the form,
formulation is not completely general. In current- and charge—free regions Maxwell's equations
All transformations of this form will leave E and B unchanged. Secondly, the above

¢=q>0—% and A=A0+V

Thus the relationships between the new variables [tp, A] and the original [cbc, A0] must be

t at_ 2 _ E ——V¢— a(Ao + Vw) ——V(<t> +5%3 GAO
unchanged.
When the electric field is included, a new tp is needed to match the new A in order that E is

Vx(Ag + VW) = VxA0 + VxV\t/ = VXAD = B

be added to A0 without altering B,
Firstly, it should be noted that neither A0 nor $0 are unique. Any function of the form Vip can

B = VxA0 and E =—V¢0
GAO

functions [16]. The most usual forms are:
Electomagnetic fields are frequently represented by scalar and/or vector potential

FUNCTIONS
REPRESENTATION OF ELECTROMAGNETIC FIELDS BY POTENTIAL

APPENDIX B
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could be many gaps or even travelling wave structures. OCR Output
acceleration, it is immaterial for the analysis how the active wave component is set up. There
number. It should be noted that although it was convenient to assume a short single gap for the
where h represents the number of rf cycles per particle revolution and is called the

M . E = —Fcos(h(9—j0Jd1) Active wave component

component of interest for analysing the longitudinal modon is
this way, the synchronous particle's closed orbit will remain constant. Thus the only
guide field is increased to match the energy gain of the equilibrium particle from the rf gap. In
Such a particle is called an guilibrium particle or synchronous particle. It is assumed that the

S20 = 21tvO / C0

circumference C0 according to the relationship,
where S20 is the angular frequency of a particle with velocity vo running on a closed orbit of

codt — h€—) = constant, or h§;® = cu written as hQO = co

except the one that satisfies the condition,
waves. All the wave components act as a.c. fields on the particles (with zero average effect)
where C is the machine circumference. This equation comprises two sets of counter-rotating

E (z) = -coscot) + coswd: + n®) + cos(| wd: — n®)]Lg[(Idi[(<|’ n=l
This field has a spatial periodicity of 2Jt in 9 and can be Fourier analysed with the result,

for (1tLR /C0) $l®I$ 1tE(t) = 0

E(t) = u(t) / Lg for IOIS TCL, / C0

longitudinal field is expressed as a function of the azimuthal coordinate (9 (= 21ts/C0), so that
account for the slow variations needed during the acceleration process. For convenience, the
The frequency to is assumed to be quasi-constant, but it is written in integral form in order to

u(t) = t2cos[| t0(t)dt]

Consider an accelerating gap of length Lg with an applied accelerating voltage,

ACTIVE COMPONENT OF THE FIELD

APPENDIX C
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27thn OCR Output
Ap = m0'YC0 A9

The replacement of po in the above yields,

po = mvo = mC0Q0 /(21t) = m0‘yCOc0 / (21th)

The particle momentum is given by,

Ap = pOn"A9 / co

so that
compared to the particle oscillations about the synchronous particle, Q0 can be replaced by co! h,
lt follows from (16) that AQ can be replaced by A9/h and if 01 is constant, or slowly varying

- AP Z Pon E
AQ I

momentum spread. The above expression is now rearranged to give
where T] is the fractional change in revolution frequency per unit of fractional change in

o

n = ——— = Y —¤¤/ Q p( )
AQ Ap .2

This is frequently rewritten as,

2M2/no =(r—¤) M/pt

The combination of the above yields

AC / C0 = ct Ap / po

where Y = m/mg. From the definition of the momentum compaction

Av/vt = v"/-\p / pt

Simple relativity theory gives,

AQ/QO =Av/v0—AC/C0

logarithmic differentiation,
lattice properties. The revolution frequency is given by Q = 21tv/C, which yields by
revolution frequency and momentum with respect to the synchronous particle in terms of the

It is important to establish the relationship between the deviations of the particle's

MOMENTUM DISPERSION OF REVOLUTION FREQUENCY

APPENDIX D
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