Symmetry Aspects and Finite-Size Scaling of Quantum Hall Fluids^{*}

Andrea CAPPELLI^{a^{\dagger}}, Gerald V. DUNNE^b, Carlo A. TRUGENBERGER^a and Guillermo R. ZEMBA^a

^a Theory Division, CERN, 1211 Geneva 23, Switzerland ^b Dept. of Physics, Univ. of Connecticut, 2152 Hillside Road, Storrs, CT 06268 USA

Abstract

The exactness and universality observed in the quantum Hall effect suggests the existence of a symmetry principle underlying Laughlin's theory. We review the role played by the infinite W_{∞} and conformal algebras as dynamical symmetries of incompressible quantum fluids and show how they predict universal finite-size effects in the excitation spectrum.

CERN-TH-6784/93 January 1993

^{*} Based on the talks presented at the Conference on *Condensed Matter and High-Energy Physics*, Chia Laguna (Sardinia), September 1992, to appear in Nucl. Phys. B (Proc. Suppl.), L. Alvarez-Gaumé et al. eds..

[†] On leave from INFN, Largo E. Fermi 2, I-50125 Firenze, Italy.