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Abstract

The implications of chiral SU(3)L×SU(3)R symmetry and heavy quark symmetry for

the radiative decays D∗0 → D0γ, D∗+ → D+γ, and D∗
s → Dsγ are discussed. Particular

attention is paid to SU(3) violating contributions of order m
1/2
q . Experimental data on

these radiative decays provide constraints on the D∗Dπ coupling.
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Recent CLEO data [1] (see Table 1) have brought the D∗0 and D∗+ branching ratios

into agreement with expectations based on the constituent quark model [2]. In this letter,

the rates for D∗ decay are described in a model independent framework which incorporates

the constraints on the decay amplitudes imposed by the heavy quark and chiral SU(3)L ×

SU(3)R symmetries of QCD.

Table 1: D∗ Branching Ratios (%)

Decay Mode Branching Ratio

D∗0 → D0π0 63.6 ± 2.3 ± 3.3

D∗0 → D0γ 36.4 ± 2.3 ± 3.3

D∗+ → D0π+ 68.1 ± 1.0 ± 1.3

D∗+ → D+π0 30.8 ± 0.4 ± 0.8

D∗+ → D+γ 1.1 ± 1.4 ± 1.6

At low momentum the strong interactions of the D and D∗ mesons are described by

the chiral Lagrange density [3]

L = −i TrHavµ∂µHa + i
2 TrHaHbvµ

[

ξ†∂µξ + ξ∂µξ†
]

ba

+ i
2g TrHaHb γµγ5

[

ξ†∂µξ − ξ∂µξ†
]

ba
+ · · ·

(1)

where the ellipsis denotes operators suppressed by factors of 1/mQ and operators with more

derivatives or factors of the light quark mass matrix. In Eq. (1), vµ is the four velocity of

the heavy meson. The field ξ is written in terms of the octet of pseudo-Nambu-Goldstone

bosons

ξ = exp (iM/f) , (2)

where

M =







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0

−
√

2
3
η






. (3)

At tree level f can be set equal to fπ, fK or fη. Our normalization convention has

fπ ≃ 132 MeV. Under chiral SU(3)L × SU(3)R transformations,

ξ → LξU† = UξR†, (4)
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where L ∈ SU(3)L and R ∈ SU(3)R, and U is defined implicitly by Eq. (4). Ha is a 4× 4

matrix that contains the D and D∗ fields:

Ha =
1

2
(1 + v/) [D∗µ

a γµ − Daγ5] ,

Ha = γ0H†
aγ0 .

(5)

The index a represents light quark flavor, where (D1, D2, D3) = (D0, D+, Ds) and

(D∗
1 , D∗

2 , D
∗
3) = (D∗0, D∗+, D∗

s). Under SU(2)v heavy quark spin symmetry and chiral

SU(3)L × SU(3)R symmetry, Ha transforms as

Ha → S(HU †)a , (6)

where S ∈ SU(2)v. The D∗Dπ coupling constant g is responsible for the D∗ → Dπ decays.

At tree level,

Γ(D∗+ → D0π+) =
g2

6πf2
π

| ~pπ|
3

. (7)

The decay width for D∗+ → D+π0 is a factor of two smaller by isospin symmetry. The

experimental upper limit [4] on the D∗+ width of 131 keV when combined with the D∗+ →

D+π0 and D∗+ → D0π+ branching ratios in Table 1 leads to the limit g2 <∼ 0.5.

The axial vector current obtained from the Lagrangian (1) is

qa TA
ab γνγ5 qb = −g TrHaHb γνγ5 TA

ba + · · · . (8)

In Eq. (8) the ellipsis represents terms containing one or more Goldstone boson fields

and TA is a flavor SU(3) generator. Treating the quark fields in Eq. (8) as constituent

quarks and using the nonrelativistic quark model to estimate the D∗ matrix element of

the l.h.s. of Eq. (8) gives g = 1. (A similar estimate of the pion-nucleon coupling gives

gA = 5/3.) In the chiral quark model [5] there is a constituent quark-pion coupling. Using

the measured pion-nucleon coupling to determine the constituent quark pion coupling gives

g ≃ 0.8. Thus various constituent quark model estimates lead to the expectation that g

is near unity. In this paper, however, we wish to adopt a model independent approach

to radiative D∗ decay. From the point of view of chiral perturbation theory g is a free

parameter and its value must be determined from experiment.

The D∗
a → Daγ matrix element has the form

M(D∗
a → Daγ) = eµa ǫµαβλ ǫ∗µ(γ) vα kβ ǫλ(D∗), (9)
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where eµa/2 is the transition magnetic moment, k is the photon momentum, ǫ(γ) is the

polarization of the photon and ǫ(D∗) is the polarization of the D∗. The resulting decay

rate is

Γ(D∗
a → Daγ) =

α

3
|µa|

2
|~k|3 . (10)

The D∗
a → Daγ matrix element gets contributions from the photon coupling to the light

quark part of the electromagnetic current, 2
3 uγµu − 1

3 dγµd − 1
3 sγµs, and the photon

coupling to the heavy charm quark part of the electromagnetic current, 2
3 cγµc. The

part of µa that comes from the charm quark piece of the electromagnetic current, µ(h),

is determined by heavy quark symmetry. In the effective heavy quark theory [6], the

Lagrange density for strong and electromagnetic interactions of the charm quark is

L =h
(c)

v (iv · D) h(c)
v +

1

2mc
h

(c)

v (iD)2h(c)
v

−
gs

2mc
h

(c)

v σµνT ah(c)
v Ga

µν −
e

3mc
h

(c)

v σµνh(c)
v Fµν + · · · .

(11)

In Eq. (11), Dµ is the covariant derivative

Dµ = ∂µ + igsA
a
µT a + 2

3
ieAµ, (12)

where gs is the strong coupling and e is the electromagnetic coupling. The ellipsis denotes

terms with more factors of 1/mc. It is to be understood that the operators and couplings in

Eq. (11) are evaluated at a subtraction point µ = mc, and that corrections of order αs(mc)

have been neglected. The last term in Eq. (11) is responsible for a D∗ to D transition

matrix element µ(h). By heavy quark symmetry [7],

µ(h) =
2

3mc
, (13)

where µ(h) is independent of the light quark flavor. Perturbative αs(mc) corrections to

the above are computable, while corrections suppressed by a power of 1/mc are related

to those which occur in semileptonic B → D∗eνe decays [8]. At order 1/m2
c , Eq. (13)

becomes µ(h) = (2/3mc) [1 − 4ξ+(1)/mc], where ξ+ is defined in Ref. [8].

The part of µa that comes from the photon coupling to the light quark piece of the

electromagnetic current, µ
(ℓ)
a , is not fixed by heavy quark symmetry. The light quark

piece of the electromagnetic current transforms as an octet under SU(3) flavor symmetry.
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Since there is only one way to combine an 8, 3 and 3 into a singlet, in the limit of SU(3)

symmetry, the µ
(ℓ)
a are expressible in terms of a single reduced matrix element,

µ(ℓ)
a = Qaβ , (14)

where β is an unknown constant and Qa denotes the light quark charges Q1 = 2/3, Q2 =

−1/3, Q3 = −1/3. In the nonrelativistic constituent quark model β ≃ 3 GeV−1. Note that

Eq. (14) includes effects suppressed by powers of 1/mc, since it follows from using only

SU(3) symmetry.

The leading SU(3)-violating contribution to the transition amplitudes has a nonana-

lytic dependence on mq of the form m
1/2
q which arises from the one-loop Feynman diagrams

shown in fig. 1. The strange quark mass, ms, is not very small, and so the corrections to

Eq. (14) from SU(3) violation may be comparable to µ(h), which is suppressed by 1/mc

relative to µ(ℓ). Including the leading SU(3) violations, µ
(ℓ)
a becomes

µ
(ℓ)
1 =

2

3
β −

g2mK

4πf2
K

−
g2mπ

4πf2
π

,

µ
(ℓ)
2 = −

1

3
β +

g2mπ

4πf2
π

,

µ
(ℓ)
3 = −

1

3
β +

g2mK

4πf2
K

.

(15)

The difference between using f = fπ and f = fK in Eq. (15) is a higher order effect.

We have chosen to use f = fK ≃ 1.22 fπ for loops involving kaons and f = fπ for loops

involving pions. For mK 6= mπ, the one loop contribution to µ
(ℓ)
1 , µ

(ℓ)
2 and µ

(ℓ)
3 is not in

the ratio 2 : −1 : −1 and hence violates SU(3). It is easy to understand why the one-loop

correction proportional to mK is different for the D∗0 → D0γ and D∗+ → D+γ decays.

Strong interactions can change a D∗0 into a virtual K−D∗
s pair, while the D∗+ changes

into a virtual K0D∗
s pair. In the latter case the virtual kaon is neutral and doesn’t couple

to the photon. Thus there is no m
1/2
s correction to µ

(ℓ)
2 . The most important correction

to Eq. (15) comes from SU(3) violating terms of order ms. These terms are analytic in

the strange quark mass, and are not determined by the lowest order Lagrangian.

Using

µa = µ(ℓ)
a + µ(h), (16)

with µ
(ℓ)
a and µ(h) given by Eqs. (15) and (13) respectively, determines the rates for D∗0 →

D0γ, D∗+ → D+γ and D∗
s → Dsγ in terms of β and g. Combining this with Eq. (7) and
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using the measured value of BR(D∗0 → D0γ)/BR(D∗0 → D0π0) gives g as a function of

the branching ratio for D∗+ → D+γ. This in fact gives four different solutions for g2; we

eliminated three of these by imposing the constraints g < 1 (as required by Ref. [4]) and

µ
(ℓ)
a > µ(h) i.e., the light quark transition moment is greater than that of the heavy quark.

The result is shown in fig. 2. (We have taken mc = 1.7 GeV.) Note that the favored values

for g are smaller than what is expected on the basis of the nonrelativistic constituent quark

model. Since 1/mc effects have been included in the radiative D∗ decays, the value of g

extracted in this way is an “effective” value of g that includes 1/mc corrections. From

Eq. (7) and our values of g we can compute the total width of the D∗+ as a function of

BR(D∗+ → D+γ); this is plotted in fig. 3.

The SU(3) violation plays an important role in our analysis. Fig. 4 shows the absolute

values of the relative contributions to µ1 of µ(h) (dashed-dotted line), β (dotted line)

and the one-loop nonanalytic contribution to µ
(ℓ)
1 (solid line). The values have all been

multiplied by 3/2, so that the dotted line is normalized to β. Note that values of β

near the non-relativistic constituent quark model expectation of ≈ 3 GeV−1 favor a small

D∗+ → D+γ branching ratio, and hence smaller values of g. In fig. 5 the value of g that

follows from neglecting SU(3) violation (i.e. using Eq. (14) for µ
(ℓ)
a ) is shown. Larger

values of g are favored when SU(3) violation is neglected.

Nonanalytic dependence on ms similar to what we have found in radiative D∗ decay

occurs in the Ds − D+ mass difference. Including effects up to order m
3/2
s [9]

mDs
− mD+ = Cms −

3g2

64πf2
K

(

2m3
K + m3

η

)

, (17)

where we have set mu = md = 0 and C is an unknown constant. Experimentally, mDs
−

mD+ ≃ 100 MeV. The magnitude of the nonanalytic part is about 50% of the mass

difference for g = 0.5. This gives us some confidence that the expansion is well behaved

for at least some of the range of g’s in fig. 2.

The analysis in this paper allows us to predict the D∗
s → Dsγ rate as a function of

the D∗+ → D+γ branching ratio. However, for D∗
s → Dsγ there is a strong cancellation

between µ
(ℓ)
3 and µ(h), resulting in a very small D∗

s width. (Note that D∗
s → Dsπ is

forbidden by isospin.) In this situation, SU(3) violating terms of order ms may be very

important.
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Since heavy quark symmetry ensures that g and β are the same in the b and c systems

(up to corrections of order 1/mc), the results of this paper can be used to predict the widths

for radiative B∗ decay. Neglecting effects of order 1/mb and 1/mc, Eq. (10) becomes

Γ (B∗
a → Baγ) =

α

3
|µ(ℓ)

a |2|~k|3 (18)

where µ
(ℓ)
a is given by Eq. (15). An analysis of the radiative decays of charmed baryons

using the same methods is possible. Unfortunately, at the present time there is no experi-

mental information on radiative charmed baryon decays.

Work similar to that presented in this paper has also been done by Cho and Georgi

[10]. We are grateful to them for communicating their results to us prior to publication.
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Figure Captions

Fig. 1. Diagrams giving the leading non-analytic contributions to µ
(ℓ)
a .

Fig. 2. The coupling constant g as a function of BR(D∗+ → D+γ) including leading

SU(3)-breaking effects. The shaded region indicates the uncertainty due to the

1σ variations in BR(D∗0 → D0π0) and BR(D∗0 → D0γ). The arrows indicate

the 90% confidence level limits on BR(D∗+ → D+γ) and the D∗+ width.

Fig. 3. Width of the D∗+ as a function of BR(D∗+ → D+γ) including leading SU(3)-

breaking effects. The shaded region indicates the uncertainty due to the 1σ

variations in BR(D∗0 → D0π0) and BR(D∗0 → D0γ). The arrows indicate the

90% confidence level limits on BR(D∗+ → D+γ) and the D∗+ width.

Fig. 4. Relative contributions to µ1 of µ(h) (dashed-dotted line), β (dotted line), and the

one-loop nonanalytic m
1/2
q term (solid line) to the matrix element for D∗0 → D0γ.

Fig. 5. The coupling constant g as a function of BR(D∗+ → D+γ) ignoring SU(3) vio-

lation. The shaded region indicates the uncertainty due to the 1σ variations in

BR(D∗0 → D0π0) and BR(D∗0 → D0γ). The arrows indicate the 90% confidence

level limits on BR(D∗+ → D+γ) and the D∗+ width.
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