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1 Introduction.

Recently, it has been conjectured, and verified at the one-loop level, that gauge the-
ories in two-dimensional Euclidean space have remarkable renormalizability proper-
ties. Namely, their full effective actions are free from any divergences, and obtained
from their induced actions merely by rescaling the coupling constants and the fields
by constant Z-factors, and these Z-factors are power series in the inverse of the
coupling constants. The induced actions can be obtained by first coupling matter
to external gauge fields in a minimal way, and then integrating out the matter. In
other words, the induced actions are the set of 1PI diagrams with propagating mat-
ter and external gauge fields. Since the gauge symmetry of these classical actions is
broken at the quantum level by anomalies, a quadratic term and vertices involving
these fields develop, so that loops with propagating gauge fields can be constructed.
The induced actions are nonlocal.

Both the induced actions and the effective actions are finite (i.e., no divergences
are generated by the loops) and both depend only on the gauge fields, but whereas
the former are due to diagrams with matter loops and external gauge fields, the
latter are due to diagrams with gauge fields both in the loops and as external fields.
In local quantum field theories loops produce nonlocalities, needed for unitarity, and
there is no way that the complete nonlocal effective action can be obtained from the
local quantum action by constant rescalings. However, in the class of theories we
are going to consider, the nonlocalities due to gauge loops are exactly of the same
form as the nonlocalities present in the induced actions, and this allows the effective
actions to be obtained from the induced actions in the manner described above.

To date, three models are known with these properties:

(i) Yang-Mills theory, whose induced action is the WZWN model, but in a purely
two-dimensional nonlocal formulation [1].

(ii) ordinary gravity, whose induced action is Polyakov’s chiral gravity [1,2].

(iii) W3 gravity, based on the nonlinear W3 algebra of Zamolodchikov. Its induced
and (one-loop) effective actions were obtained in refs. [3,4,5] and contain a spin 2
gauge field h and a spin 3 gauge field b.

To this list we shall add a fourth example: gauge theories based on the nonlinear
SO(N) algebras of Knizhnik [6] and Bershadsky [7]. The interest of these models
is that they lead to chiral supergravities for any N. They lie between the models
in (ii) and (iii): they are based on a nonlinear algebra (as W; gravity) but contain
no higher spins (as Polyakov’s gravity). By a nonlinear algebra we mean a set of
operators whose operator product expansion (OPE) contains terms quadratic (or
higher) in the operators. In the W3 algebra, one finds in the OPE of two spin 3
currents two terms bilinear in the stress tensor. In the SO(N) models one finds in
the OPE of two spin 3/2 (supersymmetry) currents a term bilinear in the SO(N)
Kaé-Moody currents. The corresponding induced actions describe the gauge fields
h (graviton), ¥ (gravitini), and w® ( SO(N) gauge vector fields).



It may be useful to be a bit more explicit about these models. Therefore we
briefly summarize the main results for the first three models.

(i) Yang-Mills theory. If one couples a chiral gauge field A, (2™, 27) = AL T,
(with [T}, Ty] = f,,°T%) to chiral matter fermions, and integrates over these fermions
(i.e., evaluates all one-loop diagrams with internal fermions and any number of
external A, fields), one finds the following result for the induced action [3] f]

Sind[k>A+] = kSznd[A-i-]

1 & 1 1 0_
SO = t/fA A AL ALl
nd 27TX n=0 2+n ' o [a+ - [a+ ! a+ +] ‘|n times
o_
= d2 —A a abc Ab _AC 1.1
2w¢/ l g, et fb LR ] (L)
Under 649 = 9,1 — f9,A%n° the induced action varies into 2— [ Pz ALO_n,.

Hence, writing 65 = (65/JA)0A, it satisfies the following Ward identity
Oyu” —0_A% — f4. Aut =0 (1.2)
where u® are the currents, suitably normalized,

2T (SSmd . 8_
U_’a = ? 5A‘i = aA.ha + .. (13)

In fact, any matter system with Ka¢-Moody current J,(z) satisfying the OPE

() ) =~ 2 ¢ S ) (14)

leads to this induced action if one adds to the matter action the following minimal
coupling

&m:%/&Mﬂ@L@) (1.5)

For example, a WZWN model itself is such a matter system, although in this case
the induced action receives contributions from arbitrarily many matter loops.

The effective action, i.e., the sum of all 1PI graphs computed from (1.1) with
internal and external A, lines, is conjectured [1,8] to be given by

SerslAl = ZikSinlZaA) (1.6)

where the Z factors are constant, and power series in the inverse of the level param-
eter k of the Kac-Moody current [8] f

~ -1
2h h

Zr=1+— 1 Za=|14+-+ 1.7

=142 2= (14 17

'Conventions for (super)algebras: (—1)f,,2 fqbp = —guh, strTyTy = —Xgap. Raising and

lowering is done with gq; and its inverse g¢°; h is the dual Coxeter number.
2In ref. [1] the result for Z, differs from our result by a factor of 2 in front of h.
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and h is the dual Coxeter number. To one loop this conjecture has been verified
(see below).

(ii) Polyakov gravity. If one couples the component h = h, ., of the gravita-
tional field to the stress tensor of matter, and integrates over matter, one finds the
action studied by Polyakov, Zamolodchikov, and Knizhnik [2]

Sinale, h] = ¢SO [h] (1.8)
with
O — _ Y [y L 0 ]
SO 1p) o | @e@h) __5Lh8_6ufz (1.9)

1y, | &2 \* [, \o [, o
_ —§L;/d P%”h h<a+h> hah) 5 (hgh) +

This result holds whenever the OPE for T'=T__ has the standard form

c 1 T(y) T'(y)
T(x)T(y) = = +2 + 1.10
S S I e A (110
The effective action has been conjectured [9] to be given by
Seff[c7 h] Z CSznd[ h] (111)
where
L::%HJ—§+ ; %=h+%ﬂ+2+m
k. c
c—13 = 6[(k.+2)+ (ke +2)7]
1
ke+2 = [13—c+\/c—1 J(c—25)] fore<0 (1.12)

12

(iii) W3 gravity. Coupling the chiral gauge fields h = hy, with spin 2 and
b = b, with spin 3 to matter currents 7__ and W___ which satisfy the exact W3
algebra of Zamolodchikov with central charge ¢, one finds that the induced action
is a power series in 1/c¢ [4]

Sales ot = 32 S5ufh,
— 20h = T 20h——
SOIh,b = %W/d +h 7mﬂ/dxb b+ - (1.13)

The effective action, due to A and b loops with vertices from all S/

s 18 conjectured

to be obtained by just rescaling cSmd [5]

Seff[C, h, b] Z, CSmd[Zhh be] (114)



where

Z,= "k, =1-"2 L Zy = =1+ =+
C & kc
k. + 3)%2\/3 224
sz( *+3) /6:1+—+
2k, Y6
¢— 50 =24 |(ke +3) + (ke +3) 7]
1
kc+3——@[50—c+\/(c—2)(c—98)] for ¢ < 0 (1.15)

Here 3 = 16(22 + 5¢)~! is a constant which appears in the OPE of W___(z) and
W___(y) in front of the terms with two 7__ operators.

Before closing this introduction we review how one computes the one-loop contri-
bution to the effective action since by this method we shall determine the Z-factors.
We shall do this for Yang-Mills theory.

For Yang-Mills theory, one starts from the Ward identity in eq. (1.2). (It states
that u_ = 0_gg~! and A, = 9,.gg ' for some g, and if one were to make this
substitution for A, in Sj,q[A4], one would recover the WZWN model in a form where
the usual local 3-dimensional WZWN term is written as a nonlocal 2-dimensional
term. However, we do not make this substitution and keep working with A, , because
only in terms of A, do we have the remarkable renormalizability.) By differentiating
the Ward identity one finds a relation of the form

M (x = N%(z)é(x — 1.16
0 (G ) = Nl ) (116
with

My = 050+ + [5.A%

N% = 0%0- + fheul (1.17)

Since the one-loop contributions are given by the determinant of the matrix du(x)/0A(y),
it suffices to evaluate det M and det N. Both M and N are local matrix-operators,
and we obtain their determinants by using “ghosts” b,, ¢* for M, and B,, C* for N,

ie.,

det M = / dc dbexp|b, M%)

det N = /dC dB exp[B,N%C"] (1.18)

To actually evaluate these determinants, one introduces the notation

det M = <exp/baj“bcb> o 0% = fhAL (1.19)

where the expectation value is taken with respect to the free ghost actions, and uses
1

(c"(2)by(y)) = —5%8—52(% —y) (1.20)
+



One finds then
1 0_ 1 1  0_
M=1-— /'—' — /'—',—' 1.21
det 27Tt7’ jaJrj—l—?mtr j[a+j aJrj]—l— (1.21)

Evaluating the traces one finds

2lndetM hLm/A Sy P fabc/A“< Ab><g_Ac> ] (1.22)

In other words, = ln det M is proportional to the induced action

; Indet M = hSO[A,] (1.23)

To prove this to all orders in A, one may use the Ward identity for (1.18) [1,8].

For N one finds a slightly different result. Of course det IV is the same functional
as det M, but with j% replaced by J% = f9.u, and with 0_ and J; interchanged.
Hence

% Indet N = A3 [u_] (1.24)

where we denote by Smd[ _] the induced action with A, replaced by u_ and 0y
and O_ interchanged. (Also this result holds to all orders as can be shown [1,8] by
using the Ward identity for det N in (1.18).) However, if we substitute for u® its
dependence on A,

a_a_—ala b a—c 1 ba_—c 0- b _~ pc
T a+A++3fbc{<(9+A ) <5+A ) 0. <A+3+A ) 0. <A+5+A >}
(1.25)

we find
1 a a a 1 8_ C
5 Indet NV = h[4ﬁ/A =y fabc/A+ (a+ ) <a A ) ] (1.26)

To this order at least, S [u_ (A, )] is related to S\%}[A.] by a Legendre transform

1]
SO1AL + 5D u_(AL)] / PrAiu_, (1.27)
This is easy to check; Au ~ Ad§S;,q/0A counts the number of A-fields in S;,4, and

multiplies the terms with 2,3,... A, fields in Smd by 2,3,.. . Therefore the complete

one-loop contribution to the effectlve action is given by

1
gi-toon _ m det M — 2 Indet N = 2h5{7) — == / PrAtu_, (1.28)

In other words, the one-loop Contrlbutlons replace k in front of the induced action
by 2h and scale each field A, with a factor —h. This implies

Snala] + S = (6205 1 - D] (1.29)

The all-loop result is conjectured [8] to be obtained by replacing 1 — h/k by (1 +
h/k)~!



2 The SO(N) extended superconformal algebras.

These algebras [6,7] contain a current of dimension 2 (the stress tensor 7'(z)), N
currents of dimension 3/2 (the supersymmetry currents Q*(z), with s = 1,...N), and
1N (N —1) currents of dimension 1 (the Kaé-Moody currents J(z) for SO(N)). We
shall concentrate on SO(3), because it is the simplest interesting case. (For N=2
the algebra becomes linear.) The OPE for these currents is as expected: T'(2)7T(w)

—_———

was given in eq. (1.10), and Q?, J* are primary:

Qw) | QW)

T(:)Qw) = 5

_— (z=—w™)?2 2= —w~
T w) = ey T (2.)

Furthermore, the Ka¢-Moody currents act on themselves and on Q%(z) as SO(3)
generators

ab w
JU(2)J(w) = _U(z—ﬁiw—)? + e“bc%
Ja(Z)Qi (w) — Eaij Z?J_(u;})__ (22)

However, the Q@) OPE contains a nonlinear term

i j _ oY ija__ Ja(w) K o Ja(w)
_~Q (z)Q_/](w) N B(z_ —w)? Ke? (z——w)> 2 ’ 2T —w—
4 5@'3’& + 27& (2.3)
2T —w 2T —w

where J;; is the normal-ordered product of two Kac-Moody currents, symmetrized
in the indices

1 1
1 dx
T (w) = %%x @) Jy(w) (2.4)

There is only one independent central charge, which we choose to be o, as the Jacobi
identities require the following relations

1 20 —1
= —(60—1 K =
1
B = Ko=20-1 |, 7=— (2.5)
20

To check these results one may compute, for example,
(Ja(2)Qi(2)Q;(y)) = (Ja(2)Qi(x) Q;(y)) + (Qi(x) Ja(2)Q;(y))
= (Qi(2)Ja(2) Qi) + (Ja(2) Qs(2)Q;(y))  (2.6)



The first way of contracting yields

1 1 1

while the second way yields

Beaij —I—O'KEM']' <
T

1
(z7—a7)(z7 —y7)?
Clearly o K = B. ||

Decomposing the currents in modes, the SO(N) algebras are of the general form

[Hi, Hj] = fi;"Hy + hi;1
[Hh Soc] = fmﬁsﬁ + fiajHj N
[Sa, Sﬁ] = faﬁ ZHZ + fa,@ ﬁ/Sfy + Va,@ " : HZHj : +ha5[ (29)

where we can, without loss of generality, take the constants Vg " to be symmetric
in 7j. Indeed, if H; = {J,} and S, = {T, Q);}, one obtains this structure. Another
division of generators with this structure is H; = {J,, T} and S, = {Q;}. For
algebras of this kind, a nilpotent BRST operator exists, provided the central charges
ha, and the structure constants satisfy a relation of the form [10]

hay ~ F¢ F°, (2.10)

where the index a denotes both a and i. The F,,° are equal to the classical f,,°
plus, for f_ J of » & correction term of the form foi! ﬁ” The BRST charge reads then
[10]

1 1
Q = c“Ta—2 Fbcc—ivﬁch]ccﬁ
1
24 P

a3

Z"V s P G P (2.11)

(In the last term one may clearly replace F;,™ by f,;.".)

For the SO(N) algebras the condition (2.10) is satisfied and the structure con-
stants become multiplicatively renormalized, namely such that in the structure con-
stants for Q@) ~ J the factor K is replaced by %, provided

c0=6-2N , B=16—6N , c=N?—12N+26 (2.12)

For N=3 (our case), however one finds that o = 0, hence V4 “ which is proportional
to the constant v = 50’ ~1 becomes singular. First multiplying @) for general N by
=2 and then taking N=3 leaves only the last term in @), which is trivially nilpotent.
At N=3 also K — —o0, so that presumably no unitary irreducible representations
exist. In any event, we are considering general values of o and these issues are of no
concern for us.

3In ref. [6], a factor 1/2 is missing in the QQ ~ J term, while in ref. [7] this term has an
incorrect sign.



3 The Ward identities for the SO(3) induced ac-
tion.

We define the induced action for the gauge fields h, ¥*, w®, by

esind[o—vh7¢’w} — <esint>
1 |
Sims = —— / Er(hT +0'Q; + w'J,) (3.1)

Assuming that (T) = (Q;) = (J,) = 0, and expanding the exponential, we can use
the OPE given in the previous sections to determine S;,4. For example, the kinetic
terms are found to be

in c ;0% o 20—
Szknd = % 84_ /TP ¢2 2 w awa (32>

In general, the induced action is an infinite series in inverse powers of the indepen-
dent central charge o. As in the W3 gravity case we write

Sznd U h ¢7 Zal ] znd W] (33)

The Ward identities for the induced action can be obtained by varying exp[Si.q]
under the leading terms in the variations of the gauge fields

Sh=0cc+ - , Y =0m+- , 6w =0\ +- (3.4)

and then finding extra terms in the transformation laws such that only the minimal
anomalies remain, plus terms due to the nonlinearity of the algebra. The minimal
anomalies, which correspond to the central terms in the OPE, are obtained by
substituting the above variations into (3.1) and retaining only the terms quadratic
in operators; hence the result is the same as obtained by substituting (3.4) directly
into (3.2)

, S
Minimal anomaly = ——— /d%h@g 5 /deW@%m + — /dzzwaﬁ_)\a (3.5)
For the local € symmetry one finds that under éh = 0,¢
1
5Sind eXp[Sind] = <_; /d2x6+€T€Sint>

= <—%/d2x0+eT(—%/d2y(hT+¢iQi—I—w“ a)e “”>(3 6)

The central term from (TT) yields the minimal e-anomaly, while all other terms in
the OPE are linear in operators, and are cancelled by suitable extra dh, d¢*, and
dw®. One finds then that

5(€)Sima = —é / hdP e (3.7)



under
d0(e)h = Ope—hd_e+e€d_h
S(e)y' = —%@Di@_e + €0_1)’
ew® = ed-w (3.8)
Introducing suitably normalized currents by

127§ 03

e a+h+
27T 5 0”
g = Bélpl ,lvbz
T 0 8_
Vg = ;wsind—awa‘l'"' (39)

we find, as in (1.2), the Ward identity for e symmetry

3B - - 12
Oru = Dih + 7(3%(]2 +'q)) — TUw;va (3.10)

where

Dy =& +2ud- +u (3.11)

We have introduced the notation v’ = 0_u, ¢, = 0_g¢;, etc.

For local supersymmetry we will encounter .J%/ () = (J(2) exp Sing). The OPE
for T'(x)Ju(y) contains a central term (7°.J contalns J, and JJ contains a central
term), but Q'J,, has of course no central term, and also J,Jj. is without central
term (see below). By direct evaluation one finds

5ab Jc(w)
T(Z) . Jan . (w) = —O'm + Eabcm
s Jodp (W) L Jo )+ T Ty (w) (3.12)
(z7 —w™)? 2T —w~
Since J,, is symmetric in ab, one finds
_ Oab Jap(w) (W)
T(z)Jw(w) = a(z_ =" + Q(z— = + po—— (3.13)

Therefore we redefine J,;, by adding a term with 7" such that the redefined operator,
denoted by Ay, has no central term in the OPE with S;,;

Aup(2) = Jup(2) + 2§6abT(z) (3.14)

Another result we shall need is the OPE for J,(2) and Jp.(w). Before symmetriz-
ing on bc one gets

e i

Jo(2) 2 Jpde t (W) = —0€ape ) + Eabd€ced(2_ — w2

B aéabjc(qf) + 5,ich(w) | Cabd JaJe (w_) + Eafd : Jady : (w) (3.15)
(z7 —w™)? 2T —w



Symmetrizing in b, ¢ one finds

Ja(Z)ch(’w) _ (_O' + 5)[5acjb(w) + 5ach(w)] — 5b0Ja(w) n Eadedc(w) + Eachdb(w)

N—————’ (Z_ — w—)2 T —w—

(3.16)
which is clearly without central charge.

We can therefore compute the terms in A%/ which are quadratic in fields

Aeff(quadr)( )

= ((Jap + —5abT 2, 52 /d2 (hT + ' Qs + w° )/de(hT+¢ij + W)
(3.17)

We will be interested in the leading terms for ¢ — oo. Now, T'A contains terms with
T and A, see (3.13), but only the former contribute to A% (quadr) since (AT) = 0,
and they are of order ¢. From Q;A,, one gets terms with @); and : Q;J, :, but their
contribution to (3.17) is of order B, i.e., of order o. The leading terms in o only
come from the OPE of J%(x)A.(2) because it contains terms of the form o.J, see
(3.15), and {J%(x)Jb(y)) is itself again of order o. In fact

A (quadr, o — 00) = o [ [ @ady( ) Aalz) L) (@)e'y) (319

because the other contraction (A (z) Jo(z)J4(y)) vanishes. One finds
—_———

6a05bd + 5b05ad
2
<Jc(x)Aab(z> ']d(y>> =0 (SL’_ _ Z_)2(y_ _ Z_)2 (319)
Therefore, to second order in w?,
AT (2) = 0%v,(2)up(2) + O(0) (3.20)

One can, actually, prove this result to all orders in the fields in v,(z) by a Ward
identity [11]. Hence, the terms of order o2 are exact.

With these preparations done, we can return to the supersymmetry Ward iden-
tity. Under d¢" = 9,1 one has

3(exp Sing) = <—— / 220,17 Q; (—— / Py(hT + 7 Q; +wJ,)) S> (3.21)

The central term in QQ yields the minimal anomaly, while all terms linear in currents
are eliminated by suitable extra terms in the transformation laws, but a nonlinear
term QQ) ~ A,y remains. One finds then

B, .
) Sima = / pen (gainw,- 2 A ff> (3.22)
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under

. d~vo .
d(mh = 277’%-—%17%

. . . 1 .
S(my' = 0" —ho_n'+ §n28_h — €jaTjWa

K ..
S = = (i — mit)) (3.23)

(At this point we already note that we could modify the constant in front of the
last term in (3.22) by adding a nonlinear term §™°"ary, ~ ¢hnu in (3.23). In the
next section we shall fix this ambiguity such that the local gauge algebra closes;
as a result the sign in front of the last term in (3.22) changes.) Extracting the
supersymmetry parameters 1’ one is left with

3 _ <

(0, — o1~ ho.)g utli

652 T)W“ + € wag; + €7 (20 + ;0- ),

— 9P+ gWA;’Jf I (3.24)

Finally, the SO(3) Ward identity is derived without any complications of non-
linear terms. One finds that

5(N\)Sing = % / 220_\w, (3.25)
under
S(Mh = 0
GNP = €Ay
S(Nw* = LA — hO_\* — €™ \yw. (3.26)
Extracting A\* we get
O 0" — €"hiq; — hWv™ — hO_v* + ey, = 0_w" (3.27)

For our purpose we need the terms of leading order in ¢ in the three Ward
identities. This means that only SZ-(SZJ contributes to the currents while only the o2
term in (3.20) survives. One has, in fact,

(0y —hO_ — 20 )u — 2(3iq" + ') + dwlv® = O*h
3 -~ 1 -~ o .
(0 = hO- = W) = Vg — ¥+ (2 + 400" — Yl' = G
(0p — hO_ — W)™ + €™ wyv, — €T apyq; = O_w"
(3.28)

4 Local gauge algebras and the Ward identities
for 0 — oc.

In the previous section we obtained the Ward identities for the induced action Sj,4.
For general central charge o, the nonlinearity of the algebra leads to AZ{f which is

11



a nonlocal functional depending on the fields h, 9%, w®, and the currents u, ¢¢, v®

(the latter are normalized to 8 /O, h + -+, 0% /04" + -+ and O_/D,w* + --- by
o-independent rescalings). However, for ¢ — oo, we found local Ward identities
for the leading part of the induced action, SZ.(SZ[. It is these local Ward identities
from which we will obtain the one-loop contributions to the effective action, and it
is obviously important to have a check on their correctness. In addition, we want to
establish a connection between these Ward identities and the gauging of nonlinear
algebras, for which a general formalism was constructed in ref. [12]. In fact, we
will see that at the quantum level the anomalies add quantum corrections to the
transformation laws of the currents so that the nonclosure terms in the classical

gauge algebra are eliminated.

Let us begin by emphasizing that the Ward identities are a property of an in-
duced action, not of particular transformation laws. However, we can derive them
by choosing certain transformation rules for the gauge fields, and then varying the
induced action under these particular transformation rules. In our case we deter-
mined the transformation rules for the fields of the form 0( field) = d. (parameter)+
(field) x (parameter) by removing terms in the OPE which are linear in oper-
ators (see section 3). The left-over, e.g. the right-hand-sides in (3.7) or (3.22)
is the anomaly. Since the currents are the Euler-Lagrange equations of the in-
duced action, it is clear that also terms in the Ward identities which are quadratic
in currents can be (partly or completely) removed from the anomaly by adding
terms to the transformation rules of the gauge fields of the form §(field, extra) =
(field) x (current) x (parameter). In fact, one needs such terms if one requires that
the currents transform as given by the OPE: du = (§ ¢(z)T'(x)dzT (y) exp Sint), etc.

It is clear, from the fact that for example u ~ (T"exp S;,;) and T is holomorphic,
that the currents transform only into expressions involving 0_ derivatives, but no 0,
derivatives. From this observation one can immediately read off the transformation
laws of the currents from the Ward identities. Namely, by varying the Ward identities
one obtains expressions of the form 0, (0 current) + more = 0, and only the
variations of the gauge fields produce further 0, derivatives. One can pull all these
0, derivatives in front of the whole term in which they appear, because the extra
terms one produces in this way are of the form 0, (current) which can be rewritten
in terms of 0_ derivatives by using the Ward identities. As an example consider the
term —hO_u in the first Ward identity in (3.28). It varies into —0; [e0_u] + €0_[0;u]
under € symmetry, and 0, u can be replaced by hO_u + - - -. In this way we find the
following transformation rules for the currents

Su = eu +2€u+6nq" +2n'q — AN v + e
i i S i iaj L ija i i
8¢ = e¢"+ §elq — €Y Nqj + 57— €920, + n;0- v, + v’V + 8
v = e + v — €N+ € Iniq + O\ (4.1)

Note that these results hold only for ¢ — oo because we used the 0 — oo Ward
identities, but we could also obtain the results for finite ¢ by using the same ideas.
Note also that in this derivation we only used the leading term in the gauge field
transformation laws (the 0, (parameter) part) and the possibility of extra terms in
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the gauge field transformation laws involving currents is still completely left open.
For further use we draw the reader’s attention to the one nonminimal term in ¢’
and to the minimal anomalies 92 ¢, 37, and 9_\%.

We have, in fact, used in obtaining (4.1) that the Ward identities in (3.28) can
be written in terms of supercovariant derivatives as

(Dyj)a=napd*B¢® | A B=1,23 (4.2)

where j; = u, jo = q;, js = V4, and ¢! = h, ¢* = %, ¢ = w?, while nap = ds5. By
supercovariance of D, we mean that the variation of D, j is independent of 9,&4 if
&4 are the local parameters. This allows us to determine 6j4.

We could now deduce the transformation rules of the gauge fields by requiring
that they, together with the current laws given above, leave the Ward identities
invariant. However, there is a simpler, more general and more elegant method, and
that is to note that given a nonlinear algebra of the form

T4, T5) = Tof%p + TpTeVhp (4.3)

one can gauge it. One can then derive the following transformation rules of the
gauge fields huA and “auxiliary fields” Ty

Sh* = 0, + flpch,Ce® + TpVPieh,Ce®
1
6Ty = T aB+§TDVD§B)eB (4.4)

and find the following results [12]:

(i) the gauge commutator on gauge fields closes up to a covariant derivative
[0(€1), 5(62)]huA = 5(63)huA — DHTDVDj?CEICQB (4.5)
where the covariant derivative of T is given by
1
D,Ta = 8,Ta — T fph,” — 5TCTDng‘Bhf (4.6)

Note the factor % in 7y and D, T4.

(ii) The covariant derivatives are really covariant: they transform in the coadjoint
representation, defined by

0D, Ta = D, TofC pe? (4.7)
where J?(ixB are field-dependent structure constants

~C:4B = s + TV {5 (4.8)

(iii) The gauge commutator on the auxiliary fields T4 closes

[5(61)a 5(62)]TA = 5(63)TA
e” = fopee’ (4.9)
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(iv) curvatures are defined by

Dy DITs = ~To(f%n + 5ToV 50 R (1.10)
and transform as follows
0R,A = f4eR,C€ + D, TpVPich,Ce® — v (4.11)
They satisfy the Bianchi identities
DR, =0 (4.12)

We shall now make contact with our Ward identities by the following observa-
tions:

(i) the auxiliary fields T4 are identified with the currents j4 in the Ward identities.

(ii) the formalism for gauging a nonlinear algebra holds for classical algebras. The
Ward identities, however, contain a minimal anomaly term ( the term 9*~2¢? in
eq. (4.2)), and this term leads to a quantum correction 9,7 4.

(iii) the covariant derivatives D, T4 are the Ward identities except for the minimal
anomaly.

In fact, using our rule of extracting 0, derivatives from the variations of the
Ward identities, we already found the extra quantum terms: %€ in du, 927’ in
dq', and O_\* in §v?, see (4.1). Since these terms are field-independent, the gauge
commutator on the currents j4 must still close (it indeed does, see below). However,
also on the gauge fields the gauge commutator now closes because the quantum term
in 074 precisely cancels the covariant derivative in eq. (4.5). In other words, the
minimal anomaly completes the Ward identity so that the gauge commutator closes
on fields and currents! Finally, since there is a nonlinear term in 674 (namely the
term dg; ~ n/v;v;), we predict one nonlinear term in the gauge field laws as well

5nonlinear a _ (¢anb + wbna)vb (413)
With this, we have checked that the gauge algebra on fields and currents closes. The
commutator of two supersymmetries is, as always, the most interesting,

[6(m), 6(112)] = (& = 23m;) + 5(A")

~

A" = € (nagmt; — muimb;) + (i — nsnt) vy (4.14)

The v-term in A% is due to the structure constants V in (4.3). The rest of the gauge
algebra is as expected

500),6(0) = 803 = e — em)
3(n), 6N = 6(7" = ™ Am)
[0(€1),6(e2)] = 5(€: = €2¢) — €16€5)
[5()‘)a 5(6)] = 5()‘a = 6)‘:1)
[6(M),8(N2)] = 6(Aa = 2emcA)AS) (4.15)



The extra variation (4.13) gives an extra contribution to the anomaly in (3.22)
which is of the same form as the last term. In fact, the net result of including this
variation is to change the sign of the nonlinear anomaly in (3.22).

5 The SO(N) theories from constrained WZWN
models.

The SO(N) models are based on nonlinear superconformal algebras which contain
the same set of generators as one encounters in the linear superalgebras Osp(N|2).
It points to a close relation between the nonlinear SO(N) theories and WZWN
models based on Osp(N|2). In fact, it has been shown in ref. [3] that Polyakov
gravity or W3 gravity can be obtained from SI(2,R) or SI(3,R) induced Yang-Mills
theory by imposing constraints on the currents. This suggests imposing constraints
on the currents u = u*T, of induced Yang-Mills theory with T, the generators of
Osp(N|2) (see also ref. [13]). The constraints for Osp(1|2) which produce (1,0)
supergravity were already given in [3]. Our aim is to obtain the Ward identities
(3.28) from the Ward identities of Yang-Mills by imposing constraints on the Yang-
Mills currents and by making suitable identifications between the Yang-Mills gauge
fields and currents and those of SO(N) supergravity. We will give the details for the
case N=3.

Since we need all SO(3) connections w® in the nonlinear theory, we cannot put
constraints in the SO(3) sector of u. Hence, if the SO(3) models can be obtained at
all by imposing constraints on Osp(3|2), these constraints must be of the following
form

0 u* wutl ut? ot
1 0 0 0 0
w'Ty,=10 —u™ o't w2 o3 (5.1)
0 —ut? 42! 42 o
0 —utd 31 432 B

with 4% = %2, The Yang-Mills fields A = A%T, are not a priori constrained

A0 A# AL AT2 A3

A= =AY AL A2 A3

AaTa — A—l _A-l—l All A12 A13 (52)
A—2 _A+2 A21 A22 A23
A—s _A+3 A31 A32 A33

with A% = €24 However, substituting these expressions for v and A into the
Ward identity of the induced Osp(3|2) Yang-Mills theory, cf. (1.2)

Oou=0_A+[A,u] (5.3)

all components of A are expressed in terms of the following fields: A=, A™, A®. For
example, from d,u= = 0 one finds that

A° = Z (A7) (5.4)



while from d,u° = 0 one obtains

1 o
A* = _§(A:)// +u? AT 4 utiAT (5.5)
The constraint «~* = 0 leads to
AT = (AT 4+ T AT 4 eI AR (5.6)

Substituting these relations into the remaining Ward identities for v7, u** and u®
one finds the following results

dpu” = _%(A:)”’ + (WP AT+ u AT + (A7)
—2[(A7) 4wt AT 4 TR AR T
Ooutt = (AT 4 (utAT + R ATRY — AT — R ATyt
+%(A:)/u+i — ER[(ATTY 4t A= 4wt AT — A
Dyul? = (ATY (A7t — ATIH) g @M (AR Ay (5.7

It is clear that one can choose the scales such that A= is equal to h, since
there is only one term with A”. Similarly, we can identify A™* with 1, but for
A® there is an ambiguity allowed by dimensional arguments and index structure:
A% = w* + ahv®. For the currents, u* = ¢ and u® = v® are the only possibilities,
but u?* = —%u + fv®v, is possible. Substituting these identifications into (5.7), we
find that with

1
#* a, .a
u = —=UuU—vv
2

A = W'+ (5.8)

one reproduces indeed the Ward identities in (3.28). In particular, the nonlinear
term in the 0,¢' Ward identity is due to the term ¥ A+iy* after substituting
ATI = ePiyP A=9+ . . .. The reason there are no further nonlinear terms in the Ward
identities is that terms with ¢’¢’ or €®vv® are produced, which obviously cancel,
while the redefinitions in (5.8) remove some nonlinear terms.

One can now substitute the constraints on the currents into the transformation
laws of the currents. The latter follow from u = d_gg~! and read du = d_n + [n, u).
In this way one finds that only the parameters =7~ and n® are unconstrained, and
furthermore one recovers (4.1), including the minimal anomaly terms. Repeating
the analysis for the gauge fields, one finds from 0A = 0,71 + [n, A] and the relations
between the parameters which we mentioned above, that the gauge fields transform
as given in section 3 and (4.13).

It is also possible to obtain the 0 — oo part of the induced action, Si(szl(h, U, w),
in closed form from the WZWN action by using the identifications between the
currents. Before doing so, we must first discuss a subtlety concerning the indices of
the currents. In section 3 all currents have lower indices because the Ward identities
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follow from d¢?j4 = ¢*O AB@fB where j4 ~ (8/0¢*)S. Even in the term nonlinear
in currents we identified 2 W’ with the current §5/0w® = j,. On the other hand,
in this section all currents "have upper indices. Hence, the identifications we made
were really as follows:

A==h ; A7 =¢" ; A" =w"+hi",
. g 1
ut' = 6q; ; ut=8"%, ; u” = U 8%, (5.9)

The numerical constants §% and 6% were introduced by the OPE given in section 2.

Consider now the relation u* = —%u — §%y,v,. We can substitute the definition
of the currents using u” = g7 =u—. Recall that
55 d(A> d( ), w)
= 2 1M — _4 mn
= sA= " oh
g oy (h, 1, w)
q; = stznd(h 'QD (U) s Vg = d(ST (510)

We obtain then

5 1., o 559 (A
<% - §5abvaw> znd( ¢7 ) - g (5Td()) | (511)

where the bar on the right hand side indicates that one should express all fields A®
in terms of the unconstrained final fields H = {A~ = h, A~" = ¢, A% = W+ hé®vy }
after one has performed the variation with respect to A=. If we invert the order
of variation and imposing constraints we get extra terms, due to the chain rule.
Namely, we find the following equality

SSIlAIN| - eSOA(H)]

(S )!— = 512
SSIIAL\ | 0A#(H)  (6SI[A]| sA%(H)
SA# oh 5 Aa oh

There are no extra terms coming from varying A° or A with respect to h because
u® and w~* vanish due to the constraints. Moreover, using that A% = w? + hé®uv,
u~ =1, and u, = guvp, We see that

Y 1 ab 0 7’é g
(5h_25 'Uaawb> znd( w’ ) 5hSznd(A[ ])

1 A7
= [ g /d2 —ha 5.13
o / oh Y A (5.13)
Since g7 =gy = +204 ( the positive sign is due to the supertrace), both sides can be
written as a d/(dh) derivative (the second term on the left hand side cancels against
the extra piece from the last term on the right hand side), and we conclude that

1

SO — g#=5O A[H]) — 2i [ (A% 4 1o ,) (5.14)
T
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The total derivative —3(A%)” in A%, eq. (5.5), can be dropped, and replacing v,
and vy, by u® and u®, we obtain the induced action of (N,0) supergravity in terms of
the action and currents of the corresponding WZWN model.

As a check, we may repeat the derivation by using u™ = §%¢; or u® = §%v,. In
the former case one finds

) 0 _29+i,—i ) 0
S\ (h = (2 | S(AlH 5.15
s = - ) [g o O (AlH) (5.15)
/ d*r— ( "~ Jab / d21"Ub (hva)]
oy’
which agrees with (5.14) since g**~"/g7= = —1 (using the fact that strT,T_; =

2 = —stril_ ;T +, and strT.T- = 1). In the latter case we may note that differ-
entiation of S( ) with respect to A” and then imposing constramts differs from

(0 md/éAC)(éAC/éw ) by a term proportional to u.525hv. = 255 (hvevagea). We get
then

gaa ) . i/ )
7&7:) /d A7 —g Gedsy d“zhv.vg (5.16)

(with no summation over a in g,,), which again agrees with (5.14) if we use that
aa [o#= _ 1
9" /97" = 3

Summarizing, the ¢ — oo part of the action for induced supergravity is equal
to the WZWN action in which the constraints have been inserted, plus correction
terms which are due to the noncommutativity of varying and imposing constraints,
and which depend on the currents of the WZWN model in which the constraints
have been substituted.

The method of putting constraints on the currents of a WZWN model and ob-
taining Ward identities for a model based on a nonlinear superalgebra can be pulled
back to the algebraic level. We expect that the U(n) nonlinear superalgebra given
in refs. [6,7] can be obtained in the same manner from the corresponding linear
SU(n|2) superalgebras, but note that for these models no BRST charge seems to
exist [10].

6 Computation of one-loop contributions to the
effective action.

As explained in the introduction and in ref. [5], we obtain the one-loop contributions
to the effective action by taking the determinants of the matrices M and N, obtained
by differentiating the ¢ — oo Ward identities with respect to the gauge fields. The
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matrix M is the covariant derivative

vz A —6u)!, — 20,0
M= 0 V51§% + e we e“jklpk

_%wz Ebik(2¢;€ + ¢ka_) _ 5ib,¢kvk _ Uz’wb v—?—élj _ eijawa

(6.1)
where V7, = 9, — ho_ — jH.
The matrix N9 is its dual in the sense of the introduction
2 4+ 2u0_ + —4vp0_ —6¢;0- — 24,
N = v*O_ 4 (v 0_0% — €% ¢ —e"
(¢") + 3q'0_ & G (0% + £)6%; + viv; — €, (20°0_ + (v2)')
(6.2)

The results for the hh, )" and ww® self-energies are given below in (6.3).
In each case one gets one contribution from %ln sdet M by evaluating a self-energy
graph with two vertices, each linear in the external field and bilinear in internal
ghosts, and another contribution from —% Insdet NV, by evaluating the same graphs,
but now with vertices linear in currents. For the currents we take the leading terms
(which are linear in fields). In the loop one finds the anticommuting antighosts-
ghosts by, ¢!, by, ¢®® and By, C', B,,, C**, corresponding to the bosonic fields and
the commuting pair bs;, ¢* and Bs;, C* corresponding to the fermions. (We have
ordered the rows and columns of M and N such that the fermions are in the last
row and column.) We obtain

(hh) (wiwa) (¥'hi)

92 ;02
%lnsdetM: —@iﬂhih 0 —ﬁ awi (6.3)
1 . 1402 1 a0 1,02
—5 InsdetV : _ghﬁh W o Wa —3p Eqbi

We comment briefly on these results. For the graviton self-energy (hh), the
numerical factor in the M contribution is i(j2 — 7+ %), summed over j = 2, %, 1, and
is a factor —1/26 smaller than the pure gravity case. (The sign is negative because
the supersymmetry ghosts win.) The N contribution is —5;7(2j 4+ 1)(2j + 2) for
spin 7 + 1. Hence it only comes from coordinate and supersymmetry ghosts, with
contributions —3 and 3 x (§) respectively, giving a result which is a factor 1/4
smaller than in pure gravity. The reason the Yang-Mills ghosts do not contribute
to N is that on dimensional grounds a coupling to the source u is not possible. For
the Yang-Mills self-energies, there is no contribution from M, because the 3 pure

supersymmetry ghost loops cancel the 3 pure Yang-Mills ghost loops, while no mixed
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loops with off-diagonal vertices can be constructed due to the triangular structure of
the w® couplings in M. For N, the coordinate ghosts yield a vanishing contribution,
while the Yang-Mills ghost loop yields a factor —%, and the supersymmetry ghost
loop a factor +1. Finally, the gravitino selfenergy (1%1);) receives one M contribution
% from the mixed b3, c3, by, ¢1 loop, and another M contribution —=2 from the mlxed
bs, c3, by, co loop. The N contributions come from similar loops and are given by —=
and +1 respectively.

We can, in fact, easily find the one-loop contributions to the effective action with
any number of h fields

~loo 1 1.
Sery”(all h) = =2 [~138[(h)] + (12577 (u) (6.4)
where
Si(gd = 247r/h : (6.5)
is the Polyakov action in (1.8) and (1.9), and where
_ 1 03
Si(rozZl(u) = Tounr Ua—tu +--- (6.6)

is its dual in the sense of section 1. They are related by a Legendre transformation
S0) L o[
SSuh) + SShu(h) = =1 [ dahu(n) (6.7)
Hence, in the h sector we find

—100; 1
Sitow (all ) = ——Smd O / Lrhu (6.8)
The complete one-loop effective action is obtained by an overall rescaling of the
central charge o by a factor Z, and rescalings of the gauge fields:
USznd(h 'QD,UJ) elf]foop( ¢7 ) Z, USznd(Zhh wa Z (U) (69)

From the result in (6.8), plus those for the two-point functions, we deduce that at
the one-loop order

5 11
Z,=1- - Ty =14 —
20 ' h +60’
Zy =14 Zy =142 (6.10)
© o 4 v o '

We have repeated the calculations performed in this section for the N=1 and N=2
cases. In the N=1 case one simply drops the w® and v* fields and the index i on the
1 field from the M and N matrices, while in the N=2 case one has a single w, v pair,
with €% — €9 4,5 = 1,2. In both cases the results are (rigidly) supersymmetric,
i.e. all the fields are rescaled by a common wave-function renormalization factor, a
feature which is lost in the N=3 case. To understand this, we are at present making
a general study of rigid symmetries in models such as these.
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7 Conclusions.

We have shown that by imposing constraints on the currents of a WZWN model
based on the linear superalgebra Osp(N|2) one obtains the Ward identities for the
induced action based on the nonlinear SO(N) superconformal algebra of Knizhnik [6]
and Bershadsky [7] in the limit of large central charge. One can also find the induced
action in closed form; it is nonlocal, and contains a one-component graviton, N chiral
gravitinos, and %N (N —1) chiral Yang-Mills fields, and is a (N,0) supergravity theory
in d=2 dimensions. We also computed the one-loop corrections to the self-energies
of these gauge fields, and to the Green’s functions with n external gravitons. They
are finite, and the effective action is obtained from the induced action by a rescaling
of the fields and central charge. These results are quite similar to those for Ws
gravity performed in ref. [3,4,5].

We emphasize that the simple relation between the effective and induced actions
seems to be a consequence of working in chiral gauge, and is not so apparent when
one imposes constraints on WZWN models which lead to Toda-like actions [14]. In
the absence of an all-order rigorous proof of the conjectured relation between the
induced action and the effective action, and its all-loop finiteness, it would be useful
to calculate the two-loop corrections for our model or one of the models mentioned
in the introduction. The Feynman rules and regularization of higher loops in these
nonlocal chiral field theories has been discussed in ref. [15], but the usual aspects of
local quantum field theory do not apply, so that many issues remain to be settled
(see [15] for a detailed discussion).

We have shown that the Ward identities for an induced action in the limit that
the central charge tends to infinity are of the form ”covariant derivative of current
= minimal anomaly”. This led to an interesting extension of the classical gauging of
algebras to the quantum level. Namely, in the classical gauging of nonlinear algebras,
there appears for each gauge field a corresponding auxiliary field [12], but the local
gauge algebra only closes on these auxiliary fields, whereas on the gauge fields one
finds extra terms proportional to the covariant derivatives of the auxiliary fields. By
identifying these auxiliary fields with the currents and adding the minimal anomalies
as quantum corrections to the classical transformation rules of the currents, one
obtains an extra term in the gauge commutator on the gauge fields, which cancels
the covariant derivative of the current, so that the classical nonclosure turns into
quantum closure. The reason for this remarkable cancellation is quite general (it was
already found to hold for W3 gravity [3]): the covariant derivative of the auxiliary
fields is the Ward identity minus the minimal anomaly, since the auxiliary fields are
nothing else but the currents. This quantum improvement of a classical imperfect
theory suggests further interesting possibilities to which we hope to return.

Because of the presence of the factor 1/2 in the covariant derivative of the cur-
rents D, Ty in (4.6), but absence of a corresponding factor 1/2 in the gauge field
variations 5hﬁ in (4.4), the response of the induced action under these variations
5hﬁ is the minimal anomaly minus the product of the nonlinear terms in the Ward
identity times the gauge parameter. As observed in [3], if one would halve the non-
linear terms in 5h;‘ one would completely cancel the nonlinear terms in the anomaly,
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but as we have explained here, only the 5hf} in (4.4) which came from the gauging
of nonlinear algebras will lead to a closed gauge algebra.

A final comment concerns the integrability conditions of the differentiated Ward
identities. Since du_ ,/0A% = M 'N¢ in (1.16) is symmetric in a, b by virtue of the
definition of the currents u_ ,, the integrability conditions read M !N = NTM~1T
where the derivatives in N7 and M~'7T act to the left. Partially integrating them,
one obtains operators N and M~ in which all derivatives act to the right. Hence
one obtains the conditions

MN'— NM'=0 (7.1)

For induced Yang-Mills theory, M = D, (A) = —M"and N = D_(u) = —N', so that
one obtains [Di(A), D_(u)] = Ry _ = 0, which is the well-known parallelizability
of the WZWN model. For Polyakov gravity N = —N® = D; = 93 + 2ud_ +/, but
M =V?% and M' = —V', where V% = 0, —hd_ —jh'. The integrability conditions
now yield (with Dyu = V3 u)

2(Dyu — "D + (Dyu— ") =0 (7.2)

which is indeed satisfied as long as the Ward identity D,u—h" = 0 is satisfied. More
generally, for nonlinear (super)algebras, the consistency conditions are obtained by
replacing each current T in the matrix N by the corresponding Ward identity.
Hence, using (4.6) .

(D1 Te - (AnOmal?/)Jr,C]fC;xB =0 (7.3)

where f6 5 = fSs+TpVP{, and (Anomaly) . ¢ is the minimal anomaly. In practice
(7.1) yields a good check on the Ward identities. One may also view it as a quantum
curvature for chiral gauge theories, which replaces the classical curvature R/‘:‘V =

duhit — 0,hit + f"}gchfhf of nonchiral gauge theories proposed in [12].
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