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Abstract

Scintillating fiber arrays offer interesting possibilities for massive active target detec-
tors in high and low energy neutrino physics. A very promising technique in this context
is the use of coherent glass capillary arrays filled with liquid scintillator of high re-
fractive index, since suitable scintillators have been developed and reflection losses at
the capillary walls are very small. For 120 um - capillary bundles an attenuation length
Aatt = 110 cm has been obtained, essentially limited by self absorption of the scintillating
core. The possibility of surrounding each fiber with an extramural absorber allows suf-
ficient reduction of crosstalk.
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1. Introduction

In this report we describe recent progress in the development of a high resolution
active target detector based on coherent scintillating fiber arrays, and especially the appli-
cation of liquid scintillator filled capillaries. These results have been obtained in a
Research & Development - Project in the frame of the CHARM Il - Collaboration at CERN.
Originally this work was initiated by the search for new techniques for efficient v -
detection [ 1].

2. Scintillating fiber detectors for neutrino physics

Several important requirements have to be fulfilled by future neutrino detectors. Be-
cause of very small cross sections in v-induced reactions and therefore low event
rates, a detector mass of at least 10° kg is necessary, as well as a sufficiently good
time resolution ( 10 ns < At <1 ms) for background suppression. Since particles with short
decay times (e.g. T-lepton, D - meson) have to be detected, a spatial resolution better
than 100 um is needed. Taking into account these requirements, detectors built of
coherent arrays of scintillating fibers can in many respects be superior to other com-
mon tracking techniques.

Applications of scintillating fiber detectors in neutrino physics are explained in
detail in [ 2]. Possible detector designs especially in view of the search for vy - vz -
oscillations are discussed in [3] and [4].

3. Tracking with scintillating fibers

In a coherent fiber detector each fiber consists of a hich refractive scintillating core
(ncore ®#1.6) surrounded by a cladding of lower refractive index (nciad ®#1.5). In this
case total reflection inside the fiber occurs for a certain fraction (etrap ®5 %) of scin-
tillation light, which will be trapped
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(EMA). fig. 1. Tracking with scintillating fibers.

In comparison with plastic and glass fibers, liquid scintillator filled capillaries offer seve-
ral advantages: Binary liquid scintillator systems exist with short fluorescence decay times
(t&5ns), high refractive indices up to n®1.66, good light transmittance and high
light yields (10 y/keV, i. e. comparable with the common plastic scintillator NE 102 A).
Reflection losses are by 1~ 2 orders of magnitude smaller than for plastic microfibers.

Furthermore, a technique has been developed, which allows the production of capillary
bundies with lengths up to 2m, a sensitive volume of ~60% and excellent coherency
(fig. 2) [ # ). The capillary walls consist of a multicomponent borosilicate glass (n=1.487),
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which is transparent above 380 nm.
Pore diameters from 1000um
down to 5um are possible. Details
concerning their fabrication - espe-
cially in view of the performance
of EMA - can be found in [6].

fig. 2.  Coherent capillary bundle
(fiber-@® =120um), 60cm long,
illuminated from the opposite end.

4. Recent progress in development of new liquid scintillators

The feasibility of capillary targets is essentially dependent on a suitable scintiliator, as
well as on careful preparation, cleaning and filling of micro - capillaries [ 6 ]. Among the
available solvents Isopropylbiphenyl and 1-Methylnaphthalene can best meet the de-
mands for high refractive index ( nige = 1582, nipmn=1.617) and good transmittance.
Concerning promising dyes, 1-phenyl - 3 - mesityl - pyrazoline (PMP, Amax=430nm)
and 3 - Hydroxyflavone (3 HF, Amax=540nm) have not only a satisfying quantum
fluorescence efficiency [ 7 ], but also a large Stokes' shift, which makes the light atte-
nuation properties being limited rather by the solvent transmittance itself.

Light yield and attenuation length have been measured for various liquid scintillators
by exposure of 1m long single capillaries (¢ =2mm) in a 5GeV - m -beam (fig.3).
The light output was measured with a standard bialkaline photocathode (exception: S 20
photocathode for the green emitting dye 3 HF ). For comparison the results of a standard
plastic fiber ( Polystyrene/Butyl-PBD/POPOP, UA2 type, ® = 1mm) are added. The best
result was found for 1MN+PMP (0.01mole/1): 4.2 detectable photoelectrons per mm
of traversed scintillator were recorded after 1 m light pathlength in the capillary.
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fig. 3. Light output of
liquid scintillators in single
capillaries:

(a) IMN+PMP, 0.01mole/!
(b)IBP+PMP, 0.015 mole/I|
(c)UA2 plastic fiber ( for
comparison, see text )
(d) 1MN +PMP, 0.1mole/I
(e)IBP+3HF,0.06 mole/!
(f)IBP+BBQ, 0.08 mole/|
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Capillary bundles of various diameters have also been tested in beam exposures.
Fig. 4 shows the attenuation curve for IBP + 3HF (0.008 mole/I) in a 120 um - capillary
bundle . For comparison data obtained with a single capillary are also displayed. The weak
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dependance of the attenuation length on the fiber diameter proves that reflection losses
at the core/cladding - interface are very small (1part in 10°).

- E fig. 4. Comparison of light atte-
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The dye concentration was optimized for PMP with a Monte - Carlo calculation, re-
quiring maximum light yield after 1m light pathlength [ 6 ]. An optimum concentration of
0.01mole/! was found for 1MN as well as for IBP. For lower concentrations the de-
crease in light output is due to a lower primary light yield, for higher concentrations it
is due to light yield saturation and increasing dye absorption (fig.5)
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7 fig. 5. Light yield for
] IMN+PMP/IBP+PMP as a
function of dye concentration,
7 expected after 1m light path-
b length in a single capillary with
0 U BB T1 ST B W EE 7] S B Ty 2 mm diameter ( based on a
0.001 0.01 0.1 1.0 Monte - Carlo calculation ).
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5. Track imaging with optoelectronic readout chains

in a recent test run, track images produced by 5GeV - pions in 20 ym - bundles filled
with TMN +PMP/IBP + PMP, could be viewed for the first time with an optoelectronic
readout chain. Details can be found in [8]. Very remarkable are an excellent track
resolution (ot~ 15um) and a strong suppression of crosstalk due to the presence of
EMA in the capillary target.
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