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Abstract

A search for Higgs bosons that decay into a bottom quark-antiquark pair and are
accompanied by at least one additional bottom quark is performed with the CMS
detector. The data analyzed were recorded in proton-proton collisions at a centre-of-
mass energy of

√
s = 13 TeV at the LHC, corresponding to an integrated luminosity

of 35.7 fb−1. The final state considered in this analysis is particularly sensitive to sig-
natures of a Higgs sector beyond the standard model, as predicted in the generic class
of two Higgs doublet models (2HDMs). No signal above the standard model back-
ground expectation is observed. Stringent upper limits on the cross section times
branching fraction are set for Higgs bosons with masses up to 1300 GeV. The results
are interpreted within several MSSM and 2HDM scenarios.

Published in the Journal of High Energy Physics as doi:10.1007/JHEP08(2018)113.

c© 2018 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

∗See Appendix C for the list of collaboration members

ar
X

iv
:1

80
5.

12
19

1v
2 

 [
he

p-
ex

] 
 3

 S
ep

 2
01

8

http://dx.doi.org/10.1007/JHEP08(2018)113
http://creativecommons.org/licenses/by/4.0




1

1 Introduction
In the standard model (SM), a Higgs boson at a mass of 125 GeV has a large coupling to b
quarks via Yukawa interactions. Its production in association with b quarks and subsequent
decay into b quarks at the CERN LHC is, however, difficult to detect because of the high rate of
heavy-flavour multijet production. There are, nevertheless, models beyond the SM that predict
an enhancement of Higgs boson production in association with b quarks, which motivate the
search for such processes.

Prominent examples of models beyond the SM are the two Higgs doublet model (2HDM) [1],
which contains two scalar Higgs doublets, as well as one particular realization within the min-
imal supersymmetric extension of the SM (MSSM) [2]. These result in two charged Higgs
bosons, H± and three neutral ones, jointly denoted as φ. Among the latter are, under the
assumption that CP is conserved, one CP-odd (A), and two CP-even (h, H) states, where h
usually denotes the lighter CP-even state. For the purpose of this analysis, the boson discov-
ered in 2012 with a mass near 125 GeV [3–6] is interpreted as h, whose mass is thus constrained
to the measured value. The two heavier neutral states, H and A, are the subject of the search
presented here.

In the 2HDM, flavour changing neutral currents at tree level can be suppressed by introducing
discrete symmetries, which restrict the choice of Higgs doublets to which the fermions can
couple. This leads to four types of models with natural flavour conservation at tree level:

• type-I: all charged fermions couple to the same doublet;

• type-II: up-type quarks (u, c, t) couple to one doublet, down-type fermions (d, s, b,
e, µ, τ) couple to the other. This structure is also implemented in the MSSM;

• lepton-specific: all charged leptons couple to one doublet, all quarks couple to the
other;

• flipped: charged leptons and up-type quarks couple to one doublet, down-type
quarks to the other.

While until now the type-I and -II models have been most intensively tested, the flipped model
is remarkably unexplored from the experimental side. The A/H → bb decay mode is ideally
suited to constrain this model due to the large branching fraction of the Higgs boson into b
quarks.

The CP-conserving 2HDMs have seven free parameters. They can be chosen as the Higgs boson
masses (mh, mH, mA, mH±), the mixing angle between the CP-even Higgs bosons (α), the ratio
of the vacuum expectation values of the two doublets (tan β = v2/v1), and the parameter that
potentially mixes the two Higgs doublets (m12). For cos(β− α) → 0, the light CP-even Higgs
boson (h) obtains properties indistinguishable from the SM Higgs boson with the same mass
in all four types of models listed above [1].

The MSSM Higgs sector has the structure of a type-II 2HDM. The additional constraints given
by the fermion-boson symmetry fix all mass relations between the Higgs bosons and the angle
α at tree level, reducing the number of parameters at this level to only two. These parameters
are commonly chosen as the mass of the pseudoscalar Higgs boson, mA, and tan β. After the
Higgs boson discovery at the LHC, MSSM benchmark scenarios have been refined to match
the experimental data and to reveal characteristic features of certain regions of the parameter
space [7, 8]. Considered in this analysis are the mmod+

h , the hMSSM [9], the light stau (τ̃), and
the light stop (̃t) scenarios [7].
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The mmod+
h scenario is a modification of the mmax

h scenario, which was originally defined to give
conservative exclusion bounds on tan β in the LEP Higgs boson searches [10–12]. It has been
modified such that the mass of the lightest CP-even state, mh, is compatible with the mass of the
observed boson within±3 GeV [13, 14] in a large fraction of the considered parameter space [7].
The hMSSM approach [9, 15, 16] describes the MSSM Higgs sector in terms of just mA and
tan β, given the experimental knowledge of mZ and mh. It defines a largely model-independent
scenario, because the predictions for the properties of the MSSM Higgs bosons do not depend
on the details of the supersymmetric sector [17]. Further variations of the supersymmetric
sector are implemented in the light τ̃ and light t̃ scenarios [7], which are also designed such
that the light scalar h is compatible with the measured Higgs boson mass [18].

For tan β values larger than one, the couplings of the Higgs fields to b quarks are enhanced
both in the flipped and the type-II models, and thus also in the MSSM. Furthermore, there is
an approximate mass degeneracy between the A and H bosons in the MSSM for the studied
range of mA. For the 2HDM scenarios considered in this paper, such a degeneracy will be
imposed. These effects enhance the combined cross section for producing these Higgs bosons
in association with b quarks by a factor of up to 2 tan2 β with respect to the SM. The decay
A/H → bb is expected to have a high branching fraction, even at large values of the Higgs
boson mass and |cos(β− α)| [19].

The most stringent constraints on the MSSM parameter tan β so far, with exclusion limits in
the range 4–60 in the mass interval of 90–1600 GeV, have been obtained in measurements at the
LHC in the φ → ττ decay mode [20–25]. Preceding limits have been obtained by the LEP [10]
and the Tevatron experiments [26–28]. The φ → µµ decay mode has been investigated as
well [21, 29, 30].

In the φ → bb decay mode, searches have initially been performed at LEP [10] and by the
CDF and D0 Collaborations [31] at the Tevatron collider. At the LHC, the only analyses in this
channel with associated b jets have also been performed by the CMS Collaboration using the
7 and 8 TeV data [32, 33]. In the absence of any signal, limits on the pp → bφ(→ bb) + X
cross section have been derived in the 90–900 GeV mass range. The combined 7 and 8 TeV data
analyses translate into upper bounds on tan β between 14 and 50 in the Higgs boson mass range
of 100–500 GeV, assuming the mmod+

h scenario of the MSSM.

The ATLAS and CMS Collaborations have performed extensive 2HDM interpretations of mea-
surements in different production and decay channels, in particular also in the A→ Zh, h→ bb
decay mode [34–36]. The ATLAS interpretation [35] also covers the flipped scenario, and the
2HDM interpretations reported in this paper are compared to these.

With the proton-proton (pp) collision data set corresponding to an integrated luminosity of
35.7 fb−1 collected at a centre-of-mass energy of

√
s = 13 TeV in 2016, the sensitivity to key

model parameters with respect to previous CMS searches is significantly extended. The analy-
sis focuses on neutral Higgs bosons A and H with masses mA/H ≥ 300 GeV that are produced
in association with at least one b quark and decay to bb, as shown by the diagrams in Fig. 1.
The signal signature therefore comprises final states characterized by at least three b quark jets
(”b jets”), and the dominant background is multijet production. A fourth b jet is not explicitly
required, since due to the process topology the majority of the signal events are found to have
at most three b jets within the acceptance of this analysis. Events are selected by dedicated
triggers that identify b jets already during data taking. This helps significantly to suppress
the large rate of multijet production, while maintaining sensitivity to the signal process. The
analysis searches for a peak in the invariant mass distribution, M12, of the two b jets with the
highest transverse momentum pT values, which originate from the Higgs boson decay in about
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66% of all cases at mA/H = 300 GeV, increasing up to 75% for mA/H ≥ 700 GeV. The dominant
background is the production of heavy-flavour multijet events containing either three b jets,
or two b jets plus a third jet originating from either a charm quark, a light-flavour quark, or a
gluon, which is misidentified as a b jet.
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Figure 1: Example Feynman diagrams for the signal processes.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the field volume, the inner tracker is formed
by a silicon pixel and strip tracker. It measures charged particles within the pseudorapidity
range |η| < 2.5. The tracker provides a transverse impact parameter resolution of approxi-
mately 15 µm and a resolution on pT of about 1.5% for particles with pT = 100 GeV. Also inside
the field volume are a crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter. Forward calorimetry extends the coverage provided by the barrel and endcap de-
tectors up to |η| < 5. Muons are measured in gas-ionization detectors embedded in the steel
flux-return yoke, in the range |η| < 2.4, with detector planes made using three technologies:
drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks
measured in the silicon tracker results in a pT resolution between 1 and 10%, for pT values up to
1 TeV. A detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [37].

3 Event reconstruction and simulation
A particle-flow algorithm [38] aims to reconstruct and identify all particles in the event, i.e.
electrons, muons, photons, and charged and neutral hadrons, with an optimal combination of
all CMS detector systems.

The reconstructed vertex with the largest value of summed physics-object p2
T is taken to be the

primary pp interaction vertex. The physics objects chosen are those that have been defined
using information from the tracking detector, including jets, the associated missing transverse
momentum, which is taken as the negative vector sum of the pT of those jets, and charged
leptons.

Jets are clustered from the reconstructed particle-flow candidates using the anti-kT algorithm [39,
40] with a distance parameter of 0.4. Each jet is required to pass dedicated quality criteria to
suppress the impact of instrumental noise and misreconstruction. Contributions from addi-
tional pp interactions within the same or neighbouring bunch crossing (pileup) affect the jet
momentum measurement. To mitigate this effect, charged particles associated with other ver-
tices than the reference primary vertex are discarded before jet reconstruction [41], and resid-
ual contributions (e.g. from neutral particles) are accounted for using a jet-area based correc-
tion [42]. Subsequent jet energy corrections are derived from simulation, and are confirmed
with in situ measurements of the energy balance in dijet, multijet, and Z/γ + jet events [43].
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For the offline identification of b jets, the combined secondary vertex (CSVv2) algorithm [44] is
used. This algorithm combines information on track impact parameters and secondary vertices
within a jet into an artificial neural network classifier that provides separation between b jets
and jets of other flavours.

Simulated samples of signal and background events were produced using different event gen-
erators and include pileup events. The MSSM Higgs boson signal samples, pp→ bbφ+X with
φ → bb, were produced at leading order (LO) in the 4-flavour scheme with PYTHIA 8.212 [45].
Comparing this prediction to computationally expensive next-to-leading order (NLO) calcu-
lations [46] generated using MADGRAPH5 aMC@NLO in version 2.3.0 [47, 48], we find a very
good agreement in the shapes of the leading dijet invariant mass distribution, M12, while the
selection efficiency is up to 10% lower when using the NLO prediction. We correct the NLO
effect by applying mass-dependent correction factors to the LO signal samples and assign a cor-
responding systematic uncertainty in the final results. Multijet background events from quan-
tum chromodynamics (QCD) processes have been simulated with the MADGRAPH5 aMC@NLO

event generator [49, 50] using the 5-flavour scheme and MLM merging [51]; they are used for
studying qualitative features but not for a quantitative background prediction. The NNPDF
3.0 [52] parton distribution functions (PDFs) are used in all generated samples. For all gen-
erators, fragmentation, hadronization, and the underlying event have been modelled using
PYTHIA with tune CUETP8M1 [53]. The response of the CMS detector is modelled with the
GEANT4 toolkit [54].

4 Trigger and event selection
A major challenge to this search is posed by the huge hadronic interaction rate at the LHC.
This is addressed with a dedicated trigger scheme [55], especially designed to suppress the
multijet background. Only events with at least two jets in the range of |η| ≤ 2.4 are selected.
The two leading jets are required to have pT > 100 GeV, and an event is accepted only if the
absolute value of the difference in pseudorapidity, ∆η, between any two jets fulfilling the pT
and η requirements, is less than or equal to 1.6. The tight online requirements on the opening
angles between jets are introduced to reduce the trigger rates, while preserving high efficiency
in the probed mass range of the Higgs bosons. At trigger level, b jets are identified using the
CSVv2 algorithm with slightly tighter requirements than for the offline analysis. At least two
jets in the event must satisfy the online b tagging criteria.

The efficiency of the jet pT requirements in the trigger is derived from data collected with
prescaled single-jet triggers with lower threshold. The efficiency in data and simulation is
measured as a function of jet pT and η. The differences between the two are corrected for in
the analysis of the simulated samples. The online b tagging efficiencies relative to the offline
b tagging selection are obtained from data using prescaled dijet triggers with a single b-tag
requirement. A tag-and-probe method is employed to determine the efficiency as a function of
pT and η of the jets. Both leading jets are required to pass offline selection criteria including b
tagging requirements similar to the final event selection described below. The second-leading b
jet must always pass the online b tagging requirement to ensure that it has fired the trigger. The
fraction of the first leading b jets that also satisfy the online b tagging requirements is a direct
measure of the relative online b tagging efficiency. Relative efficiencies are found to range from
above 80% for pT ≈ 100 GeV to around 50% for pT ≈ 900 GeV, averaged over η.

The offline selection requires at least two jets with pT > 100 GeV and another one with pT >
40 GeV, which all need to satisfy |η| ≤ 2.2. The η selection is applied to benefit from optimal b
tagging performance. The three leading jets have to pass the CSVv2 b tagging requirement of
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the medium working point [44]. This working point features a 1% probability for light-flavour
jets (attributed to u, d, s, or g partons) to be misidentified as b jets, and has a b jet identification
efficiency of about 70%. The separation between the two leading jets in η has to be less than
1.55, and a minimal pairwise separation of ∆R > 1 between each two of the three leading jets
is imposed to suppress background from bb pairs arising from gluon splitting. This sample is
referred to as “triple b tag” sample in the following.

5 Signal modeling
A signal template for the M12 distribution is obtained for each Higgs boson mass considered by
applying the full selection to the corresponding simulated signal data set, for nominal masses
in the range of 300–1300 GeV. The sensitivity of this analysis does not extend down to cross
sections as low as that of the SM Higgs boson. Thus, a signal model with a single mass peak is
sufficient. This is in contrast to the φ→ ττ analysis [25], where the signal model comprises the
three neutral Higgs bosons of the MSSM, one of which is SM-like.

The signal efficiency for each Higgs boson mass point is obtained from simulation and shown
in Fig. 2. A scale factor for the efficiency of the kinematic trigger selection has been derived with
data from control triggers, as described in Section 4, and is applied as a weight for each event.
Correction factors to account for the different b tagging efficiencies in data and simulation [44]
are also applied. The total signal efficiency ranges between 0.5 and 1.4% and peaks around
500 GeV. The efficiency first increases due to the kinematic selection and then decreases for
masses beyond 500 GeV due to the requirement of three b-tagged jets, and the fact that the b
tagging efficiency decreases at high jet pT.
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Figure 2: Signal efficiency as a function of the Higgs boson mass after different stages of event
selection.

For nominal masses between 300 and 500 GeV, each signal shape is parameterized by a bifur-
cated Gaussian function, which has different widths on the right- and left-hand side of the
peak position, continued at higher masses with an exponential function to describe the tail.
The function has five parameters. The signal of the 600 GeV mass point requires one addi-
tional Gaussian function on each side of the peak position to be able to describe the tails of
the distribution. This function has nine parameters in total. For nominal masses in the range
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700–1300 GeV, a Bukin function as defined in Appendix A, which has five parameters, is used.
All parameterizations provide a very good modelling of the M12 spectra.
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Figure 3: Invariant mass distributions of the two leading b jets in simulated signal events and
their parameterizations for three different A/H masses, normalized to unity.

The distributions of the invariant mass of the two leading b jets, M12, of the signal templates
and parameterizations of the probability density function for different Higgs boson masses are
shown in Fig. 3. The natural width expected for an MSSM Higgs boson in the considered mass
and tan β region is negligible compared to the detector resolution. For example, in the mmod+

h
scenario at a mass of 600 GeV and tan β = 60, the natural width of the mass peak is found to
be only about 19% of the full width at half maximum of the reconstructed mass distribution.
The shape of the mass distribution is thus dominated by the experimental resolution, and the
possibility of the two leading jets used to compute M12 not being the daughters of the Higgs
boson, which we refer to as wrong jet pairing. Pronounced tails towards lower masses are
attributed to cases of incomplete reconstruction of the Higgs daughter partons, for example due
to the missing momentum of neutrinos in semileptonic decays of hadrons containing bottom
and charm quarks. The wrong jet pairing gives rise to tails in both directions. For the lower
mass points, however, the tails towards lower masses are suppressed because of the jet pT
threshold.

6 Background model
The main background for this analysis originates from multijet production, with at least two
energetic jets containing b hadrons, and a third jet that satisfies the b tagging selection but
possibly as a result of a mistag. Top quark-antiquark production exhibits a shape very similar
to the multijet process. It is found to be negligible, but nevertheless is implicitly covered by our
background model.

The relevant features of the multijet background are studied in a suitable control region (CR)
in data, which is obtained from the triple b tag selection by imposing a b-tag veto on the third
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leading jet. This veto rejects jets that would satisfy a loose b tagging requirement, defined by a
10% probability for light-flavour jets to be misidentified as b jets, and has a b jet identification
efficiency of about 80%. This CR has no overlaps with the triple b tag signal region (SR), while
it preserves similar kinematic distributions for the three leading jets. In addition, the signal
contamination in the CR is negligible.

A suitably chosen analytic function is used to model the multijet background. This function is
extensively validated in the b tag veto CR. In order to improve the background description and
reduce the potential bias related to the choice of the background model, the M12 distribution is
divided into the three overlapping subranges [200, 650], [350, 1190], and [500, 1700] GeV. Their
borders are chosen to largely cover the signal shapes of the associated mass points of [300, 500],
[500, 1100], and [1100, 1300] GeV, respectively (as discussed in Section 5).

In the first subrange, the selection criteria introduce a kinematic edge (turn-on) in the M12
distribution. The chosen function is a product of two terms. The first term is a turn-on function,
represented by a Gaussian error function in the form of:

f (M12) = 0.5
[
erf(p0[M12 − p1]) + 1

]
, (1)

where
erf(x) =

2√
π

∫ x

0
e−t2

dt, (2)

and the parameters p0 and p1 describe the slope and point of the turn-on, respectively.

The falling part of the spectrum is described by an extension of the Novosibirsk function origi-
nally used to describe a Compton spectrum [56], defined as:

g(M12) = p2 exp
(
− 1

2σ2
0

ln2[1− M12 − p3

p4
p5 −

(M12 − p3)2

p4
p5 p6]−

σ2
0

2

)
, (3)

where p2 is a normalization parameter, p3 the peak value of the distribution, p4 and p5 are the
parameters describing the asymmetry of the spectrum, and p6 is the parameter of the extended
term. The variable σ0 is defined as:

σ0 =
2
ξ

sinh−1(p5ξ/2), where ξ = 2
√

ln 4. (4)

In the second and third subranges, we choose a nonextended Novosibirsk function (p6 ≡ 0)
without turn-on factor.

Figure 4 shows the fits of the chosen functions to the CR data, which have been prescaled to
give similar event count as in the SR. In the first subrange, M12 = [200, 650]GeV, the turn-
on effect due to the jet pT threshold at trigger level is clearly visible. In the other two mass
subranges, the spectrum shows only the expected falling behaviour with M12. The values of
the parameters p0 and p1 used to model the turn-on obtained in the CR are also used for the SR
fit since the turn-on behaviour in the two regions is found to be very similar. The other function
parameters are allowed to vary independently in the CR and SR fits.

Different families of alternative probability density functions such as Bernstein polynomials
and the so-called dijet function as defined in Ref. [57] are studied to estimate the possible bias
from the choice of the background model. For each family, a systematic bias on the extraction
of a signal with mass mA/H is determined: the alternative function is fit to the observed data,
from which toy experiments are drawn. Using the nominal background model in the respective
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subrange, a maximum-likelihood fit of signal and background is performed for each pseudo-
experiment. The difference in the extracted and injected number of signal events is divided by
the statistical uncertainty of the fit. The resulting pull distribution is considered to represent
the systematic bias on the signal strength due to the choice of the background function and our
insufficient knowledge of the background processes. We infer a bias of 100, 20, and 25% in units
of the statistical uncertainty of the signal strength for the first, second, and third subranges,
respectively.
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Figure 4: Distributions of the dijet invariant mass M12, obtained from the b tag veto CR as de-
scribed in the text in the three subranges used for the fit: M12 = [200, 650]GeV (upper left) in
linear scale, M12 = [350, 1190]GeV (upper right) and M12 = [500, 1700]GeV (lower) in logarith-
mic scale. The dots represent the data. The full line is the result of the fit of the background
parameterizations described in the text. In the bottom panel of each plot, the normalized dif-
ference [(Data-Fit)/

√
Fit] is shown.
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7 Systematic uncertainties
The following systematic uncertainties in the expected signal and background estimation affect
the determination of the signal yield or its interpretation within the MSSM or generic 2HDM
models.

The signal yields are affected by the following uncertainties:

• a 2.5% uncertainty in the estimated integrated luminosity of the data sample [58];

• the uncertainty in the online b tagging efficiency scale factor, which results in an
overall uncertainty in the range of 0.8–1.3% for Higgs boson masses of 300–1300 GeV;

• a 5% uncertainty in the correction of the selection efficiency comparing to the NLO
prediction;

• the effect due to the choice of PDFs and the value of αs (1–6%), following the recom-
mendations of the LHC Higgs Cross Section Working Group [59] when interpreting
the results in benchmark models;

• the uncertainty in the normalization and factorization scales (1–10%) when inter-
preting the results in benchmark models.

Uncertainties affecting the shape as well as the normalization of the signal templates are:

• the uncertainty in the jet trigger efficiencies, ranging between subpercent values and
7% per jet depending on its η and pT;

• the uncertainty in the offline b tagging efficiency (2–5% per jet depending on its
transverse momentum) and the mistag scale factors (<0.3%);

• the jet energy scale (JES) and jet energy resolution (JER) uncertainties (1–6%): their
impact is estimated by varying the JES and JER in the simulation within the mea-
sured uncertainties;

• the uncertainty in the total inelastic cross section of 4.6% assumed in the pileup sim-
ulation procedure [60].

For the background estimation, the bias on the extracted signal strength, as reported in Sec-
tion 6, is considered as an additional bias term to the background fitting function. This poses
the largest uncertainty for the analysis.

8 Results
The number of potential signal events is extracted by performing a maximum-likelihood fit of
the signal plus background parameterizations to the M12 data distribution. Initially, a fit with
only the background parameterizations is performed. Results of this background-only fit in all
three subranges are given in Fig. 5. A good description of the data is observed. The normalized
differences between data and fit together with the post-fit uncertainties are shown for each
subrange.

In a second step, a combined fit of signal and background to the data is per-
formed. No significant excess over the background-only distribution is observed and
upper limits at 95% confidence level (CL) on the cross section times branching fraction
σ(pp→ bA/H + X)B(A/H→ bb) are derived. For the calculation of exclusion limits, the
modified frequentist criterion CLs [61–63] is adopted using the ROOSTATS package [64]. The
test statistic is based on the profile likelihood ratio. Systematic uncertainties are treated as
nuisance parameters and profiled in the statistical interpretation using log-normal priors for
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Figure 5: Distribution of the dijet invariant mass M12 in the data triple b tag sample showing
the three subranges together with the corresponding background-only fits. The shaded area
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of slope around 350 GeV of the 300 GeV signal shape is caused by wrong jet pairing. In the
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√
Bkg), where Bkg is the background as

estimated by the fit, for the three subranges is shown.
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uncertainties affecting the signal yield, while Gaussian priors are used for shape uncertainties.

Model-independent upper cross section times branching fraction limits are shown as a function
of the mass of the A/H bosons in Fig. 6 up to a mass of 1300 GeV. The visible steps in the
expected and observed limits at 500 and 1100 GeV are due to the transitions between the mass
subranges as explained in Section 6. The limits range from about 20 pb at 300 GeV, to about
0.4 pb at 1100 GeV. The limits are also summarized in Table 1 in Appendix B.
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Figure 6: Expected and observed upper limits on σ(pp → bA/H + X)B(A/H → bb) at 95%
CL as a function of the Higgs boson mass mA/H. The inner and the outer bands indicate the
regions containing 68 and 95%, respectively, of the distribution of limits expected under the
background-only hypothesis. The dashed horizontal lines illustrate the borders between the
three subranges in which the results have been obtained.

8.1 Interpretation within the MSSM

The cross section limits shown in Fig. 6 are translated into exclusion limits on the MSSM pa-
rameters tan β and mA. The cross sections for b + A/H associated production as obtained with
the four-flavour NLO [65, 66] and the five-flavour NNLO QCD calculations implemented in
BBH@NNLO [67] were combined using the Santander matching scheme [68]. The branching
fractions were computed with FEYNHIGGS version 2.12.0 [13, 69–71] and HDECAY [72, 73] as
described in Ref. [19].

The observed and expected 95% CL median upper limits on tan β versus mA are shown in Fig. 7
(upper row). They were computed within the MSSM mmod+

h benchmark scenario [8] with the
higgsino mass parameter µ = +200 GeV and in the hMSSM scenario [9, 15, 16]. In the former
scenario, the observed upper limits range from tan β of about 25 at mA = 300 GeV to about 60
at mA = 750 GeV. These results considerably extend the preceding measurements at

√
s = 7
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and 8 TeV [32, 33]. The model interpretation is not extended beyond tan β values of 60, as
theoretical predictions are not considered reliable for much higher values. Additional model
interpretations for mA vs. tan β in the light τ̃ and the light t̃ benchmark scenarios are given in
Fig. 7 (lower), and in Tables 2–5 in Appendix B.

8.2 Interpretation within the 2HDM

Cross sections and branching fractions for the bbH and bbA processes within different 2HDM
models have been computed at NNLO using SUSHI version 1.6.1 [74], 2HDMC version 1.7.0 [75]
and LHAPDF version 6.1.6 [76]. The 2HDM parameters have been set according to the “Scenario
G” proposed in Ref. [77]. Specifically, the heavier Higgs bosons are assumed to be degenerate
in mass (mA = mH = mH±), and the mixing term has been set to m2

12 = 0.5m2
A sin 2β. The choice

of such an MSSM-like parameterization allows using the same signal samples as for the MSSM
analysis.

The results for the type-II and flipped models are displayed in Fig. 8 as upper limits for tan β
as a function of cos(β − α). Observed upper limits derived from the ATLAS A → Zh anal-
ysis [24] at a centre-of-mass energy of 13 TeV are shown as well. The results for the flipped
model presented here provide competitive upper limits in the central region of cos(β− α) and
strong unique constraints on tan β. Figure 9 shows the upper limits for tan β as a function of
cos(β− α) in the type-II and flipped models for mA/H = 500 GeV.

9 Summary
A search for a heavy Higgs boson decaying into a bottom quark-antiquark pair and accompa-
nied by at least one additional bottom quark has been performed. The data analyzed cor-
respond to an integrated luminosity of 35.7 fb−1, recorded in proton-proton collisions at a
centre-of-mass energy of

√
s = 13 TeV at the LHC. For this purpose, dedicated triggers us-

ing all-hadronic jet signatures combined with online b tagging were developed. The signal is
characterized by events with at least three b-tagged jets. The search has been performed in the
invariant mass spectrum of the two leading jets that are also required to be b-tagged.

No evidence for a signal is found. Upper limits on the Higgs boson cross section times branch-
ing fraction are obtained in the mass region 300–1300 GeV at 95% confidence level. They range
from about 20 pb at the lower end of the mass range, to about 0.4 pb at 1100 GeV, and extend to
considerably higher masses than those accessible to previous analyses in this channel.

The results are interpreted within various benchmark scenarios of the minimal supersymmetric
extension of the standard model (MSSM). They yield upper limits on the model parameter tan β
as a function of the mass parameter mA. The observed limit at 95% confidence level for tan β
is as low as about 25 at the lowest mA value of 300 GeV in the mmod+

h scenario with a higgsino
mass parameter of µ = +200 GeV. In the hMSSM, scenarios with tan β values above 22 to 60
for Higgs boson masses from 300 to 900 GeV are excluded at 95% confidence level. The results
are also interpreted in the two Higgs doublet model (2HDM) type-II and flipped scenarios. In
the flipped 2HDM scenario, similar upper limits on tan β as for the hMSSM are set over the full
cos(β− α) range and for Higgs boson masses from 300 to 850 GeV. The limits obtained for the
flipped scenario provide competitive upper limits in the region around zero of cos(β− α) and
provide strong unique constraints on tan β.
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Figure 7: Expected and observed upper limits at 95% CL for mA vs. the MSSM parameter
tan β in the (upper left) mmod+

h benchmark scenario with µ = +200 GeV, in the (upper right)
hMSSM, the (lower left) light τ̃, and the (lower right) light t̃ benchmark scenarios. The inner
and outer bands indicate the regions containing 68 and 95%, respectively, of the distribution
of limits expected under the background-only hypothesis. The excluded parameter space is
indicated by the red shaded area. The hashed area is excluded because mh,H would deviate by
more than ±3 GeV from the mass of the observed Higgs boson at 125 GeV. Since theoretical
calculations for tan β > 60 are not reliable, no limits are set beyond this value. To illustrate the
improvement in sensitivity, the observed and expected upper limits from the preceding CMS
analyses at

√
s = 7 and 8 TeV [32, 33] are also shown as solid and dashed black lines.
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Figure 8: Upper limits for the parameter tan β at 95% CL for the flipped (upper) and type-II
(lower) models, as a function of cos(β− α) in the range of [−0.5, 0.5] for the mass mH = mA =
300 GeV (left) and as a function of mA/H when cos(β − α) = 0.1 (right). The observed limits
from the ATLAS A → Zh analysis [24] at 95% CL, which are provided up to tan β = 50, are
also shown as blue shaded area for comparison.
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Figure 9: Upper limits for the parameter tan β at 95% confidence level for the flipped (left) and
type-II (right) models as a function of cos(β − α) in the full range of [−1.0, 1.0], for the mass
mH = mA = 500 GeV. The inner and outer bands indicate the regions containing 68 and 95%,
respectively, of the distribution of limits expected under the background-only hypothesis.
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A Definition of Bukin function
The Bukin function as implemented in ROOT version 6.06/01 [78] is defined as:

f (M12) = Ap exp

− ln 2
ln2
(

1 +
√

2ξ
√

ξ2 + 1 (M12−xp)√
ln 2σp

)
ln2
(

1 + 2ξ(ξ −
√

ξ2 + 1)
)

 ,

if x1 < M12 < x2, (5)

f (M12) = Ap exp

± ξ
√

ξ2 + 1(M12 − xi)
√

2 ln 2

σp ln(
√

ξ2 + 1 + ξ)
(√

ξ2 + 1∓ ξ
)2 + ρi

(
M12 − xi

xp − xi

)2

− ln 2

 ,

if M12 ≤ x1 or M12 ≥ x2, (6)

where ρi = ρ1 and xi = x1 for M12 ≤ x1, ρi = ρ2 and xi = x2 when M12 ≥ x2, and:

x1,2 = xp + σp
√

2 ln 2
(

ξ√
ξ + 1

∓ 1
)

. (7)

The parameters xp and σp are the peak position and width, respectively, and ξ is an asymmetry
parameter.

B Exclusion limits
The model-independent 95% CL limits on σ(pp → bA/H + X)B(A/H → bb) are listed in
Table 1 for different Higgs boson masses mA/H. The 95% CL limits of (tan β, mA) are listed in
Tables 2 to 5 for different MSSM benchmark scenarios.

Table 1: Expected and observed 95% CL upper limits on σ(pp→ bA/H + X)B(A/H→ bb) in
pb as a function of mA/H.

Mass [GeV] −2σ −1σ Median +1σ +2σ Observed
300 10.8 14.3 19.7 27.5 36.5 19.1
350 6.3 8.4 11.7 16.3 21.7 14.0
400 3.6 4.8 6.7 9.2 12.3 5.7
500 1.7 2.2 3.1 4.4 5.9 1.9
600 1.0 1.4 1.9 2.7 3.7 2.1
700 0.7 0.9 1.3 1.8 2.4 1.5
900 0.4 0.6 0.8 1.2 1.6 0.9

1100 0.36 0.49 0.68 0.96 1.36 0.40
1300 0.36 0.48 0.68 0.96 1.31 0.50
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Table 2: Expected and observed 95% CL upper limits on tan β as a function of mA in the mmod+
h ,

µ = +200 GeV, benchmark scenario. Since theoretical predictions for tan β > 60 are not reli-
able, entries for which tan β would exceed this value are indicated by —.

Mass [GeV] −2σ −1σ Median +1σ +2σ Observed
300 19.3 22.0 25.8 30.6 35.7 25.4
350 21.5 24.4 28.5 33.6 39.0 31.2
400 22.6 25.5 29.4 34.4 39.7 27.3
500 26.9 30.2 34.9 40.9 47.4 28.3
600 32.9 37.1 43.0 50.6 58.5 44.5
700 39.0 44.2 51.7 — — 55.9
900 58.5 — — — — —

Table 3: Expected and observed 95% CL upper limits on tan β as a function of mA in the hMSSM
benchmark scenario. Since theoretical predictions for tan β > 60 are not reliable, entries for
which tan β would exceed this value are indicated by —.

Mass [GeV] −2σ −1σ Median +1σ +2σ Observed
300 16.8 19.3 22.6 26.7 30.9 22.3
350 17.5 20.2 23.8 28.2 32.5 26.1
400 17.6 20.3 23.8 28.1 32.4 21.9
500 19.6 22.6 26.7 31.6 36.9 20.9
600 23.6 27.2 32.1 38.0 44.3 33.2
700 27.9 32.2 38.0 45.1 52.4 41.2
900 42.8 49.4 58.4 — — —

Table 4: Expected and observed 95% CL upper limits on tan β as a function of mA in the light
τ̃ benchmark scenario. Since theoretical predictions for tan β > 60 are not reliable, entries for
which tan β would exceed this value are indicated by —.

Mass [GeV] −2σ −1σ Median +1σ +2σ Observed
300 19.9 23.6 28.8 35.8 43.7 28.2
350 21.0 25.0 30.8 38.4 47.5 34.7
400 21.7 25.5 31.2 38.8 47.9 28.0
500 25.0 29.8 37.2 47.8 — 27.0
600 31.5 38.0 48.5 — — 51.5
700 40.0 48.8 — — — —

Table 5: Expected and observed 95% CL upper limits on tan β as a function of mA in the light
t̃ benchmark scenario. Since theoretical predictions for tan β > 60 are not reliable, entries for
which tan β would exceed this value are indicated by —.

Mass [GeV] −2σ −1σ Median +1σ +2σ Observed
300 22.2 26.9 34.6 46.3 — 33.6
350 23.6 28.9 37.6 52.3 — 44.5
400 23.8 29.3 37.9 51.9 — 32.9
500 27.9 34.8 47.4 — — 30.7
600 37.4 49.0 — — — —
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Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
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Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro,
J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev,
D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
V. Alexakhin, A. Golunov, I. Golutvin, N. Gorbounov, I. Gorbunov, A. Kamenev, V. Karjavin,
A. Lanev, A. Malakhov, V. Matveev32,33, P. Moisenz, V. Palichik, V. Perelygin, M. Savina,
S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim34, E. Kuznetsova35, P. Levchenko, V. Murzin, V. Oreshkin,
I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov,
A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,
A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin33

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),
Moscow, Russia
R. Chistov36, M. Danilov36, P. Parygin, D. Philippov, S. Polikarpov36, E. Tarkovskii



33

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin33, I. Dremin33, M. Kirakosyan33, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,
Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin37, L. Dudko, V. Klyukhin,
O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin,
A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov38, T. Dimova38, L. Kardapoltsev38, D. Shtol38, Y. Skovpen38

State Research Center of Russian Federation, Institute for High Energy Physics of NRC
’Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin,
D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin,
N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,
Serbia
P. Adzic39, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),
Madrid, Spain
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