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1. Introduction

Currently there is great interest in understanding systematics of correlations in particle production at high energy. Long range in 
rapidity and angular correlations have long been observed in heavy ion collisions. The current understanding of the origin of these 
correlations is collective flow in the final state, which in today’s most popular incarnation is described in terms of transport [1] and 
hydrodynamics [2]. However the observation of very similar correlations in the p–p and p–Pb collisions at LHC [3–7] poses a challenge to 
hydrodynamic interpretation, at least in small systems. The problem is not only that the final state does not necessarily contain a large 
number of particle, and that the correlations extend to relatively high transverse momenta, but also that no jet quenching is observed in 
these reactions.

It is therefore important to understand better systematic properties of other mechanisms that were proposed as possible origin of 
correlations at high energy. In particular a considerable amount of work has been done in analyzing the possibility that the observed 
correlations do not originate from strong final state interactions, but rather emerge from either the properties of the initial state, or from 
the initial stages of the collision. This discussion is most commonly framed in the context of the Color Glass Condensate (CGC), although 
the physics underlying the effects in question is quite universal and is not necessarily tied to saturation at high energy.

Several potential sources for correlations have been identified in recent literature [8]. In particular in the last couple of years it has 
been realized that a significant part of the effect discussed so far comes from the quantum interference effects between identical bosons 
(gluons), as was highlighted in Ref. [9]. There are two facets to this effect: the initial state interference – Bose enhancement (BE) of soft 
gluons in the initial projectile wave function and the final state Hanbury Brown–Twiss (HBT) interference effects between gluons emitted 
during the early stages of collision. The realizations of the two effects in the spectrum of emitted particles are somewhat different. 
Both lead to a peak in the number of produced pairs of gluons when the transverse momenta of the two gluons are close to collinear. 
However the BE leads to a peak which is broad, and has a width of the typical momentum transfer from the target (target saturation 
momentum), while the width of the HBT peak is determined primarily by the spatial size of the projectile wave function. As such the 
relative significance of the two effects in producing correlations is different at different rapidities. The HBT is more important in producing 
correlations between gluons emitted in the direction of the projectile proton, while the BE should be dominant in the direction of the 
nucleus. If the two scales (the saturation momentum of the target and the inverse size of the projectile) are similar, both effects contribute 
to correlated production. In Ref. [10], the role of the quantum interference effects were also identified in the context of odd azimuthal 
harmonics for the two-gluon correlation function in CGC. The quantum interference effects in gluon production have also been discussed 
from a somewhat different perspective in Ref. [11].
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So far, with the exception of numerical work of Ref. [14], the discussion in the literature has been mostly semi-qualitative. In particular 
although it is clear that quantum interference effects certainly lead to a nonvanishing v2{2}, the dependence of their contribution to 
v2{2} on the geometry of the collision has not been properly addressed. We note that no correlations between the initial v2{2} and the 
geometry of the collision have been observed in classical field simulations [14,15]. This question is obviously very important for possible 
phenomenological applications. The purpose of the present paper is to study this dependence.

Our interest here is mainly in the collisions between one small and one large object. Consequently the dependence on the geometry in 
practical terms means the dependence on the spatial shape of the projectile in the transverse plane. When applied to p–A collisions, this 
translates into dependence of event by event v2{2} on the configuration of the proton wave function that triggers a given event. We do 
not endeavor to study geometry fluctuations due to Glauber like fluctuations of the density in the nucleus.

Our strategy is the following. We will be working entirely within the framework of the dense–dilute CGC approach. We consider inclu-
sive two gluon production from a projectile which has a nonvanishing spatial eccentricity. This eccentricity is encoded in the distribution 
of valence sources which produce the soft gluons in the projectile wave function. The averaging over the valence sources is performed 
using the McLerran–Venugopalan (MV) model [16] modified to incorporate the said spatial eccentricity. We calculate the ratio of v2{2}
corresponding to different eccentricities. We vary the eccentricity parameter keeping the total area of the projectile, and therefore the 
single inclusive gluon cross section fixed.

We present both numerical calculations and analytical results. The numerical calculations are performed without any further approxi-
mations. The analytical considerations make use of the large Nc approximation and of the parton model like picture which assumes that 
only the low transverse momentum gluons are present in the projectile wave function. The analytical and numerical results are consis-
tent with each other and are rather surprising. We find a clear anti-correlation between the value of v2{2} and the magnitude of spatial 
eccentricity.

One might argue that at first sight this trend goes against the observed hierarchy of v2{2} between p–Au and d–Au collisions at RHIC. 
However we believe that it would be premature (and thus a mistake) to draw this conclusion, as one also has to take into account the 
area dependence, on which current work is missing, and, most importantly the multiplicity dependence when analyzing the RHIC data. 
The dependence on the geometry that we find, although clearly present is rather mild and variation of the eccentricity from 0 to 0.9 
leads only to a minor modification of v{2} of order 10%. A detailed analysis of p–Au, d–Au and 3He–Au collisions is ongoing and will be 
reported elsewhere [20].

In Section 2 we explain the general setup of our calculation and the way we introduce the spatial eccentricity. In Section 3 we perform 
the calculation analytically. Here we use two main approximations. First, we use the target average factorization for products of Wilson 
lines advocated recently in Ref. [9]. As explained in Ref. [9] this approximation is valid in the case of dense target, and it specifically 
singles out the contributions due to quantum interference. Second, we perform calculations using the projectile source distribution which 
only allows for the presence of low transverse momentum gluons q < � in the projectile wave function, where � is a soft scale. We 
study production of gluons with transverse momentum larger than this soft scale k � �, but not necessarily larger than the saturation 
momentum in the target. We consider separately the effect of HBT and BE correlations on v2.

In Section 4 we perform numerical calculation of the same quantity. This time we do not apply large Nc approximation, neither do we 
introduce the soft scale �, but use the original MV model (modulo eccentricity).

Section 5 contains a short discussion of our results.

2. The setup

Let us consider the double inclusive gluon production. We first start with the source-dependent inclusive cross section in the dense–
dilute limit

dN

d2kdy

∣∣∣∣
ρ,U

= 2g2

(2π)3

ˆ
d2q

(2π)2

d2q′

(2π)2
�(k,q,q′)ρa(−q′)

[
U †(k − q′)U (k − q)

]
ab

ρb(q), (1)

where the product of two Lipatov vertexes is

�(k,q,q′) =
(

q

q2
− k

k2

)
·
(

q′

q′ 2
− k

k2

)
. (2)

Here ρa is the color charge density in the projectile, and U is the Wilson line in the adjoint representation in the color field of the 
target.

The single inclusive and double inclusive production in this approach are given by

dN

d2kdy
=

〈
dN

d2kdy

∣∣∣∣
ρ,U

〉
ρ,U

(3)

and

d2N

d2k1dy1d2k2dy2
=

〈
dN

d2k1dy1

∣∣∣∣
ρ,U

dN

d2k2dy2

∣∣∣∣
ρ,U

〉
ρ,U

, (4)

where the brackets denote averaging over the charge density of the projectile and the color fields of the target.
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2.1. Projectile averaging

We will perform the averaging over the projectile charge density ρ using the MV model, which is equivalent to pairwise Wick contrac-
tion of ρ with the basic “propagator”〈

ρa(p)ρb(k)
〉
ρ

= μ2(p,k)δab . (5)

In the original MV model the function μ2 is taken to be proportional to δ2(p + q). This form assumes translational invariance in the 
transverse plane. Since we wish to explore the dependence on the finite size and shape of the projectile, we generalize it in the following 
way

μ2(p,k) = μ2(p + k)F

(
(p − k)2

�2

)
. (6)

This factorized form albeit not generic, but is intuitive and we believe captures the main features of the projectile charge distribution. The 
function μ2(p + k) arises as a Fourier transform of the charge density in the transverse plane

μ2(p) =
ˆ

d2beipbμ2(b). (7)

Thus the coordinate space density profile is directly reflected in μ2(p). Naturally, we expect this function to vanish for momenta much 
greater than the inverse of the linear dimension of the projectile R . The spatial eccentricity will also be directly encoded in μ2. The 
numerical calculations are performed for a Gaussian profile

μ2(b) = Ce
− b2

1
a2 R2 e

− a2b2
2

R2 . (8)

The normalization constant C is fixed by

ˆ
d2bμ2(b) = S⊥μ2

0 . (9)

Note that this way of introducing eccentricity preserves the area of the projectile, and therefore the single inclusive gluon production cross 
section.

The function F has roughly the meaning of the transverse momentum dependent distribution of the valence partons. In the original MV 
model one has F (p) = const, corresponding to the point-like structure of the valence color charges. We will use this form in the numerical 
calculations. For analytic estimates we find it more convenient to assume a partonic picture, according to which the wave function of the 
projectile contains only low transverse momentum partons. Thus, although we will not use an explicit form of the function F , we will 
assume that it vanishes for momenta larger than some scale �, i.e. F (x > 1) → 0. The scale � although presumably not hard, has nothing 
to do with the radius of the projectile. It is likely to be in the range of a single GeV, and thus we will assume that �2 � 1/R2.

2.2. Target averaging

We also need to average over the field configurations of the target, or equivalently over the Wilson lines U . We do this averaging 
differently in the numerical and analytic calculations.

The numerical calculations are performed for the physical gauge group SU (3). The averaging over the Wilson lines is performed using 
the MV model for the target color charge density and calculating the Wilson lines in the resulting ensemble of the target color fields. The 
details of the procedure are given in Section 4.

For analytic estimates we rely on the procedure first explained in Ref. [12], and utilized for calculating gluon production in Ref. [13]. The 
average of a product of several Wilson lines is factorized into contractions formally the same as Wick contractions. The basic “propagator” 
is taken as

〈
Uab(p)Ucd(q)

〉
U

= (2π)2

N2
c − 1

δacδbdδ
2(p + q)D(p); (10)

where

D(p) =
ˆ

d2xeip·(x−y) 1

N2
c − 1

〈
tr

[
U †(x)U (y)

]〉
U

. (11)

This approximation is appropriate for a very dense target and is selecting the terms in the cross section which are not suppressed by 
powers of area of the projectile [12,13]. The color structure of the propagator Eq. (10) reflects the fact that on a dense target the S-matrix 
of a non-color singlet state vanishes. Thus the left and right indexes of the Wilson lines have to be separately contracted into a color 
singlet.
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3. Analytic considerations

We now return to Eq. (4) and perform the projectile averages. This yields three terms

d2N

d2k1dy1d2k2dy2
=

[
2g2

(2π)3

]2 ˆ
d2q

(2π)2

d2q′

(2π)2

d2 p

(2π)2

d2 p′

(2π)2
�(k1,q,q′)�(k2, p, p′)

×
[
μ2(q − q′)μ2(p − p′)〈tr

[
U †(k1 − q′)U (k1 − q)

]
tr

[
U †(k2 − p′)U (k2 − p)

]
〉U

+ μ2(p − q′)μ2(q − p′)〈tr[U †(k1 − q′)U (k1 − q)U †(k2 − p′)U (k2 − p)]〉U (12)

+ μ2(−p′ − q′)μ2(q + p)〈tr[U †(k1 − q′)U (k1 − q)U †(p − k2)U (p′ − k2)]〉U

]
.

3.1. The double dipole contribution

First let us consider the first term in Eq. (12). With our target averaging procedure, this yields two type of contributions. The first one 
where the Wilson line contractions are performed inside each dipole. This yields the square of the single gluon production cross section. 
It does not contain correlations, and is not interesting for our purposes.

The other two contributions involve breaking of two color traces, and as shown in Ref. [13] is suppressed by a factor 1/(N2
c − 1)2. 

These terms are subleading at large Nc to other terms that arise from the remaining two lines in Eq. (12), and we will not consider them 
further.

Thus we are left to consider the remaining two contractions, which both are suppressed by a single factor 1/(N2
c − 1) relative to the 

uncorrelated double dipole term:

〈 dN/d2k1dy1︷ ︸︸ ︷
ρa(−q′)[U †(k1 − q′)U (k1 − q)]abρ

b(q)

dN/d2k2dy2︷ ︸︸ ︷
ρc(−p′)[U †(k2 − p′)U (k2 − p)]cdρ

d(p)

〉
ρ

(13)

−
〈 dN/d2k1dy1︷ ︸︸ ︷
ρa(−q′)[U †(k1 − q′)U (k1 − q)]abρ

b(q)

〉
ρ

〈 dN/d2k2dy2︷ ︸︸ ︷
ρc(−p′)[U †(k2 − p′)U (k2 − p)]cdρ

d(p)

〉
ρ

= μ2(p − q′)μ2(q − p′)tr[U †(k1 − q′)U (k1 − q)U †(k2 − p′)U (k2 − p)]
+ μ2(−p′ − q′)μ2(q + p)tr[U †(k1 − q′)U (k1 − q)U †(p − k2)U (p′ − k2)] .

Each term has two contractions with respect to U of order N2
c . They comprise the HBT and BE contributions [13].

3.2. The HBT contribution

The following contraction leads to the HBT contribution (cyclic property of trace was used)

μ2(p − q′)μ2(q − p′)tr[
〈
U (k2 − p)U †(k1 − q′)

〉
U

〈
U (k1 − q)U †(k2 − p′)

〉
U
] (14)

+ μ2(−p′ − q′)μ2(q + p)tr[
〈
U (p′ − k2)U †(k1 − q′)

〉
U

〈
U (k1 − q)U †(p − k2)

〉
U
]

= (N2
c − 1)μ2(k2 − k1)μ

2(k1 − k2)D(−k1 + q′)D(k1 − q)δ(k2 − k1 + q′ − p)δ(q′ − q + p′ − p)

+ (N2
c − 1)μ2(k1 + k1)μ

2(−k1 − k2)D(−k1 − q′)D(k1 − q)δ(k1 + k2 − q − p)δ(q′ − q + p′ − p) .

Substituting into double inclusive production we get[
d2N

d2k1dy1d2k2dy2

]
HBT

= (N2
c − 1)|μ2(k1 − k2)|2

(
2g2

(2π)3

)2

(15)

×
ˆ

d2q

(2π)2

d2 p

(2π)2
�(k1,q,k1 − k2 + p)�(k2, p,k2 − k1 + q)D(k1 − q)D(p − k2) + [

k2 → −k2

]
.

The leading angular dependence in this term is due to the factor |μ2(k1 − k2)|2 which makes the final momentum distribution directly 
sensitive to the shape of the projectile.

Let us analyze this dependence. In particular we are interested in the second harmonic
ˆ

dφ1

2π

dφ2

2π
e2i(φ1−φ2)

∣∣∣∣
ˆ

d2beib·(k1−k2)μ2(b)

∣∣∣∣2

. (16)

Analytically we will study the case of transverse momenta of equal magnitude |k1| = |k2| = k.
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Fig. 1. v2
2{2} versus spatial eccentricity for the HBT contribution. Left panel: eccentricity and v2

2{2} plotted versus parameter a. Right panel: v2
2{2} plotted versus the spatial 

eccentricity.

Using the Gaussian density profile Eq. (8) and transforming to the momentum space we find

|μ2(k1 − k2)|2 = (S⊥μ2
0)

2e−(Rk)2
(
a2[cos φ1−cos φ2]2+a−2[sin φ1−sin φ2]2

)
. (17)

We are interested in the regime of large transverse momenta of observed particles Rk � 1. We can then expand in �φ, φ1 = �φ + φ2

and integrate with respect to �φ. In the leading order we get

ˆ
dφ1

2π

dφ2

2π
e2i(φ1−φ2)

∣∣∣∣
ˆ

d2beib·(k1−k2)μ2(b)

∣∣∣∣2

= (S⊥μ2
0)

2

2π

ˆ
dφ2

2π

√
2πa

kR
√

a4 sin2(φ2) + cos2(φ2)

+O
(
(kR)0

)
. (18)

For small a this integral can be readily calculated with the result

lim
a→0

ˆ
dφ1

2π

dφ2

2π
e2i(φ1−φ2)

∣∣∣∣
ˆ

d2beib·(k1−k2)μ2(b)

∣∣∣∣2

= (S⊥μ2
0)

2
8
√

2πa ln
(

2
a

)
(2π)2kR

+O
(
(kR)0

)
. (19)

Note that since we introduced the eccentricity parameter a in a way that preserves the single gluon inclusive production, the integral 
above is directly proportional to v2

2{2} up to small corrections.
Thus we find that at least for small a the spatial eccentricity ε2 and v2{2} due to the HBT contribution are anti-correlated with each 

other. In Fig. 1 we plot v2
2{2} expressed directly in terms of eccentricity for a variety of values of the parameter a. We observe the 

anti-correlation for all values of eccentricity. Note, however, that a significant variation of eccentricity from 0 (a = 1) to about 0.9 (a = 2

or a = 1/2) produces only about 10% change of 
(´

dφ1,2|μ2(�k)|2e2iδφ
)1/2

. This mild dependence on the spatial eccentricity is manifestly 
demonstrated on the right panel of Fig. 1.

In fact although our calculation used explicitly the Gaussian density distribution, the argument is more general. Consider again the 
relevant quantity

ˆ
dφ1

2π

dφ2

2π
e2i(φ1−φ2)

∣∣∣∣
ˆ

d2beib·(k1−k2)μ2(b)

∣∣∣∣2

. (20)

The Fourier transform limits the difference between the two momenta |k1 − k2| to be of the order of 1/R . As long as the magnitude of 
each momentum is much larger than 1/R , in the integration region that contributes most significantly to the integral we can write

(k1 − k2)i = εi jk j�φ (21)

where k is either of the momenta ki . This means that the integration over �φ is effectively limited (by the same phase factor in the 
Fourier transform) over the range

〈�φ〉 ∝
√

1

〈(εi jkib j)
2〉 ∝ 1

kR/a
(22)

where the last relation holds at small a. The averages here denote averages over b with the weight given by the density profile μ2(b). 
Since �φ is small, we can set the factor exp{i2(φ1 − φ2)} in Eq. (20) to unity. It then follows that the integral over �φ produces a factor 
of a

kR at small a. This is precisely the origin of the explicit factor a in Eq. (19).
This argument is a little naive, since it assumes that the remaining integral is finite in the limit a → 0. In fact the integral in Eq. (19)

is logarithmically divergent, which brings about an additional factor of ln 2/a. This behavior is also quite generic, since the expression 
1√

(εi jkib j)
2

diverges linearly when b is parallel to k. This divergence should produce an additional logarithmic dependence on a upon 

integration over the angle φ2, since a acts as a regulator for the logarithmic integral. Thus we expect that the result Eq. (19) (up to 
non-universal constants) is generically valid for small a and |k| � 1/R .
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3.3. The BE contribution

The remaining contraction over the matrices U in Eq. (12) yields the BE contribution [13]:

μ2(p − q′)μ2(q − p′)tr[
〈
U †(k1 − q′)U (k1 − q)

〉
U

〈
U †(k2 − p′)U (k2 − p)

〉
U
] (23)

+ μ2(−p′ − q′)μ2(q + p)tr[
〈
U †(k1 − q′)U (k1 − q)

〉
U

〈
U †(p − k2)U (p′ − k2)

〉
U
]

= (N2
c − 1)μ2(p − q′)μ2(q − p′)D(−k1 + q′)D(−k2 + p′)δ(q′ − q)δ(p′ − p) .

Again substituting into double inclusive production we find[
d2N

d2k1dy1d2k2dy2

]
BE

= (N2
c − 1)

(
2g2

(2π)3

)2

(24)

×
ˆ

d2q

(2π)2

d2 p

(2π)2
|μ2(p − q)|2�(k1,q,q)�(k2, p, p)D(q − k1)D(p − k2) + [

k2 → −k2

]
.

Note that the leading contribution to 
[

d2 N
d2k1dy1d2k2dy2

]
BE

comes from the IR sector of the integrals with respect to q and p, this is due to 

the presence of the term 1/q2 in

�(k,q,q) = 1

k2
− 2

k · q

k2q2
+ 1

q2
. (25)

This leading contribution however is independent of the angle between k1 and k2.
To analyze the correction to this contribution we will assume that the momenta q and p are limited in the incoming wave function, as 

discussed in the previous section Eq. (6). In the following we will not indicate the factor F explicitly, but instead will limit the integration 
over the relevant momentum variable by �.

Then for large ki we can expand Eq. (24) in p and q. In the following we assume that there is no preferred direction in the target, so 
that D(k) = D(|k|). The first term that does not vanish under the angular averaging is

|μ2(p − q)|2 (k1 · q)2(k2 · p)2

q2 p2

[
16

k2
1k2

2

D ′(k2
1)D ′(k2

2) + 4D ′′(k2
1)D ′′(k2

2) + 8

k2
1

D ′(k2
1)D ′′(k2

2) + 8

k2
2

D ′(k2
2)D ′′(k2

1)

]
. (26)

The factor in the parenthesis does not depend on the angles, and we do not write it out explicitly in the following.
Averaging over the angle we have


i j ≡
ˆ

dφe2iφ kik j

k2
; 
11 = 1/4; 
22 = −1/4; 
12 = i/4 . (27)

Thus we are left with calculating the integral
ˆ

d2 p

(2π)2

d2q

(2π)2
|μ2(p − q)|2[q2

x − q2
y + 2iqxqy][p2

x − p2
y − 2ipx p y] 1

q2 p2
=
ˆ

dφpdφqe2i(φq−φp)|μ2(p − q)|2 . (28)

Since we are assuming a factorizable ansatz Eq. (6), it is convenient to define the sum and the difference of the two momenta via

q = Q + P , p = Q − P . (29)

After some algebra we obtain

[q2
x − q2

y + 2iqxqy][p2
x − p2

y − 2ipx p y] 1

q2 p2
= 1 − 8

Q 2
x P 2

y + Q 2
y P 2

x

(Q 2 + P 2)2 − 4(P · Q )2
. (30)

As per our assumption the integration over Q extends to significantly larger values than P . In both terms in Eq. (30) the integral over Q
is dominated by values much greater than 1/R . This is true for the first term, where the integral is quadratic at large values of Q , but 
also for the second term where it is logarithmic. Thus with the logarithmic accuracy in ln �2 R2 we can neglect the subleading terms in 
the denominator in Eq. (30) and consider the integral

ˆ

Q 2<�2

d2 Q

(2π)2

d2 P

(2π)2
|μ2(P )|2

[
1 − 8

Q 2
x P 2

y + Q 2
y P 2

x

(Q 2)2

]
=

ˆ

Q 2<�2

d2 Q

(2π)2

d2 P

(2π)2
|μ2(P )|2

[
1 − 4

P 2
y + P 2

x

(Q 2)

]
, (31)

where the last equality follows since the integration measure over Q is rotationally invariant. It is now straightforward to extract depen-
dence on the parameter a, since 〈P 2

x 〉 ∝ 1
a2 R2 and 〈P 2

y〉 ∝ a2

R2 . Eq. (31) therefore reduces to

v2
2{2} = A − B

[
1

a2
+ a2

]
(32)

where A and B are positive constants. This is clearly maximal for a2 = 1 and decreases as a function of spatial eccentricity.
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Fig. 2. v2{2} as a function of momentum and the anisotropy of the projectile a. The total area of the projectile is kept independent of a. The left panel: both gluons are 
at the same absolute value of momenta k1 = k2. The right panel: the difference between the momenta of gluons is given by the saturation momentum of the target; this 
excludes HBT contribution. μ = μt/4.

We thus conclude that within our model assumptions both the HBT and BE contributions exhibit anti-correlation between the spatial 
eccentricity of the projectile ε2 and the second flow harmonic in the inclusive gluon production v2

2{2}.
In the next section we perform numerical calculations which are not limited by some of the assumptions we had to make in the 

present section, in order to check these conclusions in a broader setup.

4. Numerical results

For numerical calculations it is easier to work in the following semi-factorizable representation

dN

d2qdy

∣∣∣∣
ρ,U

= 2

(2π)3

1

|q|2
(
δi jδlm + εi jεlm

)
�a

i j(q)
[
�a

lm(q)
]∗

= 2

2(2π)3

1

|q|2
(
�a‖(q)

[
�a‖(q)

]∗ + �a⊥(q)
[
�a⊥(q)

]∗)
(33)

where

�a
i j(x) = g

[
∂i

∂2
ρb(x)

]
∂ j U

ab(x) (34)

with the adjoint Wilson line defined as

U ab(x) = 2tr
[
tb V †(x)ta V (x)

]
(35)

and

�a‖(k) = δlm�a
lm(k) ≡ �a

11(k) + �a
22(k) , (36)

�a⊥(k) = εlm�a
lm(k) ≡ �a

12(k) − �a
21(k) . (37)

Thus to compute 2-particle inclusive production we have to

– Generate an ensemble of configurations of the projectile charge density ρ and analogously of the color charge density in the target ρt

on a two-dimensional lattice. We generate the two ensembles using the MV model with parameters μ2 and μ2
t respectively.

– Compute corresponding fields α = 1
∂2 ρ by using standard Fourier transform method.

– Evaluate the fundamental Wilson line V (x) and the adjoint Wilson line U (x) for the target.
– Using finite (central) difference scheme compute ∂iα and ∂i U (x).
– Combine the results into �a‖(x) and �a⊥ .
– Compute Fourier Transform for �a‖,⊥(x) → �a‖,⊥(k).
– Combine to

dN

d2qdy

∣∣∣∣
ρ,U

= 2

(2π)3

1

|q|2
(
�a‖(q)

[
�a‖(q)

]∗ + �a⊥(q)
[
�a⊥(q)

]∗)
. (38)

– Compute 2-gluon inclusive production.

We have performed the numerical calculation for two values of μ/μt and different values of observed momenta. We fixed the radius of 
the projectile R = μ−1. More details on the numerical implementation can be found in Refs. [17,18].

Fig. 2 displays the results for μ/μt = 1/4. The left panel shows v2 for different values of the eccentricity parameter a as a function of 
momentum. On the left panel the magnitude of the momenta of the two gluons are the same. In this regime we expect the correlation 
to be dominated by the HBT effect. On the right panel the difference of the magnitudes is the saturation momentum of the target Q s . 
We expect this regime to be outside the narrow HBT peak, and the correlation to be dominated by the Bose enhancement. In all cases 
we observe consistent anti-correlation between v2{2} and the spatial eccentricity. Fig. 3 displays the same for μ/μt = 1/2. The results 
qualitatively are very similar.
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Fig. 3. The same as in Fig. 2, but for μ = μt/2.

5. Discussion

In this paper we have studied the dependence of the second flow harmonic v2{2} in inclusive gluon production on the spatial ec-
centricity of the projectile within the CGC approach. We have performed analytic estimates and numerical calculations. Our analytic 
considerations assume parton model like distribution of valence charges in the projectile, and explicitly concentrate on the HBT and Bose 
enhancement contributions to correlated gluon production. Numerical calculations use the original MV model, which contains a perturba-
tive hard tail of valence gluons, and treat all contributions to correlated production on an equal basis.

In all the analytic and numerical calculations we find consistently that the magnitude of the second flow harmonic is anti-correlated
with the spatial eccentricity of the projectile.

We note that dependence of the second flow harmonic on geometry of a collision in the CGC approach was studied in Ref. [19] in a 
different physical situation. The authors of Ref. [19] analyzed the dependence of v2{2} on relative spatial orientation of two ellipsoidal 
colliding objects (“uranium nuclei”). They concluded that for a symmetric “tip on” collision v2{2} was larger than for an eccentric “side 
on” configuration. This conclusion is qualitatively similar to ours, although the two analyses probe different physics. Changing the relative 
orientation of colliding objects changes the collision area, which in the CGC approach immediately leads to variation in v2{2} in a way 
that does not depend on momentum of observed particles. This is the origin of the effect observed in Ref. [19]. On the other hand 
our analysis is performed varying eccentricity, but keeping the interaction area fixed. To our knowledge such an analysis has not been 
performed before, and in fact it was believed that in such situation there should be no effect of geometry on v2{2}, see e.g. Refs. [14,15]. 
Note, however, that in order to be able to detect the effect of geometry numerically we had to consider rather large eccentricities, a = 2
(|ε2| ≈ 0.88) and 3 (|ε2| ≈ 0.98). Changing a from 1 (zero eccentricity) to 2, leads only to about 10% variation in v2{2}, as the bulk 
contribution to v2{2} is geometry independent.

We also want to comment on the direction of the geometry driven component of the gluon “flow”. In contrast to the hydrodynamic 
picture, where the flow follows the energy gradients and is the strongest in the direction of the smallest axis of the interaction zone 
(in-plane), our analytical calculations, see Secs. 3.2 and 3.3, suggest that the geometry driven “flow” is the strongest in the direction of 
the longest axis (out-of-plane).

It is clear that this effect must have some phenomenological implications. At first sight this trend goes against the observed hierarchy of 
v2 between p–Au and d–Au collisions at RHIC. However, based on the above argument, we believe that it is too early to draw conclusions, 
as one also has to take into account the area dependence and, most importantly the multiplicity dependence when analyzing the RHIC 
data. A detailed analysis of p–Au, d–Au and 3He–Au collisions is reported elsewhere [20]. In particular for d–Au collisions, our previous 
paper [21] suggests that high multiplicity trigger may bias towards the very specific configurations of the d wave function, where nucleons 
overlap on the transverse plane.
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