Sensitivity of prompt searches to long-lived particles

Javier Montejo Berlingen on behalf of the ATLAS collaboration

Introduction

- Increasing interest in searches for long-lived particles, which are incredibly challenging analyses.
- Dealing with non-standard objects, have to provide their own calibration, systematics, data-driven method for instrumental backgrounds…
- All this leads to:

ATLAS SUSY papers : 128, long-lived: 19 ATLAS Exotics papers : 180, long-lived: 15

- Can we make use of the more numerous prompt searches to set limits on scenarios with long-lived particles?
- This is obviously sub-optimal in terms of sensitivity but allows to cover a wider model space without the need for dedicated year-long analyses
- Example RPV SUSY (18 papers), small couplings can easily lead to displaced decays but:

results. In all models, the RPV couplings and the SUSY particle masses are chosen to ensure prompt decays of the SUSY particles. Diagrams of the first three benchmark simplified models, which involve

s section ranges from 175 ± 23 fb for a \tilde{t} mass The generated stops decay promptly through

r. When optimizing the signal event selection,

THIS search targets a moder where the top squark is the lightest supersymmetric particle and decays through baryon-number-violating RPV λ'' couplings, $\tilde{t} \to \bar{q}_i \bar{q}_k$. The couplings are assumed to be sufficiently large for the decays to be prompt, but small enough to neglect the single-top-squark resonant

missing transverse momentum, whose magnitude is referred to as E_T^{miss} . Only prompt decays of SUSY particles are considered. It is an extension of an earlier search performed by the ATLAS experiment [22]

RPC to RPV transition

• RPV SUSY provides a great model to test the sensitivity of prompt searches to longlived decays:

- Is there a gap between RPC and prompt RPV SUSY? Are light gluinos or stops still allowed with small RPV couplings? **[ATLAS-CONF-2018-003](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/)**
- Lifetime distribution is an exponential, everything that decays after the muon spectrometer is MET, looks exactly the same as RPC

Signal models

- RPV SUSY, considering only baryon-number violating coupling UDD
- LSP is bino-like and $m_{N1}=200$ GeV (allow top quark in the decay)
- LSP lifetime depends on λ" and choice of squark masses

Signal models

- Additional R-hadron model inspired by split-SUSY
- In this model the gluino is long-lived and the neutralino stable, in previous slide the neutralino is long-lived

R-hadron model

• RPV SUSY models with small couplings feature both prompt and displaced decay products

Suite of analyses

- All the RPC and prompt models are covered except for prompt Gqq (RPV 0L not ready on time)
- No dedicated analysis for the long-lived intermediate regime

Lifetime comparisons

Systematics on displaced objects

- Displaced jet energy scale
	- Studied jet response in MC as a function of radial decay length
	- Almost no variation in response up to ~1m in radial decay length
	- Response increases linearly up to 30% above the nominal value at 1.6 m
	- Assign deviation as uncertainty, conservative as data might follow the same trend
- Displaced jet b-tagging
	- Run tracking variations on signal MC, assign deviation from nominal as systematic
	- Variation of 20% on SRs with ≥ 4 b-tags, and a signal with 1 ns lifetime
- Displaced lepton systematics
	- No systematic, leptons require impact parameter cuts $(z_0$ and d_0 significance) no acceptance of displaced leptons
- Missing energy uncertainties
	- Hard object systematics are propagated to MET
	- No uncertainty on soft term, tracks required to originate from primary vertex
	- No uncertainty on MET trigger, no variation seen on trigger efficiency turn-on

Results Gqq model

- RPC 0L 2-6 jets provides strong limits until the signal produces no MET
- Gluino mass limits drop 2 TeV \rightarrow 1 TeV with a neutralino lifetime of 1 ns
- Missing RPV 0L to cover the high side of the spectrum

Results Gqq model

- RPC 0L 2-6 jets provides strong limits until the signal produces no MET
- Gluino mass limits drop 2 TeV \rightarrow 1 TeV with a neutralino lifetime of 1 ns
- Missing RPV 0L to cover the high side of the spectrum

- RPC 0L 2-6 jets was the only analysis modified to retain efficiency to long-lived signals
- Forbidden by RGE: Phys. Lett. B 346 (1995) 69 Jet cleaning cut was based on track requirements, switched to energy fractions on calorimeter layers
- With the original cleaning, limit dropped 2 TeV \rightarrow 1 TeV at 10 ns lifetime

Results Gtt model

- RPC multi-b and RPV 1L cover the full spectrum
- No gluino decaying to tops below 1.8 TeV !
- At high coupling values the decay is prompt and transitions from $g \rightarrow t \tau_{\chi_1}(\rightarrow t \text{bs})$ to $g \rightarrow t \text{bs}$

Results stop model

- Neutralino lifetime and stop branching ratio depends on the stop mass, no second x-axis but contours
- Gap in sensitivity between RPC and prompt RPV regimes, no exclusion for neutralino lifetime of 1 ns. Equivalent to λ " ~10⁻⁴ which is actually the prediction of [MFV SUSY,](https://arxiv.org/abs/1111.1239) very good motivation for new analyses
- At very high coupling, dijet sets very stringent limit on resonant stop production

Results R-hadron model

- RPC 0L 2-6 jets closes the gap at low gluino masses (red line)
- R-hadrons from gluinos below 1.5 TeV (and as high as 2.5 TeV) are excluded

Reinterpretation

- Could we have done this with public data and without running the ATLAS simulation?
	- No, two main ingredients missing, efficiencies and systematics for displaced objects and b-tagging
- Could we provide enough information after this result for others to run such a reinterpretation?
	- Jet response and jet reconstruction efficiency as a function of radial decay length, including impact from JVT
	- B-tagging efficiency as a function of p_T and decay length
	- Jet energy scale and b-tagging uncertainties
- Which of the previous ingredients are model-dependent? E.g. 2-prong vs 3-prong decays in R-hadron vs RPV signals.
- Up to here it seems feasible, but there are caveats (next slide)

Reinterpretation

- Several cuts that are usually ~100% efficient have to be taken seriously when working with displaced signals, not easy to provide efficiencies for these
	- Analyses requiring/vetoing leptons, how to cut on displaced lepton d_0 significance?
	- Angle between MET and track-MET?
	- Cosmic muon veto?
	- Jet/MET cleaning? Original cleaning was ~0% efficient for RPC 0L 2-6 jets analysis
- Very easy to accumulate two or three 25-30% inefficiencies, overestimate of the signal by a factor two if not accounted properly

Cutflow for the stop 0L analysis. The numbers given are the relative efficiency of each cut in per-cent.

Conclusions

- Presented a reinterpretation of prompt searches to long-lived SUSY signals.
- Prompt searches have some sensitivity to displaced signals. Clearly suboptimal but allows to set limits on uncovered models or parameter-space.
- Difficult to provide material for externals to perform such reinterpretations, specially for cuts designed to remove noise, cosmics or instrumental background
- Should keep in mind all these caveats when designing an analysis, can very easily lose acceptance to long-lived signals

Backup

Javier Montejo Berlingen

RPC 0L 2-6 jets jet cleaning

- Modified cleaning criteria led to much better sensitivity at moderate lifetimes
- R-hadron mass limit with 10 ns lifetime: $1 \text{ TeV} \rightarrow 2 \text{ TeV}$!

analysis rejects events from detector noise and non-collision background, if at least one of the two leading jets with $p_T > 100$ GeV fails to satisfy the 'Tight' quality criteria, as described in Ref. [54]. This requirement places a cut on the jet charged particle fraction, defined as the ratio of the scalar sum of the p_T of the tracks associated with the jet to the jet p_T . This requirement introduces a high inefficiency for long-lived signals where displaced jets have no associated tracks, and is modified with respect to the original result. The modified requirement is based on the longitudinal calorimeter-sampling profile of these jets, and has been used in ATLAS searches for long-lived particles [15]. The two leading jets are required to have less than 96% of their energy in the electromagnetic calorimeter and less than 80% of their energy in a single calorimeter layer.

Signal models

• Signals simulated with aMC@NLO_MG5+Pythia8 and run through full ATLAS simulation

Summary of signal models. First and second generation squark masses are assumed to be degenerate ($\tilde{q} = \tilde{u}$, \tilde{d} , \tilde{s} , \tilde{c}). Left- and right-handed superpartner masses are also assumed to be degenerate (\tilde{q} = \tilde{q} 1, \tilde{q} 2), except for the stop model where the righthanded top quark partner is assumed to be lighter.

Suite of analyses

Main characteristics of the most sensitive signal region per analysis. Only an illustrative subset of the cuts that define each signal region are included here. A dash (–) is used to indicate that the variable is not used in the analysis selection. The requirement of two same-sign leptons is denoted as SS. The variables used to illustrate the signal region selections are defined in the text.

Cutflow RPC 0L 2-6 jets

Cutflow for the 0-lepton Meff4j-3000 signal region, considering a signal in the Gqq model with m(\tilde{g} , $\tilde{\chi}$ 10) = (1800,200) GeV, and different neutralino lifetimes. The numbers given are the relative efficiency of each cut in per-cent.

• Updated cleaning cut has ~70% efficiency for 1 ns lifetime, original cleaning cut had ~0% efficiency

Cutflow RPV 1L

Cutflow for the RPV 1L analysis, considering a signal in the Gtt model with m(\tilde{g} , $\tilde{\chi}$ 10) = (1800, 200) GeV, and different lifetimes and branching fractions. The BR in the column headers refer to BR($\tilde{g} \rightarrow$ tbs). The numbers given are the relative efficiency of each cut in per-cent.

Cutflow for the RPV 1L analysis, considering a signal in the stop model with m(\tilde{t} 1, $\tilde{\chi}$ 10) = (800, 200) GeV, and different lifetimes and branching fractions. The BR in the column headers refer to BR($t_1 \rightarrow b$ s). The numbers given are the relative efficiency of each cut in per-cent.

Cutflow RPC stop 0L

Cutflow for the stop 0L analysis, considering a signal in the stop model with $m(I_1,\tilde{\chi}10) = (600, 200)$ GeV, and different lifetimes. The numbers given are the relative efficiency of each cut in per-cent. The DxAOD skimming step requires at least one of the following four criteria to be fullfilled: HT > 150 GeV; at least one loose electron with pT > 100 GeV or at least two loose electrons with pT > 20 GeV; at least one muon with pT > 100 GeV or at least two muons with pT > 20 GeV; or at least one photon with pT > 100 GeV or at least two photons with pT > 50 GeV.

Cutflow RPC stop 1L

Cutflow for the stop 1L analysis, considering a signal in the stop model with $m(I_1,\tilde{\chi}10) = (700, 200)$ GeV, and different lifetimes. The numbers given are the relative efficiency of each cut in per-cent. The DxAOD skimming step requires at least one of the following criteria to be fullfilled: one of the ETmiss triggers has fired and there is at least one loose muon (electron) with pT > 3.5 (4.5) GeV; or one of the ETmiss or lepton triggers has fired and there is at least one loose lepton with pT > 25 GeV.

Cutflow RPC 0L 2-6 jets, R-hadron

Cutflow for the 0-lepton Meff4j-3000 signal region, considering a signal in the R-hadron model with m(\tilde{g} , $\tilde{\chi}$ 10) = (1800,100) GeV, and different R-hadron lifetimes. The numbers given are the relative efficiency of each cut in per-cent.

