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We further develop a simple and compact technique for calculating the three flavor neutrino
oscillation probabilities in uniform matter density. By performing additional rotations instead of
implementing a perturbative expansion we significantly decrease the scale of the perturbing Hamil-
tonian and therefore improve the accuracy of zeroth order. We explore the relationship between
implementing additional rotations and that of performing a perturbative expansion. Based on our
analysis, independent of the size of the matter potential, we find that the first order perturbation
expansion can be replaced by two additional rotations and a second order perturbative expansion
can be replaced by one more rotation. Numerical tests have been applied and all the exceptional
features of our analysis have been verified.

I. INTRODUCTION

After Wolfenstein showed that neutrino oscillations are
altered in matter, [1] exact analytic solutions for three
flavors were calculated under the assumption of uniform
matter density [2, 3]. However, the exact solutions are
too complex to understand in practice leading to an in-
terest in alternative approaches including perturbative
expansions. One possible expansion parameter is sin θ13

[4–6], but we now know that sin θ13 = 0.13 [7, 8] is
not as small as was anticipated making these expansions
very lengthy in order to reach acceptable levels of pre-
cision. Moreover, when expanding around sin θ13 = 0,
two of the eigenvalues cross at an energy around E ∼ 10
GeV for Earth density, thus a perturbative expansion
will not converge near the atmospheric resonance. The
only other available choice of an expansion parameter is
∆m2

�/∆m
2
⊕ ' 0.03, for arbitrary size of the matter po-

tential, but this choice also has a similar issue of crossing
eigenvalues at the solar resonance, near E ∼ 140 MeV
for Earth density, and thus such a perturbative expan-
sion will not converge near the solar resonance [4, 9–12].
For a perturbative expansion to be effective for all values
of the matter potential, one has to deal with these two
level crossings in a non-perturbative manner first. This
is achieved by performing rotations in the (1-3) and (1-2)
sectors so that diagonal values of the Hamiltonian do not
cross for any value of the matter potential. This was first
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performed in [13, 14]. When performing the (1-3) rota-
tion, it is very natural to absorb part of the sub-leading
terms into the zeroth order by using

∆m2
ee ≡ cos2 θ12∆m2

31 + sin2 θ12∆m2
32

= ∆m2
31 − sin2 θ12∆m2

21, (1)

instead of ∆m2
31, see [12]. This is the atmospheric ∆m2

measured in a νe disappearance experiment [15, 16].
After both the (1-3) and (1-2) rotations, given in [14],

the expansion parameter for the perturbing Hamiltonian
is

ε′ ≡ ε sin(θ̃13 − θ13) sin θ12 cos θ12,

where

ε ≡ ∆m2
21/∆m

2
ee ' 0.03, (2)

and θ̃13 is the value of the mixing angle, θ13, in matter.
Thus the magnitude of the expansion parameter is never
larger than 0.015 and vanishes in vacuum. After these
two two-flavor rotations, the perturbative expansion is
well behaved for all values of the matter potential and
zeroth, first and second order perturbative results are all
given in [14].

In this paper, we further develop the method in [14].
We will perform additional rotations such that the scale
of the perturbing Hamiltonian will be significantly de-
creased. Accordingly, the accuracy of the zeroth order
Hamiltonian will be improved. The advantages of the
former works are inherited, i.e. the additional rotations
defined here continue to be valid for all channels, any
matter potential, and the new rotation matrices return
to the identity in vacuum. It is reasonable that if the
perturbing Hamiltonian is small enough, in another word
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the zeroth order Hamiltonian is sufficiently accurate, the
zeroth order expressions are already a good enough ap-
proximation such that perturbation theory is no longer
required. We prove that two additional rotations can
take the place of a first order perturbation theory and
a second order perturbation theory can be replaced by
three additional rotations. In principle, performing ad-
ditional rotations can be chosen to be equivalent to any
order of the perturbation expansion, although unneces-
sary for the expected precision of any future oscillation
experiment.

The structure of this paper is listed following. In sec-
tion II, we briefly review the method developed in [14].
The general principles to perform additional rotations
are enumerated. Section III includes the main results of
this paper. We provide details to determine sequence of
the addition rotations and values of the rotation angles;
the zeroth order eigenvalues and eigenstates after the ro-
tations. We also compare the additional rotations with
the perturbation theories and prove the equivalence order
by order in this section. In section IV we calculate the
corrected mixing angles and CP phase in matter. Finally
the conclusion is in section V. All other remarks and sup-
plementary materials we believe necessary can be found
in Appendices.

II. ZEROTH ORDER APPROXIMATION OF
NEUTRINO PROPAGATION IN MATTER

This section reviews [14] through zeroth order. The
Schrödinger equation governing neutrino evolution in
matter is

i
∂

∂x
|ν〉 = H|ν〉. (3)

In the flavor basis |ν〉 = (νe, νµ, ντ )T , the Hamiltonian is

H =
1

2E

[
UPMNSdiag(0,∆m2

21,∆m
2
31)U †PMNS

+diag(a(x), 0, 0)] . (4)

The lepton mixing matrix in vacuum UPMNS [17, 18]
is defined by the product of a sequence of rotation
matrices in 23, 13, and 12 plane, i.e. UPMNS ≡
U23(θ23, δ)U13(θ13)U12(θ12), in which the U23 rotation is
a complex rotation with a complex phase δ, the PDG
form of UPMNS can be obtained from our UPMNS by
multiplying the 3rd row by eiδ and the 3rd column by
e−iδ. The matter potential is assumed to be a constant
a(x) = a ≡ 2

√
2GFNeE.

Eq. 3 still holds if both sides are multiplied by some
constant unitary matrix U † simultaneously, and since
UU † is the identity matrix we are free to insert it be-
tween H and |ν〉 on the right hand side. The transformed
neutrino basis is

|ν̌〉 = U†|ν〉, (5)

and in this basis the Hamiltonian is

Ȟ = U†HU, (6)

where some appropriate unitary matrix U such that the
transformed Hamiltonian Ȟ satisfies the following three
properties:

• The diagonal elements are good approximations to
the exact eigenvalues.

• The off-diagonal elements are small.

• Ȟ is identical to diag(0,∆m2
21,∆m

2
31) in vacuum.

Thus the diagonal elements of Ȟ are zeroth order approx-
imations to the eigenvalues. If the unitary matrix U can
also be written as the product of a sequence of rotations
matrices as UPMNS, i.e. U = U23(θ̃23, δ̃)U13(θ̃13)U12(θ̃12),

the angles {θ̃23, θ̃13, θ̃12} are zeroth order approximations

to the three mixing angles in matter, and δ̃ is the zeroth
order CP phase in matter. The calculation process of
these zeroth order values are summarized in Appendix
A, more details can be found in [14]. Here we just cite
the results.

The zeroth order approximation of the (2-3) mixing
angle and the CP phase in matter are

θ̃23 = θ23, (7)

δ̃ = δ. (8)

The (1-3) mixing angle in matter is determined by

tan 2θ̃13 =
s2θ13∆m2

ee

c2θ13∆m2
ee − a

, θ̃13 ∈ [0, π/2]. (9)

The (1-2) mixing angle in matter is determined by

tan 2θ̃12 =
εc(θ̃13−θ13)s2θ12∆m2

ee

λ0 − λ−
, θ̃12 ∈ [0, π/2], (10)

where

λ0 − λ− = εc2θ12∆m2
ee −

1

2

[
a+ ∆m2

ee

−sign(∆m2
ee)
√

(c2θ13∆m2
ee − a)2 + (s2θ13∆m2

ee)
2
]
.

(11)

Finally Ȟ can be expressed as

Ȟ =
1

2E

 λ1

λ2

λ3


︸ ︷︷ ︸

Ȟ0

+ ε′
∆m2

ee

2E

 −s̃12

c̃12

−s̃12 c̃12


︸ ︷︷ ︸

Ȟ1

,

(12)
where

ε′ ≡ εs(θ̃13−θ13)s12c12, |ε′| < 0.015, (13)
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and s̃ij , c̃ij represent sin θ̃ij , cos θ̃ij , respectively. λi
are the diagonal elements of the Hamiltonian after the
U12(θ̃12) rotation, they are also the zeroth order approx-
imations to the eigenvalues in matter, their values can
be found in Eq. A8, Appendix A. Ȟ0 is the zeroth order
Hamiltonian and Ȟ1 is the perturbing term and ε′ = 0
in vacuum. The numerical values of the zeroth order
eigenvalues and mixing angles are plotted in Fig. 1.

III. ADDITIONAL ROTATIONS

Ref. [14] presented a general principle to enhance ze-
roth order accuracy by performing a rotation diagonal-
izing the sector with leading order off-diagonal entries.
Therefore at the point of Eq. 12, we can perform addi-
tional rotations to further improve the zeroth order. This
idea is initialized in [19].

Since Ȟ0 is diagonal, to determine the leading order
off-diagonal entries we just need to study Ȟ1, more specif-
ically, we compare s̃12 and c̃12. The red curve in the lower
panel of Fig. 1 shows how s̃12 depends on the matter po-
tential. For large matter effect we have that |s̃12| � |c̃12|
when YeρE � 0 and |s̃12| � |c̃12| when YeρE � 0.
However, when the matter potential is weak we must be
more careful since s̃12 and c̃12 are close in this case. We
find that |s̃12| = |c̃12| = 1/

√
2 when YeρE ' 0.2 g cm−3

GeV where we have taken s2
12 ' 0.3 [20]. This critical

point is applicable to both normal and inverted mass or-
derings. When the matter effect is weak, θ̃13 ' θ13 so
s(θ̃13−θ13) ' 0 so ε′ ' 0. Then Ȟ1 will be a higher order

perturbation which is small. Therefore the convenience
of additional rotations depends only on the sign of YeρE,
i.e. the case of neutrinos or anti-neutrinos.

In general, the diagonalizing angle is given by the sim-
ple expression

tan 2θ =
2λx

λb − λa
, (14)

where λx is the off-diagonal part and λa (λb) is the first
(second) row diagonal element in the 2×2 sub-matrix to
be diagonalized. The two new eigenvalues are

λσ = c2θλa + s2
θλb − 2sθcθλx,

λρ = s2
θλa + c2θλb + 2sθcθλx, (15)

and the third eigenvalue remains the same. For |λx| �
|∆λba|, θ is small, so we can expand this to get

λσ ' λa −
λ2
x

∆λba

{
1 +O

[(
λx

∆λba

)2
]}

,

λρ ' λb +
λ2
x

∆λba

{
1 +O

[(
λx

∆λba

)2
]}

, (16)

where ∆λij = λi − λj . More details can be found in
Appendix A.1 in [14].

It is clear from Eq. 15 that performing a rotation leaves
the trace (sum of eigenvalues) unchanged, and therefore,
the trace remains unchanged through first order in the
smallness parameter as shown in Eq. 16.

A. Neutrino case

In the case of neutrinos, YeρE is positive, which means
|s̃12| & |c̃12|. Thus we will rotate in (1-3) sector first. We
will then show that after the first rotation in (1-3) sector,
the second and third rotations will be in (2-3) and (1-2)
sectors, respectively.

1. U13 rotation

Define α13 to be the next rotation angle. The Hamil-
tonian after the U13(α13) rotation is defined as

Ȟ ′ ≡ U †13(α13)ȞU13(α13). (17)

Detailed formula of Ȟ ′ can be found in Eqs. B1, B2,
Appendix B. The rotation angle diagonalizing the (1-3)
sector is:

α13 = −1

2
arctan

2ε′∆m2
ees̃12

∆λ31
' −ε

′∆m2
ees̃12

∆λ31
+O(ε′ 3).

(18)
Since ∆λ31 & ∆m2

ee, α13 is at least first order in ε′. The
diagonal elements, λ′i, are the new zeroth order eigenval-
ues. They are

λ′1 = c2α13
λ1 + s2

α13
λ3 + 2sα13

cα13
s̃12ε

′∆m2
ee

' λ1 − (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 4),

λ′2 = λ2,

λ′3 = s2
α13
λ1 + c2α13

λ3 − 2sα13cα13 s̃12ε
′∆m2

ee

' λ3 + (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 4). (19)

It is remarkable to notice that the additional rotation
U13(α13) does not make first order (in ε′) corrections to
the eigenvalues. This conclusion agrees with a first order
perturbation theory. It is known that in perturbation
theories first order corrections to eigenvalues are just the
diagonal elements of the perturbing Hamiltonian. Since
all diagonal entries of Ȟ1 vanish, the first order correc-
tions are zero. This equivalence indicates a close relation
between the additional rotations and perturbation theory
discussed in further detail in Sec. III D.

2. U23 rotation

Since α13 is small, the leading order off-diagonal entries
in the Hamiltonian are proportional to c̃12cα13

so the next
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FIG. 1. The upper two figures show the eigenvalues to zeroth order in matter as functions of the matter potential. The
upper-left plot is for normal mass ordering and the upper-right plot is for inverted mass order. The lower plot shows the mixing
angles sin2 θ̃12, sin2 θ̃13 to zeroth order in matter, and the solid (dashed) curves are for normal (inverted) mass ordering. For

sin2 θ̃12, the curves of both mass orders overlap but are not identical.

rotation should diagonalize the (2-3) sector with a new
angle α23. The rotated Hamiltonian is

Ȟ ′′ ≡ U †23(α23)U †13(α13)ȞU13(α13)U23(α23), (20)

detailed formula can be found in Eqs. B4, B5 in Ap-
pendix B. The rotation angle is

α23 =
1

2
arctan

2ε′∆m2
eecα13 c̃12

∆λ′32

' ε′∆m2
eec̃12

∆λ32
+O(ε′ 3).

(21)
As with α31, α32 is also at least first order in ε′ since
∆λ32 & ∆m2

ee. The new eigenvalues are

λ′′1 = λ′1 ' λ1 − (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 4),

λ′′2 = c2α23
λ′2 + s2

α23
λ′3 − 2sα23

cα23
cα13

c̃12ε
′∆m2

ee

' λ2 − (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 4),

λ′′3 = s2
α23
λ′2 + c2α23

λ′3 + 2sα23
cα23

cα13
c̃12ε

′∆m2
ee

' λ3 + (ε′∆m2
ee)

2

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+O(ε′ 4). (22)

3. U12 rotation

Again α23 is small so it is evident that after the
U23(α23) rotation the leading order off-diagonal entries,
which proportional to sα13cα23 c̃12, are in the (1-2) sec-
tor, and an additional rotation U12(α12) can diagonalize
it. The final rotated Hamiltonian is

Ȟ ′′′ ≡ U†12(α12)U †23(α23)U †13(α13)

× ȞU13(α13)U23(α23)U12(α12).

Again details of Ȟ ′′′ can be found in Eqs. B7, B8 in
Appendix B. It can be solved that

α12 = −1

2
arctan

2ε′∆m2
eecα23

sα13
c̃12

∆λ′′21

' (ε′∆m2
ee)

2s̃12c̃12

∆λ21∆λ31
+O(ε′ 4). (23)
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The zeroth order eigenvalues, after the (1-2) rotation are

λ′′′1 = c2α12
λ′′1 + s2

α12
λ′′2 + 2sα12cα12cα23sα13 c̃12ε

′∆m2
ee

' λ1 − (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 4),

λ′′′2 = s2
α12
λ′′1 + c2α12

λ′′2 − 2sα12
cα12

cα23
sα13

c̃12ε
′∆m2

ee

' λ2 − (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 4),

λ′′′3 = λ′′3 ' λ3 + (ε′∆m2
ee)

2

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+O(ε′ 4).

(24)

It is noteworthy that λ′′′i and λ′′i are identical to at least
second order. To understand this observation, we need to
study the perturbative Hamiltonians after each rotation.
It is known that in a perturbative expansion, leading or-
der corrections to the eigenvalues are the diagonal ele-
ments of the perturbative Hamiltonian. In Appendix B,
we shall demonstrate that after the first two additional
rotations, the perturbative Hamiltonian whose diagonal
entries are all zero, is in second order; thus errors of λ′′i
are already controlled to fourth order. After the third ro-
tation U12(α12), the perturbative Hamiltonian (still with
vanishing diagonal entries) is in third order; thus errors
of λ′′′i are further diminished to sixth order. Therefore, it
is not unexpected that λ′′i and λ′′′i are identical to second
order.

Terms of order ε′ 3 are no larger than 3 × 10−6. In
principle, we can continue performing rotations to control
the off-diagonal entries to any precision. Considering the
precision of the experimental uncertainties ∼ 1% [21–25],
stopping at U12(α12) is more than enough. Later we will
show that it is equal to second order (in ε′) perturbation
theory when considering eigenstates.

B. Anti-neutrino case

In the case where YeρE . 0, |s̃12| . |c̃12| in Ȟ1 of
Eq. 12, so we will rotate (2-3) sector before (1-3), and
the third additional rotation will still be in (1-2) sector
as for neutrinos. The calculation process will be quite
similar to the first case. The results for this case are
listed below. The (2-3) rotation angle is

ᾱ23 =
1

2
arctan

2ε′∆m2
eec̃12

∆λ32
' ε′∆m2

eec̃12

∆λ32
+O(ε′ 3).

(25)
Compared with Eq. 21, it is evident that α23 ' ᾱ23 to
first order. After the (2-3) rotation, the zeroth order

eigenvalues are

λ̄′1 = λ1,

λ̄′2 = c2ᾱ23
λ2 + s2

ᾱ23
λ3 − 2sᾱ23

cᾱ23
c̃12ε

′∆m2
ee

' λ2 − (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 4),

λ̄′3 = s2
ᾱ23
λ2 + c2ᾱ23

λ3 + 2sᾱ23
cᾱ23

c̃12ε
′∆m2

ee

' λ3 + (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 4). (26)

Before performing the next additional rotation in (1-3)
sector, there are some comments on the above U23 ro-
tation. In some former works, e.g. [13], a similar ap-
proach was followed with a rotation in the (2-3) sector
as above, although there the rotation was used for both
neutrinos and anti-neutrinos. In additional, later in this
paper (section III D and Fig. 2), we shall demonstrate
that one additional rotation does not improve the ac-
curacy of the approximated eigenstates. More specifi-
cally, if |ν̌〉m is the exact eigenstates in matter, errors
of the initial zeroth order eigenstates are estimated as
|ν̌〉m − |ν̌〉 ' O(ε′). After the U23 rotation, the eigen-

states are corrected to be U †23|ν̌〉, which still have first

order errors, i.e. |ν̌〉m − U†23|ν̌〉 ' O(ε′) still holds. This
indicates that to achieve better accuracy, we must per-
form an additional rotation.

The following (1-3) rotation angle is

ᾱ13 = −1

2
arctan

2ε′∆m2
eecᾱ23

s̃12

∆λ̄′31

' −ε
′∆m2

ees̃12

∆λ31
+O(ε′ 3). (27)

Again, compared with Eq. 18, α13 ' ᾱ13 to first order.
After the (1-3) rotation, the zeroth order eigenvalues are

λ̄′′1 = c2ᾱ13
λ̄′1 + s2

ᾱ13
λ̄′3 + 2sᾱ13

cᾱ13
cᾱ23

s̃12ε
′∆m2

ee

' λ1 − (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 3),

λ̄′′2 = λ̄′2 ' λ2 − (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 3),

λ̄′′3 = s2
ᾱ13
λ̄′1 + c2ᾱ13

λ̄′3 − 2sᾱ13cᾱ13cᾱ23 s̃12ε
′∆m2

ee

' λ3 + (ε′∆m2
ee)

2

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+O(ε′ 3). (28)

It is easy to see that compared with Eq. 22, λ′′i ' λ̄′′i to
second order. Finally the (1-2) rotation angle is

ᾱ12 =
1

2
arctan

2ε′∆m2
eesᾱ23

cᾱ13
s̃12

∆λ̄′′21

' (ε′∆m2
ee)

2s̃12c̃12

∆λ21∆λ32
+O(ε′ 4). (29)

Compared with Eq. 23, now even to the leading order
α12 6= ᾱ12. Later we will see that this inequality is nec-
essary for the equivalence of the eigenstates for neutrino
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and anti-neutrino cases. After the U12 rotation, the cor-
rected eigenvalues are

λ̄′′′1 = c2ᾱ12
λ̄′′1 + s2

ᾱ12
λ̄′′2 − 2sᾱ12

cᾱ12
cᾱ13

sᾱ23
s̃12ε

′∆m2
ee

' λ1 − (ε′∆m2
ee)

2 s̃2
12

∆λ31
+O(ε′ 3),

λ̄′′′2 = s2
ᾱ12
λ̄′′1 + c2α̌12

λ̄′′2 + 2sᾱ12
cᾱ12

cᾱ13
sᾱ23

s̃12ε
′∆m2

ee

' λ2 − (ε′∆m2
ee)

2 c̃212

∆λ32
+O(ε′ 3),

λ̄′′′3 = λ̄′′3 ' λ3 + (ε′∆m2
ee)

2

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+O(ε′ 3).

(30)

By comparing the above eigenvalues after three addi-
tional rotations with the ones in the case of neutrinos,
we find that λ′′′i and λ̄′′′i are identical to second order in
ε′.

C. Rotated eigenstates

The zeroth order energy eigenstates |ν̌〉 before the ad-
ditional rotations are defined in Eq. 5. If

W =

{
U13(α13)U23(α23)U12(α12) for neutrinos

U23(ᾱ23)U13(ᾱ13)U12(ᾱ12) for anti-neutrinos
,

(31)

then the eigenstates after the rotations are

|ν̌〉W = W †|ν̌〉, (32)

and UmPMNS from Appendix A and Ref. [14] is corrected
to be

V = UmPMNSW. (33)

In the case of neutrinos, with Eqs. 18, 21, and 23 it is easy
to verify that U13(α13)U23(α23)U12(α12) can be expanded
through second order to

U13(α13)U23(α23)U12(α12) ' 1 + ε′∆m2
ee

 − s̃12
∆λ31
c̃12

∆λ32
s̃12

∆λ31
− c̃12

∆λ32


︸ ︷︷ ︸

W1

− (ε′∆m2
ee)

2

2


(

s̃12
∆λ31

)2

− 2s̃12c̃12
∆λ32∆λ21

0

2s̃12c̃12
∆λ31∆λ21

(
c̃12

∆λ32

)2

0

0 0
(

s̃12
∆λ31

)2

+
(

c̃12
∆λ32

)2


︸ ︷︷ ︸

W2

. (34)

This expression still holds if we perform the (2-3) rotation
before the (1-3) since it can be demonstrated that

U13(α13)U23(α23)U12(α12)

= U23(ᾱ23)U13(ᾱ13)U12(ᾱ12) +O(ε′ 3). (35)

Several remarkable observations in Eq. 34 are listed be-
low.

• Both U13(α13) and U23(α23) contribute to the first
order term W1. For example, if α13 = 0, (W1)13

and (W1)31 equal zero; and if α23 = 0, (W1)23 and
(W1)32 vanish.

• Since α12 contributes only at second order, if we
just perform the first two additional rotations,
i.e. α12 = 0 , the first order W1 will not be affected.

• U12(α12) does contribute to the second order term
W2. For example, (W2)21 = 0 if α12 = 0. That
is, although the eigenvalues after two and three ad-
ditional rotations, i.e. λ′′i and λ′′′i are identical to
second order, the eigenstates are not.
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These observations are necessary to the following discus-
sions about the relations between the additional rotations
and perturbation theory.

D. Comparison with perturbation theory

The normal approach to calculate the energy eigen-
values, eigenstates and oscillation probabilities in matter
has been via a series expansion in some small parame-
ter. For example, in [14], a three rotation approach was
adopted, i.e. performing one constant rotation U23(θ23, δ)

followed by two rotations U13(θ̃13) and U12(θ̃12). Then
perturbation theory was applied wherein the eigenvalues
and eigenvectors were perturbatively expanded to succes-
sive orders in ε′.

With the perturbing Hamiltonian Ȟ1, we assume that
by perturbation theory, the eigenstates are corrected to
be

|ν̌〉WP = WP†|ν̌〉. (36)

Since Ȟ1 is order ε′, we can expand WP in a series of ε′,

WP = 1 +WP
1 +WP

2 + . . . , (37)

and the corrected eigenvalues can also be expanded as

λPi = λi + λ
P (1)
i + λ

P (2)
i + . . . , (38)

where WP
n and λ

P (n)
i are proportional to ε′n, their full ex-

pressions can be found in Appendix C 1. Comparing the
results from the perturbation theory and the additional
rotations, we find the following equivalences

W1 = WP
1 , W2 = WP

2 , (39)

and

λ′′i ' λi + λ
P (1)
i +O(ε′2) ' λi + λ

P (1)
i + λ

P (2)
i +O(ε′ 3),

λ′′′i ' λi + λ
P (1)
i + λ

P (2)
i +O(ε′ 3). (40)

From Eq. 39 and the observations at the end of Sec. III C,
we can make the following conclusions of the eigenstates

• After performing one additional rotation (U13(α13)
for neutrinos and U23(ᾱ23) for anti-neutrinos), the
accuracy of the rotated eigenstates is not improved
compared with the initial zeroth order |ν̌〉, i.e. er-
rors of the eigenstates are still in O(ε′).

• For neutrinos (anti-neutrinos), after performing
two additional rotations in (1-3) and then (2-3) sec-
tors ((2-3) and then (1-3) sectors), errors of the ro-
tated eigenstates are diminished to O(ε′ 2). Thus
the eigenstates are equivalent to the ones of a first
order perturbation theory through O(ε′) terms.

• Errors of the eigenstates will be further diminished
to O(ε′ 3) by performing just one more rotation in
(1-2) sector. Now the eigenstates have the same
accuracy as the ones from a second order perturba-
tion theory.

From Eq. 40, we can make the following conclusions of
the eigenvalues

• Errors of the eigenvalues after the first two addi-
tional rotations are already lower than O(ε′ 3) (that
is, the eigenvalues are correct through O(ε′ 2)). To
reconcile with the conclusions of the eigenstates,
we say that the eigenvalues after the first two ad-
ditional rotations have at least the accuracy of the
first order perturbation theory.

• Errors of the eigenvalues after the three additional
rotations are even smaller, so of course lower than
O(ε′ 3). Again to reconcile with the the conclusions
of the eigenstates, we say that their accuracy is at
least equivalent to the ones corrected by a second
order perturbation theory.

Now we combine the conclusions of the eigenvalues and
the eigenstates. We find two equivalences between the
additional rotations and the perturbation theory.

• By performing two additional rotations in (1-3)
and (2-3) sector (the order is exchanged for anti-
neutrinos), we can improve the eigenstates and
eigenvalues to be as precise as the ones from first
order perturbation theory.

• By performing three additional rotations, we can
improve the eigenstates and eigenvalues to be as
precise as the ones from a second order perturba-
tion theory.

All the conclusions are also summarized in Fig. 2.

IV. CORRECTIONS TO THE MIXING ANGLES
AND THE CP PHASE

After the three additional rotations, the corrected
PMNS matrix in matter is V = UmPMNSW . Since W is a
real special orthogonal matrix, V can be written as

V = eiAU23(θ̃′23, δ̃
′)U13(θ̃′13)U12(θ̃′12)eiB

= U23(θ̃23, δ̃)U13(θ̃13)U12(θ̃12)W, (41)

Here A and B are some real diagonal matrices. In gen-
eral, A and B are necessary to get real solutions of θ̃′ij and

δ̃′. Since both A and B are real and diagonal, they only
add some additional complex phases to the eigenstates,
which will not change any physics.

We can expand θ̃′ij as

θ̃′ij ' θ̃ij + θ̃
(1)
ij + θ̃

(2)
ij + ..., (42)

where θ̃
(n)
ij is proportional to ε′n.

To first order, W = U13(α13)U23(α23) = 1 + W1 +
O(ε′ 2). Details of W1 can be found in Eq. 34. We give
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θ23, δ

θ̃13

θ̃12

α13|ᾱ23

α23|ᾱ13

α12|ᾱ12

...

1st

order

2nd

order

...

1st

order

...

Matter
Rot.

Vacuum
Rot.

ν|ν̄

Pert.

MP15
DMP16
DPZ18

Required to
remove
level crossings

Corrections
are O(ε′)

Corrections
are O(ε′2)

Corrections
are O(ε′3)

|ε′| < 0.015
and

ε′ = 0 in
vacuum

FIG. 2. The equivalences between the additional rotations (circles) and the perturbative expansions of the eigenvalues and
eigenvectors (triangles). Performing one additional rotation is not equal to any perturbation expansion; performing two
additional rotations in (1-3) and (2-3) (exchange the two for anti-neutrinos) sectors is equal to a first order perturbation
expansion; performing one more additional rotation in (1-2) sector is equal to a second order perturbation expansion. The
steps shown in green, red, and blue refer to Ref. [12], Ref. [14], and this work respectively. Another possible perturbative branch
(in blue) is that if we implement a first order perturbative expansion after the U13(α13) and U23(α23) (or U23(ᾱ23) and U13(ᾱ13)
for anti-neutrinos) rotations, the eigenvalues and eigenstates also will be corrected to O(ε′ 2) accuracy, see Appendix C 2.

the final results here. The first order corrections to the
mixing angles and CP phase are

θ̃
(1)
13 = ε′∆m2

ees̃12c̃12

(
1

∆λ32
− 1

∆λ31

)
,

θ̃
(1)
12 = − ε′∆m2

ee

s̃13

c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
,

θ̃
(1)
23 = ε′∆m2

ee

c̃δ
c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
,

δ̃ (1) = − ε′∆m2
ee

2c2θ̃23 s̃δ

s2θ̃23
c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
. (43)

Please note that since eipW1e
−ip = W1 for any real

number p, it’s free to set one of the diagonal elements of A
or B to be zero. All the corrections to the mixing angles
and the CP phase are invariants under a transformation
of exchanging λ1, λ2 and θ̃12 ⇒ θ̃12 ± π

2 . This is easy to
verify in the above equations. More details can be found
in Appendix E.

To second order, W = U13(α13)U23(α23)U12(α12) =
1 +W1 +W2 +O(ε′ 3), combining with the first order re-
sults the second order perturbations can be solved. De-

tails of the second order results are listed in Appendix
D. The corrected mixing angles and CP phase through
second order are

s̃ ′13 ' s̃13 + ε′∆m2
ees̃12c̃12c̃13

(
1

∆λ32
− 1

∆λ31

)
+ f

(2)
13 ,

s̃ ′12 ' s̃12 − ε′∆m2
ee

s̃13c̃12

c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+ f

(2)
12 ,

s̃ ′23 ' s̃23 + ε′∆m2
ee

c̃δ c̃23

c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+ f

(2)
23 ,

s̃ ′δ ' s̃δ − ε′∆m2
ee

c2θ̃23s2δ̃

s2θ̃23
c̃13

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
+ f

(2)
δ .

(44)

Functions of the second order terms f (2), which are pro-
portional to ε′ 2, can be found in the Appendix D.

A. Numerical tests

Neutrino propagation in constant density matter has
been analytically studied, the accurate mixing angles and
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|ϵ′2|
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100
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Ye ρE (g cm-3 GeV)

First Order (NO)

|ϵ′3|

-40 -30 -20 -10 0 10 20 30 40
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10-10

Ye ρE (g cm-3 GeV)

Second Order (NO)

|Δsin2θ13| |Δsin2θ12| |Δsin2θ23| |Δsin2δ|

FIG. 3. The absolute accuracy of the approximations of the mixing angles and CP phase in matter in this paper to first order
(left) and second order (right) for the normal mass ordering. The black dashed curves in the left and right plots are |ε′2| and
|ε′3|, respectively. It is evident that the error of sin2 of each mixing angle and phase at first (second) order is about ε′2 (ε′3).

CP phase can be found in [2, 3]. Our formulas have sec-
ond order accuracy so it is expected that the differences
between the analytical solutions and our approximations
are significantly below ε′2 and even to first order there are
precise to > 10−3. We show the precision of the angles to
first and second order in Fig. 3 for the normal mass order-
ing. It is evident that the approximated values achieve
the expected accuracy.

V. CONCLUSIONS

We have significantly improved the accuracy and un-
derstanding of the recent perturbative framework for
neutrino propagations in uniform matter in [14]. This has
been achieved by performing additional rotations which
diagonalize the sectors with leading order off-diagonal
elements of the Hamiltonian. The primary advantage of
this approach is that the zeroth order Hamiltonian is ap-
plicable to the whole range of matter potential a, whereas
perturbation expansions are most reliable for weak mat-
ter effect. By studying orders of the off-diagonal ele-
ments of the perturbing Hamiltonian, we determine the
sequence of the additional rotations. For neutrinos the
sequence is U13 ⇒ U23 ⇒ U12, and for anti-neutrinos
U13, U23 are exchanged. The additional rotation angles
are solved to diagonalize the corresponding sectors. The
first two rotation angles in (1-3) and (2-3) sectors have
first order (in ε′) whereas the third angle in (1-2) sector
is second order. The diagonal elements of the rotated
Hamiltonian, which are the approximations to the eigen-
values, are calculated to second order.

We compare the eigenvalues and eigenstates derived by
the additional rotations and perturbation theories and

reveal the equivalences. Performing two successive addi-
tional rotations in (1-3) and (2-3) sectors is equal to a
first order perturbation theory. Performing three succes-
sive additional rotations in (1-3), (2-3) and (1-2) sectors
is equal to a second order perturbative expansion.

Finally, we derive first order approximation formulas
of the mixing angles and CP phase in matter and com-
pare them with the exact solutions. Numerical tests show
that regardless the scale of matter potential, errors of the
first order approximation formulas are controlled to be no
more than 10−5, achieving the expected accuracy. More
precise approximations to second order are given in Ap-
pendix D.
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Appendix A: Zeroth order eigenvalues and mixing
angles

The derivation process of the mixing angles and Eq. 12
is presented in this Appendix.

1. U23(θ̃23, δ̃) rotation

Define

H̃ ≡ U†23(θ̃23, δ̃)HU23(θ̃23, δ̃). (A1)

Now H̃ is real and does not depend on θ23 and δ.

H̃ =
1

2E

 λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc


+ εs12c12

∆m2
ee

2E

 c13

c13 −s13

−s13

 , (A2)

where

λa = a+ (s2
13 + εs2

12)∆m2
ee,

λb = εc212∆m2
ee,

λc = (c213 + εs2
12)∆m2

ee. (A3)

2. U13(θ̃13) rotation

Observe the entries of H̃, it’s easy to see that the (1-3)
sector contributes the leading order off-diagonal entries.
Therefore it’s reasonable to make U13(θ̃13) diagonalize
this sector. After this rotation

Ĥ ≡ U †13(θ̃13)H̃U13(θ̃13)

=
1

2E

 λ−
λ0

λ+

+ εc12s12
∆m2

ee

2E

×

 c(θ̃13−θ13)

c(θ̃13−θ13) s(θ̃13−θ13)

s(θ̃13−θ13)

 , (A4)

where

λ± =
1

2
[(λa + λc)

±sign(∆m2
ee)
√

(λa − λc)2 + 4(s13c13∆m2
ee)

2
]
,

λ0 = εc212∆m2
ee. (A5)

With the diagonal elements above, θ̃13 can be determined
by

sin2 θ̃13 =
λ+ − λc
λ+ − λ−

, θ̃13 ∈ [0, π/2]. (A6)

3. U12(θ̃12) rotation

Now U12(θ̃12) is required to diagonalize the (1-2) sector

of Ĥ, and Ȟ is obtained after is rotation.

Ȟ = U†12(θ̃12)ĤU12(θ̃12)

=
1

2E

 λ1

λ2

λ3


+ εs(θ̃13−θ13)s12c12

∆m2
ee

2E

 −s̃12

c̃12

−s̃12 c̃12

 ,

(A7)

where

λ1,2 =
1

2
[(λ0 + λ−)

∓
√

(λ0 − λ−)2 + 4(εc(θ̃13−θ13)s12c12∆m2
ee)

2
]
,

λ3 = λ+, (A8)

and

sin2 θ̃12 =
λ2 − λ0

λ2 − λ1
, θ̃12 ∈ [0, π/2]. (A9)

Alternative ways to write these expressions can be
found in [26].

Appendix B: Hamiltonians after the additional
rotations

In the case of neutrinos, after the U13(α13) rotation,
the Hamiltonian becomes Ȟ ′ = Ȟ ′0 + Ȟ ′1 where

2E(Ȟ ′0)11 = c2α13
λ1 + s2

α13
λ3 + 2sα13cα13 s̃12ε

′∆m2
ee,

2E(Ȟ ′0)12 = 0,

2E(Ȟ ′0)13 = − sα13
cα13

∆λ31 + (s2
α13
− c2α13

) s̃12ε
′∆m2

ee,

2E(Ȟ ′0)22 = λ2,

2E(Ȟ ′0)23 = 0,

2E(Ȟ ′0)33 = s2
α13
λ1 + c2α13

λ3 − 2sα13cα13 s̃12ε
′∆m2

ee,

(B1)

and (Ȟ ′0)ij = (Ȟ ′0)ji, and

Ȟ ′1 =
ε′∆m2

eec̃12

2E

 −sα13

−sα13
cα13

cα13

 (B2)

We require the (1-3) sector to be diagonalized, i.e α13

must satisfy an equation:

− sα13
cα13

∆λ31 + (s2
α13
− c2α13

) s̃12ε
′∆m2

ee = 0. (B3)

The solution is Eq. 18.
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Neutrinos

Rotation angles 2EH0 2E (H1)12/N 2E (H1)13/N 2E (H1)23/N N
(λa, λb, λc) c13 s12c12ε s13c13 s13 s12c12ε ∆m2

ee

θ̃13 (λ−, λ0, λ+) c(θ̃13−θ13) 0 s(θ̃13−θ13) × s12c12 ε

θ̃12 (λ1, λ2, λ3) 0 −s̃12 c̃12 × s(θ̃13−θ13)

α13 (λ′1, λ
′
2, λ

′
3) −sα13 0 cα13 × c̃12

α23 (λ′′1 , λ
′′
2 , λ

′′
3 ) cα23 sα23 0 × (−sα13)

α12 (λ′′′1 , λ
′′′
2 , λ

′′′
3 ) 0 cα12 sα12 × sα23

Anti-Neutrinos

Rotation angles 2EH0 2E (H1)12/N 2E (H1)13/N 2E (H1)23/N N
(λa, λb, λc) c13 s12c12ε s13c13 s13 s12c12ε ∆m2

ee

θ̃13 (λ−, λ0, λ+) c(θ̃13−θ13) 0 s(θ̃13−θ13) × s12c12 ε

θ̃12 (λ1, λ2, λ3) 0 −s̃12 c̃12 × s(θ̃13−θ13)

ᾱ23 (λ̄′1, λ̄
′
2, λ̄

′
3) −sᾱ23 cᾱ23 0 × (−s̃12)

ᾱ13 (λ̄′′1 , λ̄
′′
2 , λ̄

′′
3 ) cᾱ13 0 sᾱ13 × (−sᾱ23)

ᾱ12 (λ̄′′′1 , λ̄
′′′
2 , λ̄

′′′
3 ) 0 −sᾱ12 cᾱ12 × sᾱ13

TABLE I. Entries of the Hamiltonian after each rotation for neutrinos and anti-neutrinos are presented. N in the last column
is a normalization factor. For each row, N is equal to the product of all elements on and above this line. The first three rows
are identical for neutrinos and anti-neutrinos.

After the U23(α23) rotation, the Hamiltonian is Ȟ ′′ =
Ȟ ′′0 + Ȟ ′′1 , where

2E(Ȟ ′′0 )11 = λ′1,

2E(Ȟ ′′0 )12 = 0,

2E(Ȟ ′′0 )13 = 0,

2E(Ȟ ′′0 )22 = c2α23
λ′2 + s2

α23
λ′3

− 2sα23cα23 cα13 c̃12ε
′∆m2

ee,

2E(Ȟ ′′0 )23 = − sα23cα23∆λ′32

− (s2
α23
− c2α23

) cα13 c̃12ε
′∆m2

ee,

2E(Ȟ ′′0 )33 = s2
α23
λ′2 + c2α23

λ′3

+ 2sα23
cα23

cα13
c̃12ε

′∆m2
ee

(B4)

and (Ȟ ′′0 )ij = (Ȟ ′′0 )ji, and

Ȟ ′′1 = −ε
′∆m2

eec̃12sα13

2E

 cα23 sα23

cα23

sα23

 . (B5)

Now the (2-3) sector must be diagonalized, i.e. α23 must
satisfy

− sα23
cα23

∆λ′32− (s2
α23
− c2α23

)cα13
c̃12ε

′∆m2
ee = 0. (B6)

The solution is Eq. 21. Since α13 is a first order (in ε′)
term, it is evident that Ȟ ′′1 is in second order.

After the U12(α12) rotation, the Hamiltonian is Ȟ ′′′ =

Ȟ ′′′0 + Ȟ ′′′1 , where

2E(Ȟ ′′′0 )11 = c2α12
λ′′1 + s2

α12
λ′′2

+ 2sα12
cα12

cα23
sα13

c̃12ε
′∆m2

ee,

2E(Ȟ ′′′0 )12 = − sα12cα12∆λ′′21

+ (s2
α12
− c2α12

)cα23sα13 c̃12ε
′∆m2

ee,

2E(Ȟ ′′′0 )13 = 0,

2E(Ȟ ′′′0 )22 = s2
α12
λ′′1 + c2α12

λ′′2

− 2sα12
cα12

cα23
sα13

c̃12ε
′∆m2

ee,

2E(Ȟ ′′′0 )23 = 0,

2E(Ȟ ′′′0 )33 = λ′′3 ,

(B7)

and (Ȟ ′′′0 )ij = (Ȟ ′′′0 )ji, and

Ȟ ′′′1 = −ε
′∆m2

eec̃12sα13
sα23

2E

 cα12

sα12

cα12
sα12

 . (B8)

It is easy to verify that Ȟ ′′′1 is already a third order term
in ε′ and α12 must diagonalize the (1-2) sector, i.e.

− sα12
cα12

∆λ′′21 + (s2
α12
− c2α12

)cα23
sα13

c̃12ε
′∆m2

ee = 0.
(B9)

The solution is Eq. 23.
The approach for anti-neutrinos is quite similar so we

will not provide the detailed procedure. Alternatively
we simply describe it by citing Eq. 15. The first ad-
ditional rotation diagonalizes the (2-3) submatrix with
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θ = ᾱ23, and λx = c̃12ε
′∆m2

ee; the second additional ro-
tation diagonalizes the (1-3) submatrix with θ = ᾱ13,
and λx = −cᾱ23

s̃12ε
′∆m2

ee; the third additional rota-
tion diagonalizes the (1-2) submatrix with θ = ᾱ12, and
λx = cᾱ13

sᾱ23
s̃12ε

′∆m2
ee.

For both cases of neutrino and anti-neutrino, the
Hamiltonian after each rotation is summarized in Table I.

Appendix C: Perturbation expansions

1. The perturbative expansion of DMP

Here we describe the perturbative expansions calcu-
lated from the initial zeroth order expressions from DMP
[14]. By the first order perturbation theory, since all di-
agonal elements of Ȟ1 vanish the diagonal elements of

WP
1 also vanish. The non-diagonal elements are

(WP
1 )ij = −2E(Ȟ1)ij

∆λij
, (C1)

and from Eq. 12 it is easy to get

WP
1 = ε′∆m2

ee

 − s̃12
∆λ31
c̃12

∆λ32
s̃12

∆λ31
− c̃12

∆λ32

 . (C2)

By the second order perturbation theory

(WP
2 )ij =


− 1

2

∑
k 6=i

[2E(Ȟ1)ik]2

(∆λik)2 i = j

1
∆λij

∑
k 6=i,k 6=j

2E(Ȟ1)ik2E(Ȟ1)kj
∆λkj

i 6= j
,

(C3)

then

WP
2 = − (ε′∆m2

ee)
2

2


(

s̃12
∆λ31

)2

− 2s̃12c̃12
∆λ32∆λ21

0

2s̃12c̃12
∆λ31∆λ21

(
c̃12

∆λ32

)2

0

0 0
(

s̃12
∆λ31

)2

+
(

c̃12
∆λ32

)2

 . (C4)

First order corrections to the eigenvalues given by the
perturbation theory is

λ
P (1)
i = 2E(Ȟ1)ii = 0, (C5)

and second order corrections are

λ
P (2)
i =

∑
k 6=i

[2E(Ȟ)ik]2

∆λik
. (C6)

With Eq. 12 it is easy to get

λ
P (2)
1 = −(ε′∆m2

ee)
2 s̃2

12

∆λ31
,

λ
P (2)
2 = −(ε′∆m2

ee)
2 c̃212

∆λ32
,

λ
P (2)
3 = (ε′∆m2

ee)
2

(
s̃2

12

∆λ31
+

c̃212

∆λ32

)
. (C7)

2. Perturbative expansion after the first two
additional rotations

After the first two additional rotations, we can imple-
ment a first order perturbative expansion to achieve sec-
ond order accuracy for all eigenvalues and eigenstates1.

For the eigenvalues this is evident. After the first two
additional rotations, the eigenvalues λ′′i (λ̄′′i ) already have
the second order accuracy. Since diagonal entires of the
perturbative Hamiltonian are always zero, a first order
expansion will not give any corrections to the eigenvalues
so the accuracy will be kept.

It is more complicated to test the eigenstates. In the
following calculation we are assuming a case of neutrinos.

1 If we implement a perturbative expansion after only one addi-
tional rotation, it can be shown that one is required to do a
second order expansion to achieve O(ε′ 2) accuracy. Thus, start-
ing the perturbative expansion one rotation earlier, as was done
in [14], or performing an additional rotation before going to the
perturbative expansion, as demonstrated in this Appendix, is
more computationally efficient.
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We define

(WP ′′
1 )ij ≡ −

2E(Ȟ ′′1 )ij
λ′′ij

, (C8)

and all the diagonal elements of WP ′′
1 vanish. By Eq.B5

and Eq. 18 it can be figured out that

WP ′′
1 = ε′∆m2

eec̃12sα13


− cα23

∆λ′′
21
− sα23

∆λ′′
31

cα23

∆λ′′
21

sα23

∆λ′′
31



' −(ε′∆m2
ee)

2 c̃12s̃12

∆λ31

 − 1
∆λ21

1
∆λ21

+O(ε′ 3).

(C9)

Compared with Eq. 34, we can get that

U13(α13)U23(α23)(1 +WP ′′
1 )

'U13(α13)U23(α23)U12(α12) +O(ε′ 3). (C10)

So the eigenstates are corrected to second order accuracy.
For the case of anti-neutrinos, the perturbative Hamil-

tonian Ȟ ′′i will be different, so we need to re-calculate
WP ′′

1 according to Table I. Moreover, in Eq. C10
U13(α13)U23(α23) will be replaced by U23(ᾱ23)U13(ᾱ13)
and α12 will be replaced by ᾱ12 .

Appendix D: Second order corrections to the mixing
angles and CP phase

The second order corrections to the mixing angles and
CP phase, as defined in Eq. 42 are

θ̃
(2)
13 = − s̃13

2c̃13
[(W ′1)23]

2
,

θ̃
(2)
12 = (W ′2)12 −

s̃2
13

c̃213

(W ′1)13(W ′1)23,

θ̃
(2)
23 =

c̃δ s̃13

c̃213

(W ′1)13(W ′1)23 +
c2θ̃23 s̃

2
δ

s2θ̃23
c̃213

[(W ′1)23]
2
,

δ̃(2) = −
2c2θ̃23 s̃δ s̃13

s2θ̃23
c̃213

(W ′1)13(W ′1)23

+
2(1 + c2

2θ̃23
)s̃δ c̃δ

c̃213s
2
2θ̃23

[(W1)′23]2, (D1)

where in our case

(W ′1)13 = ε′∆m2
ees̃12c̃12(

1

∆λ32
− 1

∆λ31
), (D2)

(W ′1)23 = ε′∆m2
ee(

s̃2
12

∆λ31
+

c̃212

∆λ32
), (D3)

and

(W ′2)12 = (ε′∆m2
ee)

2s̃12c̃12

{
c̃212

∆λ32∆λ21

+
s̃2

12

∆λ31∆λ21
− 1

2

[
c̃212

(∆λ32)2
− s̃2

12

(∆λ31)2

]}
.

(D4)

Actually (W ′1)ij and (W ′2)ij are elements of rotated W1

and W2 by U12(θ̃12), i.e.

W ′1 ≡ U12(θ̃12)W1U
†
12(θ̃12),

W ′2 ≡ U12(θ̃12)W2U
†
12(θ̃12), (D5)

and they are invariants of a λ1 ⇔ λ2 symmetry which
will be explained in detail Appendix E.

Detailed formulas of the second order terms in Eq. 44
are

f
(2)
13 = − s̃13

2

[
(W ′1)2

13 + (W ′1)2
23

]
f

(2)
12 = − s̃2

13

c̃213

(W ′1)23

[
s̃12

2
(W ′1)23 + c̃12(W ′1)13

]
+ c̃12(W ′2)12

f
(2)
23 =

1

c̃213

(W ′1)23

[
c2θ̃23 s̃

2
δ − s̃2

23c̃
2
δ

2s̃23
(W ′1)23

+c̃δ s̃13c̃23(W ′1)13]

f
(2)
δ =

2s̃δ
s2θ̃23

c̃213

(W ′1)23

[
c̃2δ(1 + c2

2θ̃23
)− s̃2

δc
2
2θ̃23

s2θ̃23

(W ′1)23

−c2θ̃23 c̃δ s̃13(W ′1)13

]
(D6)

The precision of the mixing angles through second or-
der is shown in Fig. 3. It is evident that the approximated
values achieve the expected accuracy.

Appendix E: λ1 ⇔ λ2 symmetry

If we exchange λ1 and λ2 and θ̃12 is translated to θ̃12±
π
2 , the Hamiltonian in basis of flavor eigenstates will keep
unchanged because(

c̃12 s̃12

−s̃12 c̃12

)(
λ1

λ2

)(
c̃12 −s̃12

s̃12 c̃12

)

=

(
c(θ̃12±π2 ) s(θ̃12±π2 )

−s(θ̃12±π2 ) c(θ̃12±π2 )

)(
λ2

λ1

)

×
(
c(θ̃12±π2 ) −s(θ̃12±π2 )

s(θ̃12±π2 ) c(θ̃12±π2 )

)
. (E1)

Under this discrete transformation

λ1 ⇔ λ2, s̃12 ⇒ −c̃12, c̃12 ⇒ s̃12. (E2)
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FIG. 4. This figure shows ∆Jmr ≡ s̃′12c̃
′
12s̃
′
13c̃
′2
13 −

s12c12s13c
2
13

∏
i>j ∆m2

ij∏
i>j ∆λ′′′

ij
through second order (red curve) for

the normal mass ordering. The black dashed line is ε′3.

To the leading order

α13 ⇔ α23, (E3)

which can be verified by Eq. 18 and Eq. 21. θ̃23, δ̃ and
θ̃13 and their perturbing terms should be all invariants.
Since it is a translation of θ̃12, the perturbation of θ̃12

should also be an invariant. Thus an implicit reason for
introducing W ′1 and W ′2 can be revealed. It is easy to
see in Eqs. D2, D3, and D4 that W ′1 and W ′2 are also in-
variants under the transformation. Then the perturbing
terms are just combinations of some λ1 ⇔ λ2 invariant
functions.

Appendix F: Some identities

In matter the corrected mixing angles, CP phase
and eigenvalues must satisfy the Naumov-Harrison-Scott
identity [27, 28], to second order, it is

s12c12s13c
2
13s23c23sδ

∏
i>j

∆m2
ij

' s̃′12c̃
′
12s̃
′
13c̃
′2
13s̃
′
23c̃
′
23s̃
′
δ

∏
i>j

∆λ′′′ij +O(ε′3). (F1)

A simpler identity is known as the Toshev identity [29],
again to second order it is

s2θ23sδ ' s′2θ̃23 s̃
′
δ +O(ε′3). (F2)

Combining the above two identities a third identity can
be derived [30]

s12c12s13c
2
13

∏
i>j ∆m2

ij∏
i>j ∆λ′′′ij

' s̃′12c̃
′
12s̃
′
13c̃
′2
13 +O(ε′3). (F3)

If we define

Jr ≡ s12c12s13c
2
13,

Jmr ≡ s̃′12c̃
′
12s̃
′
13c̃
′2
13, (F4)

where Jr is a reduced Jarlskog factor and similarly for
the matter values, the third identity can be rewritten as

Jr

∏
i>j ∆m2

ij∏
i>j ∆λ′′′ij

' Jmr +O(ε′3). (F5)

For the third identity shown in Eq. F5, analytical
verification is complicated. An alternative numerical
test is provided here. We define an error function as

∆Jmr ≡ Jmr −Jr
∏
i>j ∆m2

ij∏
i>j ∆λ′′′

ij
to quantify the error in calcu-

lating the CP violating term using our expressions. We
have shown the precision of this expression in Fig. 4, in
which we can see that the third identity holds to even
better than third order in ε′.
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