CERN Accélérateur de science

If you experience any problem watching the video, click the download button below
Download Embed
Report number CLICdp-Pub-2018-002 ; CLICDP-PUB-2018-002 ; arXiv:1806.05813
Title Allpix$^2$: A Modular Simulation Framework for Silicon Detectors
Author(s) Spannagel, Simon (CERN) ; Wolters, Koen (Eindhoven Technical University (NL)) ; Hynds, Daniel (University of Glasgow (GB)) ; Alipour Tehrani, Niloufar (CERN) ; Benoit, Mathieu (Universite de Geneve (CH)) ; Dannheim, Dominik (CERN) ; Gauvin, Neal (Universite de Geneve (CH)) ; Nurnberg, Andreas Matthias (KIT - Karlsruhe Institute of Technology (DE)) ; Schutze, Paul Jean (Deutsches Elektronen-Synchrotron (DE)) ; Vicente Barreto Pinto, Mateus (Universite de Geneve (CH))
Publication 2018-09-01
Imprint 2018-04-27
Number of pages 9
Published in: Nucl. Instrum. Methods Phys. Res. A 901 (2018) 164-172
DOI 10.1016/j.nima.2018.06.020
Subject category Particle Physics - Experiment ; Computing and Computers ; physics.ins-det
Accelerator/Facility, Experiment CLIC
Study CLICdp
Abstract Allpix$^2$ (read: Allpix Squared) is a generic, open-source software framework for the simulation of silicon pixel detectors. Its goal is to ease the implementation of detailed simulations for both single detectors and more complex setups such as beam telescopes from incident radiation to the digitised detector response. Predefined detector types can be automatically constructed from simple model files describing the detector parameters. The simulation chain is arranged with the help of intuitive configuration files and an extensible system of modules, which implement separate simulation steps such as realistic charge carrier deposition with the Geant4 toolkit or propagation of charge carriers in silicon using a drift-diffusion model. Detailed electric field maps imported from TCAD simulations can be used to precisely model the drift behaviour of charge carriers within the silicon, bringing a new level of realism to Monte Carlo based simulations of particle detectors. This paper provides an overview of the framework and a selection of different simulation modules, and presents a comparison of simulation results with test beam data recorded with hybrid pixel detectors. Emphasis is placed on the performance of the framework itself, using a first-principles simulation of the detectors without addressing secondary ASIC-specific effects.
Other source Inspire
Copyright/License publication: (License: CC-BY-4.0)
Püblication: © 2018 The Authors
Submitted by [email protected]



 


 Notice créée le 2018-04-27, modifiée le 2022-08-10


Fulltext from Publisher:
Télécharger le documentPDF
(Fichiers additionnels)