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Abstract: We provide a precise description of the Higgs boson transverse momentum distribution
including top and bottom quark contributions, that is valid for transverse momenta in the range
mb

<∼ p⊥ <∼mt, where mb and mt are the bottom and top quark masses. This description is based on
a combination of fixed next-to-leading order (NLO) results with next-to-next-to-leading logarith-
mic (NNLL) transverse momentum resummation. We show that ambiguities in the resummation
procedure for the b-quark loops are of the same order as the related fixed-order uncertainties. We
conclude that the current uncertainty in the top-bottom interference contribution to the Higgs
transverse momentum spectrum is O(20%).
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1 Introduction

Understanding the Higgs particle observed at the LHC requires studies of its properties that include
quantum numbers and couplings to gauge and matter fields. Current experimental results have
relatively small O(10% − 20%) uncertainties in Higgs couplings to electroweak gauge bosons and
larger O(100%) uncertainties in Higgs Yukawa couplings, especially for light quarks [1]. However,
it is quite conceivable that physics beyond the Standard Model manifests itself in smaller, few
percent, contributions to Higgs couplings. Thus, facilitating further improvements in extracting
Higgs couplings to gauge bosons and helping constrain Yukawa couplings are very important issues
in contemporary Higgs physics.

Both of these issues can, at least partially, be addressed by improving the description of Higgs
boson production in gluon fusion. Indeed, since gg → H is the main production mechanism of
Higgs bosons at the LHC, a refined understanding of this process in QCD perturbation theory will
lead to an improved understanding of fiducial cross sections and, eventually, will allow for a better
extraction of various Higgs couplings constants from e.g. Higgs decays to bosonic final states.

Although the contributions of bottom and charm loops to the ggH coupling and direct pro-
duction of a Higgs boson in quark fusion qq̄ → H, q ∈ {c, b} are small in the Standard Model, if
the Yukawa couplings differ from their Standard Model values, these light-quark effects in Higgs
production become much more important. In fact, it was pointed out [2, 3] that studies of kinematic
distributions of Higgs bosons produced in hadron collisions may lead to interesting constraints on
light quark Yukawa couplings, especially at the high-luminosity LHC.

A particularly important and highly non-trivial kinematic distribution is the Higgs boson trans-
verse momentum spectrum. At the LHC, Higgs bosons are produced with very different transverse
momenta, from very small to very large; the p⊥ distribution peaks at p⊥ ≈ 15 GeV. Depending on
the value of the Higgs transverse momentum, the p⊥ distribution is sensitive to different physics,
from multiple emissions of soft gluons at small p⊥ to top quark mass effects at the tail of the
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spectrum. The difficulty in describing the Higgs transverse momentum distribution as a whole is
related to this point.

Higgs production in gluon fusion receives contributions from top and light-quark loops. Since
Yukawa couplings are proportional to quark masses, top quark loops play the dominant role. For
values of the transverse momenta p⊥ <∼mt, top loops can be treated in the mt →∞ approximation.
This leads to enormous technical simplifications since, essentially, it allows us to “remove” one loop
from the computations that involve the ggH vertex. As the result, the mt → ∞ approximation
allowed for the computation of next-to-next-to-next-to-leading order (N3LO) QCD corrections to
the inclusive cross section and basic kinematic distributions [4–6], as well as next-to-next-to-leading
order (NNLO) QCD corrections to the production of Higgs bosons in association with one jet [7–11].
It is also quite straightforward to compute the O(1/mt) corrections to the mt →∞ approximation;
they are available for the total cross section [12–14] and for the Higgs p⊥ distribution [15–17]. NLO
QCD corrections including the top-quark dependence in the full Standard Model have become
available recently either via a high-energy expansion [18, 19] or a direct numerical calculation [20]
of the relevant two-loop virtual amplitudes.

When small transverse momenta p⊥ � mH are considered, radiative corrections to Higgs pro-
duction become enhanced by large logarithms lnmH/p⊥. It is possible to resum these logarithms
in case of Higgs production in gluon fusion if the ggH coupling is point-like, which is the case in the
mt →∞ approximation. Such resummations were performed with ever increasing accuracy through
the years [21–24]. The necessary ingredients to compute the next-to-next-to-next-to-leading loga-
rithmic (N3LL) corrections, apart from the four-loop cusp anomalous dimension, were obtained in
Refs. [25–28]. This allowed for a description of the Higgs boson p⊥ spectrum at N3LL+NNLO [29].1

Resummed computations are usually extrapolated from small transverse momenta, where they
are valid, to large momenta, where they are matched to fixed-order computations. As we explained
in the previous paragraphs, the accuracy of both resummed and fixed-order computations has
been constantly increasing; as a result, the mt → ∞ top-loop mediated contribution to the Higgs
transverse momentum distribution is currently known with a precision of about 10− 15 percent for
all values of the Higgs p⊥ [7–11, 29].

Having reached this level of understanding in themt →∞ limit, it is essential to ask if additional
small effects, that could have been neglected previously, need to be accounted for at the present
level of accuracy and, if so, if they are sufficiently well understood. Examples of such contributions
are corrections to the ggH interaction vertex due to light quarks and electroweak corrections to the
Higgs transverse momentum distribution. Both of these effects appear at the one-loop level; light-
quark contributions change the Higgs boson transverse momentum distribution by about −5%. For
moderate values of transverse momenta, electroweak contributions to the Higgs p⊥ spectrum are
smaller [31] and we neglect them in what follows.

Since QCD corrections in gg → H are known to be large for the top quark contribution, it
becomes important to understand if a similar enhancement exists for light quark contributions as
well. Unfortunately, such computations require two-loop calculations with massive internal particles
that are currently hardly feasible. An alternative possibility is to compute the corresponding two-
loop amplitudes in the approximation where all kinematic variables and the mass of the Higgs boson
are considered large relative to the quark mass mq. In this case, one computes a two-loop amplitude
as an expansion inm2

q/m
2
H ,m

2
q/s,m

2
q/p

2
⊥. In this approximation, the relevant amplitudes have been

computed in Refs. [32, 33]. For b-quark loops, such an expansion is valid for transverse momenta
larger than O(10 − 20) GeV since corrections to the approximate result for two-loop amplitudes
scale like (mb/p⊥)2 ∼ 0.2 for p⊥ = 10 GeV.

Light-quark contributions develop a peculiar double-logarithmic dependence on the light quark

1The numerical impact of the four-loop cusp anomalous dimension is expected to be small [30].
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masses ln2(mH/mq), ln
2(p⊥/mq). Such dependences originate from soft quark exchanges in the

loops that facilitate the ggH couplings. For the processes gg → H + g, qg → Hq and qq̄ → H + g

these terms are sensitive to gluons emitted from both “inside” and “outside” the loops at finite
transverse momentum, i.e. to the structure-dependent radiation.

Light-quark contributions to Higgs production in gluon fusion make the resummation of the
transverse-momentum distribution difficult [34, 35]. Indeed, since both top and bottom quark loops
contribute to the ggH coupling and since these loops are characterized by very different intrinsic
scales for the structure-dependent radiation (mb andmt), it appears that one will have to treat them
differently. However, this is not possible since the dominant contribution is given by the interference
of the two amplitudes. In addition, since it is not understood how to resum the potentially large
logarithms log(p⊥/mb) that appear in the light-quark loops, it becomes impossible to treat all the
different contributions to the Higgs p⊥ spectrum on the same footing. The best thing that one
can do is to employ a variety of prescriptions for combining light quark contributions with small-
p⊥ resummations and to study how the resulting uncertainty in predictions compares with other
sources of theoretical error.

The goal of this paper is to study the Higgs p⊥ spectrum including top and bottom-quark
contributions at next-to-leading order combined with next-to-next-to-leading logarithmic transverse
momentum resummation (NLO+NNLL). A similar study at leading order combined with next-to-
leading logarithmic resummation (LO+NLL) was performed in Ref. [34].2 To this end, we include
the recently computed NLO QCD corrections to light-quark contributions to Higgs production in
gluon fusion [32, 33, 36]. We find that the uncertainty in our matched NLO+NNLL result for the
top-bottom interference contribution to the Higgs transverse momentum distribution in the region
10 GeV <∼ p⊥ <∼ 100 GeV is dominated by ambiguities in the perturbative description of light-quark
loops rather than by uncertainties in the resummation itself. In particular, we do not find large
uncertainties related to the choice of the resummation scale for the b-quark loops.

The paper is organized as follows. In Section 2 we briefly review the structure of small-p⊥
resummation for the case of point-like interactions, and elucidate its main assumptions and lim-
itations. We also study light-quark contributions, discuss why in this case the resummation is
challenging and describe a possible pragmatic solution to this problem. In Section 3, we explain
the implementation of the resummation procedure for the b-quark contribution and study its am-
biguities, and we present our main results for the Higgs transverse momentum distribution. We
conclude in Section 4. Some useful formulas and derivations are collected in the Appendix.

2 Resummation of the Higgs transverse momentum distribution

2.1 The standard point-like case

We would like to describe the transverse momentum distribution of Higgs bosons produced in hadron
collisions. This is non trivial and requires a combination of fixed order and resummed perturbative
calculations. Indeed, depending on the value of the Higgs boson transverse momentum, we can
distinguish two regions. For large values of transverse momenta p⊥ ∼ mH , one can compute
dσ/dp⊥ in a perturbative expansion in αs following standard rules of perturbative Quantum Field
Theory. For small values of the transverse momentum p⊥ � mH , the situation is different since
emerging large logarithms ln(p⊥/mH) � 1 may compensate the smallness of the strong coupling
constant, αs ln2(p⊥/mH) ∼ 1, and spoil a conventional perturbative expansion. To deal with this
case, one resums the logarithmically enhanced terms to all orders in the coupling constant, and
develops a perturbative expansion on top of the resummed result.

2Note that this was referred to as NLO+NLL in this reference, while we always use the formal accuracy of the
differential distribution for the fixed order. In the notation of Ref. [34] our result would be NNLO+NNLL.
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Since, eventually, we need to describe the Higgs boson p⊥ distribution for all values of transverse
momenta, the two distinct approaches – resummation and fixed order computations – have to be
combined. This is done by smoothly interpolating between results derived at small and large p⊥.
The region where the transition happens is characterized by a quantity that we refer to as the
resummation scale Q. This scale has the following physical meaning: for p⊥ <∼Q, the transverse
momentum distribution is mostly described by the resummed result, while for p⊥ >∼Q it is mostly
described by the fixed order computation.

In order to discuss these concepts more precisely, we consider the all-order resummation in
a toy model, where we work at leading-logarithmic (LL) accuracy. To this end, we consider the
cumulative distribution

Σ(p⊥) =

p⊥∫
0

dp′⊥
dσ

dp′⊥
. (2.1)

At low p⊥, we resum the logarithms of ln p⊥/mH and write

Σ(p⊥) = Σresum(p⊥), p⊥ � mH . (2.2)

In this region, the distribution is dominated by the emission of soft and collinear partons. In the
LL approximation it is sufficient to consider the most singular contribution to the QCD matrix
elements, where all final-state partons are soft and strongly ordered in angle. In this limit, the
squared matrix element for the emission of n extra partons gg → H + n is given by the product of
the matrix element for gg → H times n independent eikonal factors. More specifically, at LL the
partonic p⊥ distribution

dσ̂

dp⊥
= [dpH ]

(
n∏
i=1

[dki]

)
|M(p1 + p2 → H + n)|2

× δ(4)

(
p1 + p2 − pH −

n∑
i=1

ki

)
δ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
(2.3)

can be simplified as

dσ̂

dp⊥
' [dpH ]|M(p1 + p2 → H)|2δ(4)(p1 + p2 − pH)

× 1

n!

n∏
i=1

[dki]|Msoft(ki)|2δ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
, (2.4)

where [dki], [dpH ] are the phase space volumes of the i-th parton ki and the Higgs boson, and Msoft

is the matrix element of the single-emission eikonal current. Note that the reduced matrix element
M(p1 + p2 → H) is evaluated at zero transverse momentum.3

Starting from Eq. (2.4) it is possible to show (for details see Appendix A) that the resummed
cross section takes the form

Σresum(p⊥) = σ0e
−

∫
[dk]|Msoft(k)|2

∞∑
n=0

1

n!

n∏
i=1

∫
[dki]|Msoft(ki)|2Θ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
, (2.5)

where σ0 is the Born cross section for gg → H. The overall exponential factor contains the all-order
effects of soft-collinear virtual gluons which are encoded in the leading divergence of the gluon form
factor M(p1 + p2 → H).4 The distribution in the small p⊥ region is governed by two competing

3This is valid at all logarithmic orders.
4Clearly, all integrals in Eq. (2.5) are divergent in the soft and collinear limits, and require regularization. However,

the final result Eq. (2.5) does not depend on the regularization procedure.
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mechanisms. In the strict limit p⊥ → 0, the dominant contribution comes from emissions with
finite transverse momentum p⊥ � k⊥i � mH that mutually cancel in the transverse plane. This
collective effect gives rise to a power suppressed scaling [37]

Σ(p⊥) ∼ O(p2
⊥). (2.6)

As p⊥ increases, but still remains small compared to mH , the distribution is described by kinematic
configurations with p⊥ ∼ k⊥i � mH . As discussed in Appendix A.1, in this region the cumulative
distribution features an exponential suppression of the form

Σ(p⊥) ∼ σ0 exp

{
−ᾱ ln2 mH

p⊥

}
, (2.7)

where ᾱ = 2CAαs/π.
At larger transverse momenta (p⊥ ∼ mH) the approximation that led to Eq. (2.5) is not justified

anymore. Therefore, in this region one has to smoothly switch from the resummed prediction to
the fixed-order one, where the effect of the hard radiation is treated correctly. This can be done for
example using the following matching formula

Σ(p⊥) = Σresum(p⊥) +
(
Σf.o.(p⊥)− T f.o. [Σresum(p⊥)]

)
, (2.8)

where we indicate with T f.o.[f ] the fixed-order expansion of f . At small p⊥ the difference between
the fixed-order result and the Taylor expansion of the resummed result is free of logarithmically-
enhanced terms

lim
p⊥→0

(
Σf.o.(p⊥)− T f.o. [Σresum(p⊥)]

)
= const. (2.9)

This allows one to extend the fixed-order description to p⊥ → 0 and, at the same time, ensures that
all terms that contain large logarithms at low p⊥ are resummed.

The precise way to switch from the resummation to the fixed-order description is ambiguous.
One source of ambiguity comes from choosing a particular form for the matched cross section (in
our example, Eq. (2.8), we chose to combine the resummed and fixed-order predictions additively).
A second source of ambiguity is connected with the scale at which the transition from resummed to
fixed-order result takes place. Although all of these effects are formally of higher-order both in the
resummation and fixed-order counting, their numerical impact can be non-negligible. We consider
the latter issue in what follows, while leaving a discussion of the choice of the matching scheme to
the next section.

In order to switch off resummation effects at large p⊥, one can modify the resummed cross
section by including controlled power-suppressed corrections. One possible way to do this is to
modify the resummed logarithms in Eq. (2.7) as follows5

L ≡ ln
mH

p⊥
= ln

mH

Q
+ ln

Q

p⊥
, (2.10)

where Q is an arbitrary scale of order mH . Moreover, we write

ln
Q

p⊥
→ 1

p
ln

((
Q

p⊥

)p
+ 1

)
≡ L̃, (2.11)

where p is a positive number. The motivation for the transformations described above is as follows:

5A more correct prescription is to modify the logarithms ln(mH/k⊥1) where k⊥1 is the transverse momentum
of the hardest emitted gluon. This technicality is avoided here for the sake of clarity, and it will be discussed in
Appendix A.
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• First, we split the resummed logarithm L into the sum of a small logarithm ln(mH/Q) (with
Q ∼ mH) and a large logarithm ln(Q/p⊥). This operation allows us to introduce a generic scale
Q which then appears in the resummed result. We can now expand L around ln(Q/p⊥), retain-
ing all terms with the desired logarithmic accuracy. Effectively, this implies that ln(mH/Q)

is treated perturbatively at fixed order. In our LL example, for p⊥ ∼ k⊥i � mH , this means

Σresum(p⊥) ∼ e−ᾱL
2

= exp

{
−ᾱ

[
ln2 Q

p⊥
+ 2 ln

Q

p⊥
ln
mH

Q
+ ln2 mH

Q

]}
= exp

{
−ᾱ ln2 Q

p⊥
+O (αsL)

}(
1− ᾱ ln2 mH

Q
+O(α2

s)

)
' exp

{
−ᾱ ln2 Q

p⊥

}
,

(2.12)

where all terms beyond LL were neglected. This prescription is convenient because the Q-
dependence is always of higher-logarithmic order and, therefore, a Q-variation probes the size
of subleading logarithms that are not considered in the resummation.

• Second, we modify the logarithm ln(Q/p⊥) by including power-suppressed terms that force L̃
to vanish at large p⊥. These modifications do not affect the small-p⊥ limit. Indeed, it follows
from Eq. (2.11) that

L̃ ∼ ln
Q

p⊥
, for p⊥ � Q; L̃ ∼ 1

p

(
Q

p⊥

)p
, for p⊥ � Q. (2.13)

As a consequence, the resummation scale Q and the scaling parameter p must be chosen
in such a way that the high-p⊥ scaling of the resummed component (and its fixed-order
expansion) does not modify the scaling of the fixed-order prediction. This means that p and
Q are to be chosen in such a way that the resummed component vanishes more quickly than
the fixed-order result for p⊥ >∼Q.

The above discussion shows thatQ is indeed the scale at which the transition between resummed
and fixed-order results occurs. Similarly to the renormalization and factorization scales, its choice
is ambiguous, although certain conditions should be satisfied. Indeed, it is clear that (a) Q should
not be too different from mH , to ensure that lnQ/mH are not large and (b) it should approximately
correspond to the scale at which the soft and collinear approximations to the matrix element and
kinematics break down. In practice, one can choose Q by comparing the exact result Σf.o. with the
expansion of the resummed result T f.o.[Σresum], and set Q to the p⊥ scale at which the two start
to significantly deviate from each other. This is illustrated in Figure 1, which shows the difference
between the LO differential p⊥ spectrum and the expansion of the resummed result at the same
order. Specifically, we plot ∣∣∣∣ (dσLO

dp⊥
− T LO

[
dσresum

dp⊥

])/
dσLO

dp⊥

∣∣∣∣. (2.14)

We observe that when only the top contribution is included (solid, red curve), the logarithmic
terms account for about half of the fixed-order result at scales p⊥ ∼ 50−60GeV. This suggests that
the resummation scale should be of this order. We conventionally choose Q = mH/2 as a central
value. As far as the choice of the parameter p is concerned, we have to ensure that at large p⊥ the
resummed component vanishes faster than the fixed order. Considering the asymptotic scaling in
Eq. (2.13), we choose p = 4 which guarantees that the differential distribution vanishes as fast as
1/p5
⊥ for p⊥ >∼Q. In principle, any value of p greater than 3 will equally do, since p only determines

how fast the resummation is turned off above the scale Q. We have indeed checked that by varying
p by one unit around p = 4 the results do not change significantly.
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Figure 1: Differences between leading-order distributions and their logarithmic contributions,
normalized to the leading-order results. The three curves show the case for top quark (solid/red),
top and bottom quarks (dotted/blue), and top-bottom interference (dot-dashed/green). See text
for details.

The same figure shows results for the full spectrum where both top and bottom loops are
included (dotted, blue curve), and results for top-bottom interference (dot-dashed, green curve).6

In this case the situation changes considerably, and this will be the subject of the next section.

2.2 Issues with b quarks

The “standard” approach to resummation described in Section 2.1 becomes problematic in case of
the Higgs boson production in hadron collisions [34, 35, 38–41]. The difficulty is related to the fact
that the ggH vertex is not point-like but, rather, is induced by a quark loop. The presence of the
quark loop implies the existence of structure-dependent radiation with peculiar properties and has
important consequences for the resummation. The key to the following discussion is the appreciation
of the fact that the structure-dependent radiation is suppressed if p⊥ is smaller than the mass of
the quark but it becomes important otherwise. For p⊥ larger than the quark mass, the soft and
collinear approximations that provide the foundation for small p⊥ resummation become unreliable,
as they focus on emissions off external lines and systematically neglect structure-dependent effects.
In this section we elaborate on this issue.

We consider Higgs boson production in gluon fusion mediated by a quark loop. We denote the
mass of the quark by mq and consider two cases mq � mH and mq � mH . In the first case, the
structure dependence enters at p⊥ >∼mq � mH , so that emissions off the external lines dominate
for transverse momenta up to the Higgs mass and even higher. Therefore, if we restrict ourselves
to values of p⊥ that are comparable to mH , the situation is no different from point-like interaction,
and there are no issues in the resummation procedure described in the previous section. In the
Standard Model, this is indeed what happens with the top loop contribution to the Higgs boson
transverse momentum spectrum.

The second case, mq � mH is very different. Indeed, in this case there are three distinct regions
p⊥ <∼mq, mq

<∼ p⊥ <∼mH and mH
<∼ p⊥. In the first region p⊥ <∼mq, the transverse momenta of the

Higgs boson and the recoiling partons are typically small enough not to resolve the structure of
the loop and the extra radiation factorizes. For the bottom-quark contribution (mq ∼ 5GeV) the
effect of additional QCD radiation is strongly suppressed in this region by all-order effects, so that

6We ignore the bottom squared contribution, which is completely negligible in the Standard Model.
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its impact on the total cross section is small.7 Note, however, that in this region there are large
logarithmic contributions of the type ln2mH/mb, whose resummation is not fully understood even
at the lowest perturbative order [42, 43].

In the second region mq
<∼ p⊥ <∼mH the structure-dependent radiation becomes essential and

the ggH vertex does not factorize. In addition to the usual logarithms lnmH/p⊥, the radiation
gives rise to logarithms ln p⊥/mq and lnmH/mq, whose origin and potential resummation are not
well understood.8

The reason why the small-p⊥ resummation is problematic in this region is the following. Emis-
sions off internal lines can become as important as emissions off external lines, and together they
probe the loop structure of the ggH vertex. It follows that approximating the small p⊥ region with
an on-shell ggH form factor is not justified. In particular, while form factor effects in the top-quark
case only introduce (p⊥/mH)-suppressed corrections, in this case they both introduce a new loga-
rithmic structure (ln p⊥/mq and lnmH/mq) and suppress radiation with p⊥ >∼mq. In other words,
while in the top case, described in Section 2.1, at finite p⊥, the coefficients of the logarithms differ
from the resummed result by p⊥-suppressed terms, in the b-quark case, this difference contains new
logarithmic terms ln p⊥/mb and lnmH/mb in the region mb

<∼ p⊥ <∼mH .
As a consequence, the collinear approximation should not be expected to work far away from

the b-quark threshold. To quantify this effect, we go back to Figure 1. We see that, while for the
top-only case (solid, red line) the collinear approximation to the leading order accounts for half of
the result at about p⊥ ∼ 50−60GeV, for the top-bottom interference this scale is reduced to about
30GeV. When top and bottom contributions are considered together, this effect is less dramatic
since in the SM the interference accounts for about ∼ 5% of the full result. This can be seen in the
dotted blue curve of Figure 1.

Because of the above issues, it is clear that constructing a reasonable description of the b-quark
contribution to the Higgs transverse momentum distribution is problematic. Since, as we already
stressed, in this case the resummation of potentially large logarithms is not entirely understood, the
best we can do is to use different ways to interpolate between regions of small and large transverse
momenta and check to what extent the different results are compatible.

As already stated, the Higgs boson production in the Standard Model is dominated by the top
quark loop; the bottom loop provides a very small contribution that is lifted up to O(−5%) by its
interference with the top amplitude. Because of this, a O(20 − 30%) control on the top-bottom
interference is sufficient to control the Higgs transverse momentum spectrum at the few percent
level. With this in mind, we now study in more detail the different ways to treat the bottom
contribution.

One option is to apply Eq. (2.8) with the resummation scale set to Q ∼ mb [34]. This choice
is equivalent to employing fixed-order description for all values of transverse momenta. Indeed, for
1 GeV <∼ p⊥ <∼Q ∼ mb, the resummed logarithms ln(Q/p⊥) never become large and for p⊥ >∼Q the
fixed-order result is adopted anyhow. Since a typical error made within this approach is provided
by uncalculated higher order terms, if we use a NLO computation for the interference, we make an
error of order9 [αs/(2π)]2 ln4(mH/mb) and [αs/(2π)]2 ln4(p⊥/mH) which both evaluate to 15− 20

percent, for p⊥ ∼ mb ∼ 5 GeV.
The previous option amounts to neglecting the resummation for the top-bottom interference

and to using the fixed-order result for all transverse momenta; the other extreme alternative con-
sists of extending the resummation beyond its established domain of validity. We can do this by
using the same resummation scale, Q ∼ mH/2, both for the top and the top-bottom interference

7This region is also very sensitive to non-perturbative effects.
8For some recent studies, see e.g. Refs. [42–44].
9Note that these estimates refer to the top-bottom interference contribution. As we said, the term proportional

to y2b is negligible in the Standard Model.
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contributions [35, 38]. In this case, at low p⊥ we introduce logarithms ln p⊥/Q in the interference
through the resummation prescription which are not guaranteed to be correct and, by doing that,
we effectively introduce errors that are similar to those discussed above. At higher p⊥ the impact
of these logarithms becomes smaller since at p⊥ ∼ Q the resummation effects smoothly turn off and
we recover the fixed order prediction. Hence, when we under- or over-resum logarithms we expect
comparable O(20%) theoretical errors on the interference contribution to the Higgs p⊥ spectrum.
An important question is whether these different sources of uncertainties pull the predictions apart
or they remain compatible with each other.

Before concluding this section, we mention that within the additive matching scheme of Eq. (2.8)
the resummation term, which is proportional to the lowest-order form factor at zero transverse
momentum, is added to the fixed order result. As we mentioned earlier, the form factor effects
lead to a dependence of the leading order amplitude on p⊥, that is not captured in this approach.
To account for this, we also consider a multiplicative matching scheme, which can be schematically
defined as10

Σ(p⊥) = Σresum(p⊥) T f.o.

[
Σf.o.(p⊥)

Σresum(p⊥)

]
. (2.15)

Similarly to Eq. (2.8), Eq. (2.15) smoothly interpolates between a low p⊥ � Q region, where
resummation dominates, to a large p⊥ � Q region, where the result is obtained from a fixed order
calculation. Clearly, the fixed order accuracy is preserved in the p⊥ → 0 limit. The main difference
with Eq. (2.8) is that now the higher order terms induced by the resummation in the transition
region are weighted with the fixed (lower) order result at finite transverse momentum. This should
at least partially capture the p⊥ dependence of the exact higher order amplitude, and lead to a
more realistic description of the physics. Because of this, we choose the multiplicative matching
scheme Eq. (2.15) as our default matching scheme. Nevertheless, matching ambiguities are by
construction of higher-order nature and, therefore, any matching prescription is formally equally
valid. Differences between matching prescriptions can be used to estimate the uncertainty in the
transition region.

3 Results

3.1 Inclusion of bottom-quark loops and matching uncertainties

In this section we describe the practical and technical implementation of the top-bottom interfer-
ence in the resummation and matching, and the uncertainty associated with it. As we described
in Section 2.2, the rigorous resummation in the presence of the bottom-quark loop is currently
impossible. To remedy this problem, we adopt different approaches to include this contribution
in the matched result. We use the arbitrariness in the choice of the resummation scale associated
with the top-bottom interference and in the choice of the matching scheme to assess the inherent
ambiguity of the resummation procedures.

We start by discussing the resummation scale. We treat separately the contribution of the
top-squared amplitude and the top-bottom interference.11 In particular, we associate two differ-
ent resummation scales with the top and the interference contributions, and we use the following
notation to denote the various cumulative distributions

Σt+b(p⊥, Qt, Qb)→ top and bottom, including the interference; (3.1)

Σt(p⊥, Qt)→ only top. (3.2)

10The actual implementation of this procedure requires extra care, as described in Appendix A.3.
11For our numerical results, we also include the bottom squared contribution, which is however negligible in the

Standard Model.
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As explained in Section 2.1, for the top-only contribution we set the resummation scale to Qt =

mH/2. For the interference, instead, we use the following prescriptions to quantify the associated
uncertainty (see Section 2.2):

• We choose Qb ∼ mb, effectively switching off the resummation for the interference at scales of
the order of the bottom mass. As it was initially suggested in Ref. [34], we choose Qb = 2mb

as our central scale. This is achieved by computing

Σt+b(p⊥,mH/2, 2mb) = Σt(p⊥,mH/2) + Σt+b(p⊥, 2mb, 2mb)− Σt(p⊥, 2mb). (3.3)

This implies that in the region of transverse momenta that we are interested in, the interference
is described only at fixed order and no resummation for this contribution is performed.

• We consider the opposite situation in which we rely on the collinear approximation also for
mb � p⊥, and simply treat the new logarithmic terms that appear above this scale as a
regular remainder that can be described at fixed order. As a consequence, the resummation
for the interference contribution is switched off, as in the top-only case, at scales of order
60GeV. We choose Qt = Qb = mH/2 as our central scale, for simplicity.

In both approaches, logarithms of the ratio p⊥/mb are not resummed. Although in the region
mb � p⊥ � mH these logarithmic terms can be potentially large and therefore should be included
to all orders, recent studies seem to suggest that an accurate prediction of these terms is achieved
by considering the first few terms in the fixed-order perturbative expansion [42, 43].

As far as the resummation is concerned, the result will be nearly identical to the mq → ∞
one.12 The only difference is that now the Born squared amplitude and the hard-virtual correction
will contain the full dependence on the top and bottom masses. In particular, no modification of
the p⊥-dependent radiation pattern is introduced. Technically, we implement the LO and the NLO
amplitudes for gg → H with full mass dependence following Ref. [45].

We now study numerically the difference between the two prescriptions for the bottom resum-
mation scale. We start by introducing the setup that we adopt for our predictions. We consider
proton collisions at the 13 TeV LHC. The Higgs boson mass is taken to be mH = 125 GeV and
the top and bottom pole masses13 are set to mt = 173.2 GeV and mb = 4.75 GeV, respectively.
We work within a fixed flavor-number scheme (nF = 5) and use the PDF4LHC15_nnlo set of par-
ton distribution functions [46] interfaced through LHAPDF6 [47]. We use the value of the strong
coupling constant αs provided by the PDF set. As central values for the renormalization and
factorization scales we take

µR = µF = MT /2, with MT =
√
m2
H + p2

⊥. (3.4)

In order to estimate the perturbative uncertainties for each prediction, we perform a 7-point
variation of the factorization (µF ) and renormalization (µR) scales around the central value by a
factor of two. Moreover, we vary Qt and Qb by a factor of two around their respective central
values, keeping fixed µR = µF = MT /2. The final uncertainty band is obtained as the envelope of
all above variations. As a default, we adopt the multiplicative scheme discussed in Section 2.2 and
described in detail in Appendix A.3.

The fixed-order NLO results for the top-bottom interference are based on the calculation pre-
sented in [36], which in turn comprises the two-loop amplitudes for gg → Hg, qq̄ → Hg and
qg → Hq derived in [32, 33] together with corresponding loop-squared real radiation amplitudes as
provided by OpenLoops [48, 49] combined with Collier [50]. For the Monte Carlo integration
and subtraction the Powheg-Box-Res is used [51, 52].

12HEFT in the following.
13We work in the on-shell renormalization scheme as a default.
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We now discuss the dependence on the choice of the resummation scale associated with the
bottom contribution. We start by comparing results for the top-bottom interference for two values
of the resummation scale Qb. The results are displayed in the left plot in Figure 2. The two
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Figure 2: Comparison between two resummation-scale prescriptions for top-bottom interference
(left) and full (right) distributions. See text for details.

predictions differ by about 20% for p⊥ ∼ 30GeV, in line with what we expected from the discussion
in Section 2.2. We note, however, that although the two results are computed for very different
choices of the resummation scales, they are still compatible (although marginally for p⊥ >∼ 25GeV)
within their respective uncertainties. Only for p⊥ >∼ 50GeV the two results differ significantly, since
the interference obtained with Qb = 2mb vanishes faster than the one obtained with Qb = mH/2.
However, in this region the contribution of the interference to the physical spectrum is completely
negligible. Each of the two results has a relative uncertainty of about 15% for p⊥ <∼ 40GeV. The
variations of the resummation scales around their central value, and the variation of µR and µF
have a similar impact on the final band.

The right plot of Figure 2 shows an analogous comparison for the transverse momentum dis-
tribution that includes both top and bottom contributions. Since the interference only accounts
for about 5% of the full result, we find that the two resummation prescriptions for the top-bottom
interference are indistinguishable within the uncertainties of the top contribution. Indeed, in this
case the uncertainty band is dominated by the µR and µF variation of the top contribution, which
amounts to about 10− 15% for p⊥ <∼ 40GeV, while the resummation-scale uncertainty amounts to
about 5% in this region. Note however that the top-only contribution has been computed one order
higher, both in fixed-order QCD [7–11] and in the resummation framework [29]. In this paper, we
focus on the b-quark effects and hence do not include these results but, as a matter of principle,
they can be used to further reduce the uncertainty on the top contribution.

We now investigate the second source of resummation ambiguity, namely the choice of the
matching scheme. As discussed in Section 2.2, besides our default multiplicative scheme we also
consider an additive scheme. Both schemes are precisely defined in Appendix A.3. We remind
the reader that, as far as the top-bottom interference is concerned, the main qualitative difference
between the two approaches is that within the additive matching scheme, the resummation con-
tribution is proportional to the gg → H form factor at zero transverse momentum whereas in the
multiplicative matching scheme it is weighted by the form factor g∗g∗ → H at finite transverse
momentum. In order to study this source of ambiguity more precisely, we consider the additive
matching scheme, with two different scales (Qb = mH/2 and Qb = 2mb), and compare the results
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Figure 3: Comparison between the additive scheme with Qt = mH/2, Qb = 2mb (left plot) or
Qt = Qb = mH/2 (right plot), and the default multiplicative scheme with Qt = Qb = mH/2.

to the multiplicative scheme.
Since in the additive scheme the resummed contribution does not include form-factor effects,

we expect sizable differences between results obtained with Qb = mH/2 and Qb = 2mb. We recall
that this is not the case in the multiplicative scheme (see Figure 2) where form-factors effects are
automatically accounted for. We then show, in Figure 3, the comparison between the top-bottom
interference in the default multiplicative scheme with Qb = mH/2 and the additive scheme with
Qb = 2mb (left plot) and Qb = mH/2 (right plot). We observe that the difference between the two
schemes is larger when the additive scheme with Qb = mH/2 is used. Nevertheless, we find that
also in this case, the difference between the two schemes for the interference does not exceed ∼ 20%

in the bulk of the distribution. Again, the full transverse momentum distribution, shown in the left
plot of Figure 4, is only mildly affected by this ambiguity.

Finally, in the right plot of Figure 4, we show the ratio of the full distribution computed using
the default multiplicative scheme, to the corresponding HEFT result. The default result, i.e. mul-
tiplicative matching scheme with Qt = Qb = mH/2, is in good agreement with the NLO prediction.
For comparison, we also report the other extreme solution obtained with the multiplicative scheme
with Qt = mH/2, Qb = 2mb. We observe that this choice is in good agreement with both the fixed
order and the default matched solution.

In summary, we find that a conservative approach towards the inclusion of bottom-mass effects
in the matched prediction for the Higgs-p⊥ spectrum leads to a ∼ 20% ambiguity on the top-bottom
interference in the region mb

<∼ p⊥. Since the interference provides a rather small contribution to the
Higgs transverse momentum distribution, this ambiguity translates into a few-percent uncertainty
in the Higgs p⊥ spectrum.

In what follows, we will use the result obtained with the multiplicative matching scheme with
Qt = Qb = mH/2 as our central value. To estimate uncertainties, we will consider the envelope of
scale variations and the result obtained either by using the multiplicative or the additive scheme
with Qt = mH/2, Qb = 2mb. In addition to these source of uncertainty, an additional ambiguity
arises from the choice of the renormalization scheme for the quark masses. This will be discussed
in the next section.

3.2 Mass-scheme uncertainty and final results

In this section, we present our final results for the NNLL+NLO matched distributions. We use
as default the multiplicative matching scheme with resummation scales Qt = Qb = mH/2. We
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Figure 5: The top-bottom interference contribution for the fixed order (left) and the matched
(right) distributions, for different choices of the mass-renormalization scheme. See text for details.

renormalize the bottom-quark mass in the on-shell scheme. To estimate the uncertainty we change
the details of the resummation and matching as explained in the previous section. In addition,
we consider a different renormalization scheme for the bottom quark mass to estimate the related
uncertainty. To this end, we employ the MS renormalization scheme. We take the mass renormal-
ization scale to be 100 GeV, and use mb = mMS

b (100 GeV) = 3.07 GeV as an input parameter.14

In Fig. 5 we display the results for the top-bottom interference contribution. The fixed order re-
sult is presented in the left plot. We show the uncertainty band for the on-shell mass-renormalization
scheme and the central value for the MS scheme. The uncertainty band is calculated from a 7-point
scale variation. We see that the scheme ambiguity is larger than the scale variation, as already
observed in Ref. [36]. The right plot shows our results for the matched distributions with the two
different mass schemes. The difference between the two bottom-mass schemes is similar to the fixed

14We calculated this value using the program RunDec [53, 54] with the input value mMS
b (mMS

b ) = 4.2 GeV.
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Figure 6: The full top plus bottom distribution for the fixed order (left) and the matched (right)
results, for different choices of the mass renormalization scheme. See text for details.

order case, but since now the matched prediction has a smaller uncertainty, the separation between
the two results is more significant. As follows from Fig. 5, the top-bottom interference contribution
has an ambiguity of about 15− 20% down to p⊥ ∼ 10 GeV. In order to improve on this, one would
need a NNLO calculation for the top-bottom interference, which is currently out of reach.

The analogous plots for the full distribution that includes both top and bottom amplitudes are
shown in Fig. 6, for the fixed order (left) and resummed (right) results. Unlike for the top-bottom
interference contribution, in this case the difference between the two results for the bottom-mass
schemes are much smaller, at the level of a few percent. This is because the top-bottom interference
contributes to just O(−5%) of the full spectrum.15

Our best current predictions for the top-bottom interference and full p⊥ spectrum including
all the relevant uncertainties are shown in Fig. 7. As discussed earlier, the uncertainty bands are
obtained as an envelope of:

• a 7-point renormalization and factorization scale variation;

• resummation scale variation Qt = Qb ∈ {mH/4,mH/2,mH} for µR = µF = MT /2;

• multiplicative matching scheme with Qt = mH/2, Qb = 2mb for µR = µF = MT /2;

• additive matching scheme with Qt = mH/2, Qb = 2mb for µR = µF = MT /2.

In addition, if the default matched result but in the MS renormalization scheme for the bottom-
quark mass is outside the uncertainty band estimated as described above, we extend the uncertainty
band to accommodate the mass scheme ambiguity. In fact, as shown in Figure 5, the latter ambiguity
is the major source of uncertainty for the top-bottom interference for transverse momenta below
30 GeV.

The top-bottom interference is shown in the left plot of Fig. 7. The qualitative features of the
fixed-order result are unchanged by the resummation, which however has a noticeable effect on the
shape of the distribution. Our final result has an uncertainty of about ∼ 20%, and is compatible
with the fixed-order one. In the right plot of Fig. 7 we present the results for the full spectrum. At
large values of the Higgs p⊥ >∼ 30 GeV the fixed order result is contained in the error band of the

15Although the bottom-mass scheme ambiguity has a very moderate impact on the SM Higgs p⊥ spectrum, this
effect might be more significant for specific BSM scenarios. A dedicated study of such scenarios is necessary in order
to assess the theory uncertainties precisely.
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resummed result. However at smaller values, p⊥ <∼ 30 GeV we observe a marked difference between
the two results. The error for the full matched result is close to 10% for p⊥ <∼ 30 GeV and close to
∼ 20% at larger p⊥. We stress however that the uncertainty on the dominant top contribution can
be further reduced by employing the results of Refs. [7–11, 29, 55].
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Figure 7: The distributions for the top-bottom interference contribution (left) and the full NNLL
matched result (right), using the multiplicative scheme with resummation scale Qb = Qt = mh/2

as central values. See text for details.

4 Conclusions

In this paper we performed a detailed study of the Higgs transverse momentum distribution, focusing
on the region of intermediate values of transverse momenta, mb

<∼ p⊥ <∼mH . Indeed, a precise
theoretical control of the Higgs p⊥ distribution in this region is essential to test the Higgs sector of
the Standard Model. In particular, it provides a rare opportunity to probe the Yukawa couplings
of light quarks, which are currently poorly constrained. In fact, although the main contribution to
the Higgs production cross section is due to the coupling of the Higgs to top quarks, the coupling to
bottom quarks has a non-negligible impact on the total cross section through its interference with
the top, decreasing the cross section by about O(5%).

The theoretical description of the Higgs p⊥ distribution formb
<∼ p⊥ <∼mH in QCD is particularly

challenging since, once the contribution of bottom quarks is included, the perturbative cross section
for small p⊥ suffers from the presence of potentially large logarithms ln (p⊥/mb), ln (mH/mb),
which can spoil the convergence of the perturbative expansion. The physical origin of these large
logarithms is not yet fully understood, and their all-order resummation remains currently out of
reach.

Given these conceptual limitations, we provided our best theoretical description of the Higgs
p⊥ distribution at NNLL+NLO QCD for moderate values of the transverse momentum, including
dependence on the bottom mass. An important part of our study was a proper assessment of the
theory uncertainty of our results. The NLO result for the top-bottom interference suffers from scale
uncertainties, which amount to around 15%. On top of this, a non-negligible source of uncertainty is
provided by the renormalization scheme ambiguity for the bottom-quark mass, which we estimated
by varying from the on-shell to the MS scheme. This amounts to an uncertainty of up to 20% and
it dominates the error budget of our prediction for the top-bottom interference at small values of
the Higgs p⊥. Together with the uncertainties associated with the fixed order calculation, we also
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performed a detailed study of the ones associated with the resummation procedure in the presence
of bottom quarks. In order to estimate these ambiguities for the top-bottom interference, we
matched the fixed order NLO predictions with the NNLL resummed cross-section using two different
schemes, an additive and a multiplicative one, and two very different choices of the resummation
scale, Qb = 2mb and Qb = mH/2. This leads to an uncertainty between 15−20% on the top-bottom
interference contribution to the p⊥ spectrum. Since the interference amounts to about 5% of the
full p⊥ spectrum, we conclude that unknown higher order b-quark mass effects can modify the Higgs
transverse momentum distribution by few percent. All ambiguities associated with the resummation
in the presence of bottom quarks produce consistent results within the NNLL+NLO uncertainty
band, which is however driven by uncertainties in the (NLO) top quark contribution. The latter is
currently known to higher N3LL+NNLO accuracy [7–11, 29, 55]. It would be interesting to combine
these results with the ones presented in this article. We leave this for future investigations.

In conclusion, we presented a description of the Higgs p⊥ spectrum at NNLL+NLO QCD in-
cluding both top and bottom quark contributions. We found that the uncertainty on the top-bottom
interference is O(20%) in the region of interest mb

<∼ p⊥ <∼mH . Given the intrinsic ambiguities from
scale dependence and, in particular, from the choice of the bottom-mass renormalization scheme
and matching scheme, any improvement in this description will inevitably require the computation
of the NNLO QCD corrections to the bottom-quark contribution to gg → H and gg → H + jet.
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A Resummation and matching: details

In this appendix we briefly derive the resummation formula in the toy model described in the main
text, report the final NNLL formulas that we eventually used in our results and describe in details
the matching procedure we employ. We follow the approach of Refs. [29, 55], and we refer the
reader to these publications for the details.

A.1 The LL case

We consider the p⊥ distribution of a Higgs boson in pp → H in the p⊥ → 0 limit, at leading-
logarithmic accuracy. In this approximation, one must only control the leading singularity of the
n-emissions matrix element at all perturbative orders. This is done by approximating the process
with an ensemble of independent soft-collinear gluons emitted off the two incoming legs.

To set up the notation we introduce two reference light-like momenta along the beam direction
that will serve to parametrize the radiation16

p̃1 =
mH

2
(1, 0, 0, 1) , p̃2 =

mH

2
(1, 0, 0,−1) . (A.1)

16We remind the reader that we are working in the soft approximation. As a consequence the kinematics is much
simplified.
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We now consider a real emission k1 collinear to p̃1 that can be expressed as

k1 =
(

1− z(`1)
1

)
p̃1 +

(
1− z(`2)

1

)
p̃2 + κ⊥1 , (A.2)

where κ⊥1 is a space-like four-vector, orthogonal to both p̃1 and p̃2 such that κ2
⊥1 = −k2

⊥1. Note
that since k1 is massless

k2
⊥1 =

(
1− z(`1)

1

)(
1− z(`2)

1

)
m2
H =

2(p̃1 · k1)2(p̃2 · k1)

2(p̃1 · p̃2)
.

Moreover, if k1 is collinear to p̃1 one has (from (1− z(`1)
1 ) > (1− z(`2)

1 ))

z
(`1)
1 < 1− k⊥1

mH
. (A.3)

An analogous limit on z(`2)
1 as in Eq. (A.3) holds when k1 is collinear to p̃2. Subsequent emissions

off leg `1 can be parametrized analogously to Eq. (A.2), replacing the reference momentum p̃1 with

p̃1 →

 k∏
i=1
`i=`1

z
(`i)
i

 p̃1 ' p̃1, (A.4)

where the product runs over all emissions off leg `1 that occur prior to the emission we are
parametrizing, and we used the fact that in the soft limit z(`i)

i ' 1. A similar parametrization
holds for emissions off leg `2.

The transverse recoil of the radiation is absorbed entirely by the Higgs boson that acquires a
transverse momentum

p⊥ = |
∑
i

~k⊥i|. (A.5)

In order to predict the p⊥ → 0 limit, we need to sum emissions at all orders in the strong coupling.
With LL accuracy, the squared amplitude for n emissions can be approximated by a product of n
independent splitting kernels, as the soft correlation between emissions starts contributing at NLL
order. The physical picture corresponding to this approximation is given by a set of independent
emissions off legs `1 and `2. In this approximation, the differential partonic distribution can be
written as

dσ̂

dp⊥
' [dpH ]|M(p̃1 + p̃2 → H)|2δ(4)(p̃1 + p̃2 − pH)

× 1

n!

n∏
i=1

[dki]|Msoft(ki)|2δ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.6)

where the eikonal squared amplitude for a single emission reads

[dk]|Msoft(k)|2 =
∑
`=1,2

2CA
αs(k⊥)

π

dk⊥
k⊥

dz(`)

1− z(`)
Θ
(

(1− z(`))− k⊥/mH

) dφ
2π
. (A.7)

In Eq. (A.7), the coupling is evaluated at k⊥ to account for the leading-logarithmic contribution of
the gluon branching into either a pair of soft quarks or gluons, see e.g. [56] for a detailed explanation.

The resummation is naturally performed at the level of the cumulative distribution, defined as

Σ(p⊥) =

∫ p⊥

0

dp′⊥
dσ

dp′⊥
. (A.8)
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Indeed while the differential spectrum involves plus distributions in p⊥, Σ(p⊥) is a regular function.
From Eq. (A.6), it follows that the cumulative distribution with LL accuracy can be written as

Σ(p⊥) ' [fg(µF )⊗ fg(µF )] (mH
2/s)×

∫
dσ̂Θ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.9)

where fg(µF ) is the gluon parton density evaluated at the factorization scale µF , and the convolution
is defined as usual

[f ⊗ g] (x) ≡
∫ 1

0

dy dz δ(x− yz)f(y)g(z). (A.10)

Since p⊥ only constrains the transverse momentum of the emissions, we can perform the integrals
over the z(`i)

i components inclusively. It is therefore convenient to introduce the functions

R′1 (p⊥) =

∫
[dk]|Msoft(k)|2 (2π)δ(φ− φ̄) p⊥δ (p⊥ − k⊥) Θ(z(2) − z(1)) ,

R′2 (p⊥) =

∫
[dk]|Msoft(k)|2 (2π)δ(φ− φ̄) p⊥δ (p⊥ − k⊥) Θ(z(1) − z(2)) .

(A.11)

This notation allows us to parametrize the real-emission matrix element and phase space as

[dki]|Msoft(ki)|2 =
dk⊥i
k⊥i

dφi
2π

∑
`i=1,2

R′`i (k⊥i) =
dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (ζik⊥1) , (A.12)

where we defined ζi = k⊥i/k⊥1.
We now discuss the purely virtual corrections, which are encoded in the gluon form factor

|M(p̃1 + p̃2 → H)|2. We write it as

|M(p̃1 + p̃2 → H)|2 = H(mH)|MB(p̃1 + p̃2 → H)|2, (A.13)

where the function H contains all the IRC singularities and the constant finite corrections of the
form factor, andMB denotes the Born amplitude. Since we are working with LL accuracy, we are
only interested in the leading singular term of H at all orders (while neglecting all finite terms)
which can be written as

H(mH) ' exp

{
−
∫

[dk]|Msoft(k)|2
}
. (A.14)

Note that the integral in Eq. (A.14) is divergent and is to be considered as regularized. In order
to cancel the IRC divergences of the real emissions (A.6) against the ones in the virtual correc-
tions (A.14) at all orders, we introduce a small slicing parameter ε > 0 such that all emissions with
a transverse momentum k⊥i smaller than εk⊥1 can be ignored in the computation of the observable
p⊥, in the limit ε → 0. The real emissions with k⊥i < εk⊥1, hereby denoted as unresolved, can
be directly combined with the virtual corrections at all orders. Their combination gives rise to an
exponential suppression factor of the type

H(mH)

∞∑
m

1

m!

m∏
i=1

[ ∫
dk⊥i
k⊥i

dφi
2π

∑
`i=1,2

R′`i (k⊥i) Θ (εk⊥1 − k⊥i)
]

= exp

−
∫
dk⊥
k⊥

dφ

2π

∑
`=1,2

R′` (k⊥) Θ (k⊥ − εk⊥1)

 ≡ e−R(εk⊥1). (A.15)

On the other end, emissions with k⊥i > εk⊥1, that we denote as resolved, are constrained by
the observable’s measurement function and therefore cannot be integrated over inclusively. The
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resummed LL cross section thus reads

Σ(p⊥) 'σB
∫
dk⊥1

k⊥1

dφ1

2π
e−R(εk⊥1)

∑
`1=1,2

R′`1 (k⊥1)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (ζik⊥1) Θ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.16)

where σB is the Born cross section. The above formula, in the limit ε → 0 exactly reproduces the
LL corrections to the p⊥ distribution, see Ref. [29] for a formal proof. Eq (A.16) can be further
simplified by observing that in the resolved radiation one always has ζi ∼ 1, since configurations
in which ζi � 1 are automatically canceled against the exponential Sudakov factor e−R(εk⊥1).
Therefore, one can expand the functions R′ (ζik⊥1) in powers of ln(1/ζi) as

R′`i (ζik⊥1) = R′`i (k⊥1) +R′′`i (k⊥1) ln
1

ζi
+ . . . , (A.17)

and retain terms that contribute at a given logarithmic order. In particular, at LL, only the first
term in this expansion contributes, and higher-order terms matter at higher logarithmic orders (see
Refs. [29] for details).

Similarly, we can consistently expand out the ε dependence of the exponential Sudakov as

e−R(εk⊥1) = e−R(k⊥1)e−R
′(k⊥1) ln 1

ε+..., (A.18)

where the ε dependence manifestly cancels against the one in the resolved contribution, and we
defined

R′ (k⊥1) ≡
∑
`1=1,2

R′`1 (k⊥1) . (A.19)

Therefore, with LL accuracy, Eq. (A.16) becomes

Σ(p⊥) 'σB
∫
dk⊥1

k⊥1

dφ1

2π
e−R(k⊥1)εR

′(k⊥1)
∑
`1=1,2

R′`1 (k⊥1)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (k⊥1) Θ

(
p⊥ − |

∑
i

~k⊥i|

)
. (A.20)

Equation (A.20) is suitable for a numerical implementation, as explained in Ref. [29] in detail. The
dependence on ε is at most power suppressed (i.e. O(εp⊥)) and it vanishes in the limit ε→ 0. This
limit can therefore be taken safely numerically, and the result is absolutely stable for very small
values of ε.17

We now introduce the resummation scale Q as a possible way to switch off the resummation at
large transverse momentum. This is defined with a procedure similar to the one discussed in the
text. We first break the logarithm as follows

L ≡ ln
mH

k⊥1
= ln

mH

Q
+ ln

Q

k⊥1
. (A.21)

The above operation will allow us (as explained shortly) to have an additional handle (namely the
scale Q) to estimate the size of subleading logarithmic terms. Moreover, we also slightly modify the
phase space available for the radiation, by introducing power-suppressed contributions that ensure

17In our implementation we use ε = e−20, although any value below ε = e−6 does not lead to any appreciable
differences.
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that at large p⊥ the resummation effects completely vanish. This can be done, as a first step, by
modifying the resummed logarithms as follows

ln
Q

k⊥1
→ 1

p
ln

(
Qp

kp⊥1

+ 1

)
≡ L̃, (A.22)

where p is a positive real parameter which is chosen such that the resummed differential distribution
vanishes as 1/pp+1

⊥ at large p⊥. The above prescription essentially amounts to the following

1. First, we split the resummed logarithm L into the sum of a small logarithm ln(mH/Q) (with
Q ∼ mH) and a large one ln(Q/k⊥1). This operation allows one to introduce a generic scale Q
which appears in the resummed logarithms. One can now expand L about ln(Q/k⊥1), retain-
ing all terms with the desired logarithmic accuracy. Effectively, this implies that ln(mH/Q)

is treated perturbatively at fixed order. Moreover, we replace ln(Q/k⊥1) by the modified
logarithm L̃. In our LL example this means

R(k⊥1)→ R̃(k⊥1) +O(lnmH/Q); R(k⊥1)→ R̃′(k⊥1) +O(lnmH/Q), (A.23)

where R̃ and R̃′ are functions of the modified logarithm L̃ only.

2. Eq. (A.22) comes together with the following prefactor J in Eq. (A.20)

J (k⊥1) =

(
Q

k⊥1

)p(
1 +

(
Q

k⊥1

)p)−1

. (A.24)

This corresponds to the Jacobian for the transformation (A.22), and ensures the absence of
fractional (although power suppressed) αs powers in the final distribution [29]. This factor,
once again, leaves the small k⊥1 region untouched, and only modifies the large p⊥ region by
power-suppressed effects. This is effectively mapping the limit k⊥1 → Q onto k⊥1 → ∞.
Although this procedure seems a simple change of variables, we stress that the observable’s
measurement function (i.e. the Θ function in Eq. (A.20)) is not affected by this prescription.
As a consequence, the final result will depend on the parameter p through power-suppressed
terms.

The difference between the above prescription and what was introduced in the text is that the
argument of the (modified) logarithms is now k⊥1 instead of p⊥. This prescription is technically
more correct, since in the small k⊥1 region, which governs the p⊥ → 0 limit, the modified loga-
rithms leave Eq. (A.20) untouched. Conversely, at large k⊥1, where one has k⊥1 ∼ p⊥, the above
prescription reduces to what was defined in the text, i.e. the modified logarithms of k⊥1 in this
region are formally equivalent to modified logarithms in p⊥. To see this, we observe that when
k⊥1 � Q the function R′(k⊥1) � 1. Therefore, the probability of having any emission after the
first one in Eq. (A.20) is strongly suppressed. As a consequence, at large k⊥1, the only relevant
event is the one that involves a single emission k1, for which the cross section reads

Σ(p⊥) ∼σB
∫
dk⊥1

k⊥1

dφ1

2π
J (k⊥1)e−R̃(k⊥1)

∑
`1=1,2

R̃′`1 (k⊥1) Θ
(
p⊥ − |~k⊥1|

)
= e−R̃(p⊥). (A.25)

It is easy to see that, if Eq. (A.25) were evaluated without the factor J , it would lead to additional
power-suppressed terms with fractional power of the coupling, which are clearly spurious.

A.2 Final formulas for NNLL resummation

Beyond LL, Eq. (A.20) is corrected to account for the description of the real-emission matrix element
and phase space in less singular configurations, as well as higher perturbative corrections. To NNLL
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order it can be expressed as [29]

Σ(p⊥) =

∫
dk⊥1

k⊥1

dφ1

2π
J (k⊥1)

εR̃′(k⊥1)
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`1=1,2

R̃′`1 (k⊥1)


×

{
d

dL̃

[
−e−R̃(k⊥1)L(k⊥1)

]
Θ

(
p⊥ − |

n+1∑
i=1

~k⊥i|

)
+ e−R̃(k⊥1)R̃′(k⊥1)

×
∫ 1

ε

dζs
ζs

dφs
2π

 ∑
`i=1,2

(
δR̃′`i(k⊥1) + R̃′′`i(k⊥1) ln

k⊥1

k⊥s

)
L̂(k⊥1)− dL̂(k⊥1)

dL̃


×
[
Θ
(
p⊥ − |

n+2∑
i=1

~k⊥i|
)
−Θ

(
p⊥ − |

n+2∑
i=1
i 6=s

~k⊥i|
)]}

, (A.26)

where ζi = k⊥i/k⊥1. In this formula, the Sudakov radiator R̃(k⊥1) is corrected with respect to
its LL expression by higher-order corrections of both soft and collinear origin. The same comment
applies to the function R̃′`i which we decided to split into the old R̃′ (derivative of the LL radiator
defined above), plus a correction that contains all subleading effects, therefore replacing R̃′ with

R̃′`i → R̃′`i + δR̃′`i . (A.27)

The correction due to δR̃′`i is only relevant to NNLL order for one of the resolved emissions. This
special emission is denoted by the subscript s in Eq. (A.26). After expanding to first order the
corresponding term proportional to δR̃′`i arising from the initial εR̃

′
factor, one ends up with the

second term in the curly bracket in Eq. (A.26), see Ref. [29] for a full derivation. The same
manipulations apply to the R̃′′ correction coming from the expansion (A.17) discussed above.

Moreover, we introduced the following generalized luminosity coefficient

L(k⊥1) = |MB |2
∑
i,j

∫
dx1dx2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e

−L̃,
x1

z1

)
fj

(
µF e

−L̃,
x2

z2

)
δ(x1x2s−mH

2)

×

[
δgiδgjδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)

(
µR,

Q

mH

))

+
αs(µR)

2π

1

1− 2αs(µR)β0L̃

(
C̃

(1)
gi

(
z1, µF ,

Q

mH

)
δ(1− z2)δgj + {z1 ↔ z2; i↔ j}

)]
, (A.28)

and its NLL approximation

L̂(k⊥1) = |MB |2
∫
dx1dx2fg

(
µF e

−L̃, x1

)
fg

(
µF e

−L̃, x2

)
δ(x1x2s−mH

2). (A.29)

We now report all the various ingredients entering the above formulas. The O(αs) correction
to the collinear coefficient functions reads

C̃
(1)
gi

(
z, µF ,

Q

mH

)
= −P (0),ε

ij (z)− δijδ(1− z)CA
π2

12
+ P

(0)
ij (z) ln

Q2

µ2
F

(A.30)
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where P (0)
ij are the LO Altarelli-Parisi splitting functions

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

P (0)
qg (z) = TR

[
z2 + (1− z)2

]
,

P (0)
gq (z) = CF

1 + (1− z)2

z
,

P (0)
gg (z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ 2πβ0δ(1− z), (A.31a)

with β0 = (11CA − 2nf )/(12π) and P (0),ε
ij (z) are given by

P (0),ε
qq (z) = −CF (1− z) , (A.32a)

P (0),ε
gq (z) = −CF z , (A.32b)

P (0),ε
qg (z) = −2TRz(1− z) , (A.32c)

P (0),ε
gg (z) = 0. (A.32d)

The function H̃(1)
(
µR,

Q
mH

)
is defined as

H̃(1)

(
µR,

Q

mH

)
= H(1) −

(
B(1) +

A(1)

2
ln
mH

2

Q2

)
ln
mH

2

Q2
+ 4πβ0 ln

µ2
R

mH
2
, (A.33)

where H(1) denotes the finite one-loop virtual correction to the gg → H process and A(i), B(i) are
reported below. For the top contribution in the mt →∞ approximation, H(1) reads

H(1) = CA

(
5 +

7

6
π2

)
− 3CF = 11 +

7

2
π2 . (A.34)

The result including full quark mass dependence has been computed analytically in Refs. [45, 57,
58].18

We expand the Sudakov radiator as

R̃ = L̃g1(λ) + g2(λ) +
αs(mH)

π
g3(λ), (A.35)

where

λ = αs(µR)β0L̃. (A.36)

We introduce

xQ =
Q

mH
, (A.37)

18In our implementation we take both the Born amplitude and the virtual corrections from Ref. [45].
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and write

g1(λ) =
A(1)

πβ0

2λ+ ln(1− 2λ)

2λ
, (A.38)

g2(λ) =
1

2πβ0
ln(1− 2λ)

(
A(1) ln

1

x2
Q

+B(1)

)
− A(2)

4π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ

+A(1)

(
− β1

4πβ3
0

ln(1− 2λ)((2λ− 1) ln(1− 2λ)− 2)− 4λ

1− 2λ

− 1

2πβ0

(2λ(1− ln(1− 2λ)) + ln(1− 2λ))

1− 2λ
ln

µ2
R

x2
QmH

2

)
, (A.39)

g3(λ) =

(
A(1) ln

1

x2
Q

+B(1)

)(
− λ

1− 2λ
ln

µ2
R

x2
QmH

2
+

β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ

)

− 1

2πβ0

λ

1− 2λ

(
A(2) ln

1

x2
Q

+B(2)

)
− A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2)

(
β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2
− 1

πβ0

λ2

(1− 2λ)2
ln

µ2
R

x2
QmH

2

)
+A(1)

(
λ
(
β0β2(1− 3λ) + β2

1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(
β0β2(1− 2λ) + 2β2

1λ
)

2β4
0(1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2
− λ2

(1− 2λ)2
ln2 µ2

R

x2
QmH

2

− β1

2β2
0

(2λ(1− 2λ) + (1− 4λ) ln(1− 2λ))

(1− 2λ)2
ln

µ2
R

x2
QmH

2

)
. (A.40)

The expressions of R̃′, δR̃′, and R̃′′ used in Eq. (A.26) are defined as

R̃′ = − d

dL̃

(
L̃g1(λ)

)
, δR̃′ = −dg2(λ)

dL̃
, R̃′′ =

dR̃′

dL̃
. (A.41)

The β function coefficients read

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (A.42)

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3
. (A.43)

Finally, we have

A(1) = 2CA,

A(2) =

(
67

9
− π2

3

)
C2
A −

10

9
CAnf ,

A(3) =

(
−22ζ3 −

67π2

27
+

11π4

90
+

15503

324

)
C3
A +

(
10π2

27
− 2051

162

)
C2
Anf

+

(
4ζ3 −

55

12

)
CACFnf +

50

81
CAn

2
f ,

B(1) =− 11

3
CA +

2

3
nf ,

B(2) =

(
11ζ2

6
− 6ζ3 −

16

3

)
C2
A +

(
4

3
− ζ2

3

)
CAnf + CACF . (A.44)
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A.3 Matching to fixed order

In this section we discuss the matching of the resummed and the fixed-order results. We work at
the level of the cumulative distribution Σ, that at NNLO reads

ΣNNLO(p⊥) = σNNLO
tot −

∫ ∞
p⊥

dp′⊥

[
dσ

dp⊥

]NLO

. (A.45)

We stress that in the main text we only show results for the differential p⊥ distribution, therefore
we label them as NLO. This corresponds to what we label as NNLO at the integrated level in this
appendix. Since the total gg → H cross section is not known in the full SM beyond NLO, we ap-
proximate the NNLO correction to σNNLO

tot by multiplying the exact NLO result by the NNLO/NLO
K factor as computed in the mt → ∞,mb → 0 limit. We stress, however, that at the level of the
differential distributions we are interested in, this approximation is formally a N3LL effect, and it
is beyond the accuracy considered in our study.

In order to assess the uncertainty associated with the matching procedure, we consider here
two different matching schemes. The first scheme we introduce is the common additive scheme
discussed in the main text defined as

Σadd(p⊥) = ΣNNLL(p⊥) + ΣNNLO(p⊥)− T NNLO
[
ΣNNLL(p⊥)

]
. (A.46)

Since the O(α2
s) (relative to the Born) collinear coefficient functions and virtual corrections are

unknown in the full SM, in the additive scheme we approximate them by multiplying the HEFT
ones by the exact Born squared amplitude.

The second scheme we consider belongs to the class of multiplicative schemes. In the text, we
schematically defined it as

Σmult(p⊥) = ΣNNLL(p⊥) T NNLO

[
ΣNNLO(p⊥)

ΣNNLL(p⊥)

]
. (A.47)

We recall that we indicate with T NNLO[f ] the fixed-order expansion of f to NNLO. The two
schemes (A.46), (A.47) are equivalent at the perturbative order we are working at, as they only
differ by N3LO and N3LL terms. The main difference between the two schemes is that, in the
multiplicative approach, unlike in the additive one, higher-order corrections are damped by the
resummation factor ΣNNLL at low p⊥. One advantage of the multiplicative solution is that the
NNLO constant terms, of formal accuracy N3LL, are automatically extracted from the fixed order in
the procedure. Furthermore, as we explained in the text, in this case higher order effects introduced
by the resummation follow the same scaling in p⊥ of the fixed-order result, which at least partially
mimics higher order form-factor effects.

However, there is a drawback in using Eq. (A.47) as is. Indeed, ΣNNLL does not tend to one for
p⊥ � Q, but rather to the luminosity factor defined in Eq. (A.28) evaluated at L̃ = 0. Therefore,
the fixed-order result ΣNNLO at large p⊥ receives a relative spurious correction of order α3

s

Σmult(p⊥) ∼ ΣNNLO(p⊥)
(
1 +O(α3

s)
)
. (A.48)

Despite being formally of higher order, these effects can be moderately sizable in processes with
large K factors such as Higgs production. There are different possible solutions to this problem. In
Ref. [29] the resummed factor (and the relative expansion) was modified by introducing a damping
factor as

ΣNNLL →
(
ΣNNLL

)Z
, (A.49)

where Z is a p⊥-dependent exponent that effectively acts as a smoothened Θ function that tends
to zero at large p⊥. This solution, however, introduces new parameters that control the scaling of
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the damping factor Z (see Section 4.2 of Ref. [29] for details). In this article we adopt a simpler
solution, which avoids the introduction of extra parameters in the matching scheme. We therefore
define the multiplicative matching scheme by normalizing the resummed prefactor to its asymptotic
value for at L̃→ 0. This is simply given by

ΣNNLL
asym. = lim

L̃→0
L(k⊥1). (A.50)

We obtain

Σmult(p⊥) =
ΣNNLL(p⊥)

ΣNNLL
asym.

T NNLO

[
ΣNNLL

asym.

ΣNNLO(p⊥)

ΣNNLL(p⊥)

]
, (A.51)

where
ΣNNLL(p⊥) −−−−→

p⊥�Q
ΣNNLL

asym. . (A.52)

This ensures that in the p⊥ � Q limit Eq. (A.51) reproduces by construction the fixed-order result,
and no large spurious, higher-order, corrections arise in this region. The detailed matching formulas
for the two schemes considered in our analysis are reported below.

We start by introducing a convenient notation for the perturbative expansion of the various
ingredients. We define

σNNLO
tot =

2∑
i=0

σ(i), ΣNNLO(p⊥) = σ(0) +

2∑
i=1

Σ(i)(p⊥), (A.53)

where

Σ(i)(p⊥) = σ(i) + Σ̄(i)(p⊥), Σ̄(i)(p⊥) ≡ −
∫ ∞
p⊥

dp′⊥
dΣ(i)(p′⊥)

dp′⊥
. (A.54)

Moreover, we denote the perturbative expansion of the resummed cross section ΣNNLL as

T NNLO
[
ΣNNLL(p⊥)

]
= σ(0) +

2∑
i=1

Σ
(i)
NNLL(p⊥). (A.55)

With this notation, the additive scheme of Eq. (A.46) becomes (for simplicity we drop the explicit
dependence on p⊥ in the following)

Σadd =ΣNNLL +
{
σ(1) + Σ̄(1) − Σ

(1)
NNLL

}
+
{
σ(2) + Σ̄(2) − Σ

(2)
NNLL

}
, (A.56)

where the three terms in curly brackets denote the NLO, NNLO and N3LO contributions to the
matching, respectively.

For the multiplicative scheme we need to introduce the perturbative expansion of the asymptotic
value ΣNNLL

asym. , defined in Eq. (A.50). We write

ΣNNLL
asym. = σ(0) + Σ(1)

asym.. (A.57)

With this notation the matching formula (A.51) reads

Σmult(p⊥) =
ΣNNLL

ΣNNLL
asym.

[
σ(0) +

{
σ(1) + Σ̄(1) + Σ(1)

asym. − Σ
(1)
NNLL

}
+

{
σ(2) + Σ̄(2)

− Σ
(2)
NNLL +

Σ
(1)
asym.

σ(0)
(σ(1) + Σ̄(1)) +

(Σ
(1)
NNLL)2

σ(0)
−

Σ
(1)
NNLL

σ(0)
(σ(1) + Σ̄(1) + Σ(1)

asym.)

}]
, (A.58)

where, as above, we grouped the terms entering at NLO, and NNLO within curly brackets.
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