
AIDA-2020-NOTE-2018-001

AIDA-2020
Advanced European Infrastructures for Detectors at Accelerators

Scientific/Technical Note

EUDAQ2 User Manual

Liu, Yi (DESY)

01 September 2017

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project
has received funding from the European Union’s Horizon 2020 Research and Innovation

programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 5: Data acquisition system for beam tests.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site
<http://aida2020.web.cern.ch> or on the CERN Document Server at the following URL:

<http://cds.cern.ch/search?p=AIDA-2020-NOTE-2018-001>

Copyright c© CERN for the benefit of the AIDA-2020 Consortium

http://aida2020.web.cern.ch
http://cds.cern.ch/search?p=AIDA-2020-NOTE-2018-001

EUDAQ User Manual

EUDET

EUDAQ2 User Manual

EUDAQ2 Development Team

Yi Liu

Last update on September 2017
for EUDAQ version v2.0.1

This document provides an overview of the EUDAQ software framework,
the data acquisition framework originally developed for use by the EUDET-
type beam telescopes [1]. It describes how to install and run the DAQ
system and use many of the included utility programs, and how users may
integrate their DAQ systems into the EUDAQ framework by writing their own:
Producer, for integrating the data stream into the acquisition; DataCollector,
for merging the muiltple data streams and writing to disk; and DataConverter,
for converting data for offline analysis.

1

EUDAQ User Manual Contents

Contents

1. License 4

2. Introduction 5
2.1. Architecture . 5
2.2. Directory and File Structure . 7
2.3. Executables . 8
2.4. Libraries . 8

3. Installation 10
3.1. Binary Package Installation . 10
3.2. Building from Source Code . 10

4. Run an Example Setup 14
4.1. Target Setup . 14
4.2. Preparation . 14
4.3. Startup . 16
4.4. Operating . 21
4.5. After data taking . 22

5. Integration with User Hardware 24
5.1. Announcement of Derived Class . 24
5.2. Serializable . 24
5.3. Ownership . 26
5.4. Command/Status Handling . 26

6. Writing a Producer 29
6.1. Producer Prototype . 29
6.2. Example Source Code: Dummy Event Producer 30

7. Writing a DataCollector 36
7.1. DataCollector Prototype . 36
7.2. Example Code: DirectSave . 37
7.3. Example Code: SyncTrigger . 38

8. Writing a Data Converter 42
8.1. Event Structure . 42
8.2. Example Code: RawEvent2StdEvent . 42

9. Writing a Monitor 44
9.1. Monitor Prototype . 44
9.2. Example Code . 45
9.3. Graphical User Interface . 47

10.Writing a RunControl 48
10.1. RunControl Prototype . 48
10.2. Example Code: auto stop . 48

2

EUDAQ User Manual Contents

10.3. RunControl Mode . 49

11.Support User Defined Event Type 51
11.1. Event . 51
11.2. FileWriter . 51
11.3. FileReader . 53

12.Contributing to EUDAQ 55
12.1. Reporting Issues . 55
12.2. Regression Testing . 55
12.3. Commiting Code to the Main Repository 55

A. Platform Dependent Issues/ Solutions 58
A.1. Linux . 58
A.2. MacOS . 58
A.3. Windows . 58

Glossary 59

3

EUDAQ User Manual 1. License

1. License

This program is free software: you can redistribute it and/or modify it under the terms
of the Lesser GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more
details.
You should have received a copy of the Lesser GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.

4

http://www.gnu.org/licenses/

EUDAQ User Manual 2. Introduction

2. Introduction

The EUDAQ software is a data acquisition framework, written in C++, and designed to
be modular and portable, running on Linux, Mac OS X, and Windows. It was originally
written primarily to run the EUDET-type beam telescope [2, 3], but is designed to be
generally useful for other systems.
The hardware-specific parts are kept separate from the core, so that the core library can
still be used independently. For example, hardware-specific parts are two components
for the EUDET-type beam telescope: the Trigger Logic Unit (TLU) and the National
Instrument (NI) system for Mimosa 26 sensor read out.
The raw data files generated by the DAQ can be converted to the Linear Collider I/O
(LCIO) format, allowing analysis of the data using the EUTelescope package [4].

2.1. Architecture

It is split into a number of different processes, each communicating using TCP/IP sockets
(see Figure 1). A central Run Control provides an interface for controlling the whole
DAQ system; other processes connect to the Run Control to receive commands and to
report their status.

Run$Control

Disk

Disk

Producer$0

Producer$1

Producer$2

Log$Collector

Data$
Sender

Data$
Sender

Data$
Sender

Data$
Sender

Data$
Sender

Monitor$0Data$
Receiver
Data$

Converter

Data$
Collector$0

Data$
Receiver

Data$
Receiver

Data$
Receiver

Data$
Sender

File$
Writer

Data$
Converter

Data$
Collector$1

Data$
Receiver

Data$
Receiver

File$
Writer

Data$
Converter

Figure 1: Schematic of the EUDAQ architecture [5].

The DAQ system is made up of a number of different processes that may all be run on
the same, or on different computers.

5

EUDAQ User Manual 2. Introduction

2.1.1. Run Control

The RunControl is the controller process which manages the full EUDAQ system. There
should be always only one instance of RunControl for a runtime setup. All other data
taking processes must have the network location of RunControl and anounces themelves
to the RunControl. The RunControl takes in the paths of ini/config files and picks up
and sends the correlated section to each of the connected processes. As the front end
point to users, the RunControl will wait for user input by command line or GUI button
click and issue the data taking command to whole EUDAQ system.

2.1.2. Producer

Each hardware that produces data will have a Producer process (on the left in Figure 1).
This will initialize, configure, stop and start the hardware by receiving the commands
from the Run Control (red arrows), read out the data and send it to the Data Collector
(blue arrows).

2.1.3. Data Collector

The Data Collector is the process that collects all the raw data from the Producers,
merges all the connected incoming streams into a single data stream, and writes it to file.

The Data Collector receives all the data streams from all the Producers, and combines
them into a single stream that is written to disk (Storage). It writes the data in a native
raw binary format, but it can be configured to write in other formats, such as LCIO.

2.1.4. Log Collector

The Log Collector receives log messages from all other processes (grey arrows), and
displays them to the user, as well as writing them all to file. This allows for easier
debugging, since all log messages are stored together in a central location.

2.1.5. Monitor

The Monitor reads the data file and generates online-monitoring plots for display. In
the schematic it is shown to communicate with the Data Collector via a socket, but it
actually just reads the data file from disk.

The Online Monitor can be run in one of two modes: online or offline. In online mode,
it connects to the Run Control, so it will know when new runs are started, and it will
automatically open each new data file as it is created.

6

EUDAQ User Manual 2. Introduction

2.2. Directory and File Structure

The EUDAQ software is split into several parts that can each be compiled independently,
and are kept in separate subdirectories. The general structure is outlined below:

• main contains the core EUDAQ library with the parts that are common to most of
the software, and several command-line programs that depend only on this library.
All definitions in the library should be inside the eudaq namespace. It is organized
into the following subdirectories:

– main/lib/core contains the source code of the core library,

– main/lib/lcio contains the source code of the LCIO extension library,

– main/lib/root contains the source code of the ROOT extension library,

– main/module contains the source code of the module libraries,

– main/exe contains the CLI (command line interface) executables source code,

• gui contains the graphical programs that are built with Qt, such as the RunControl
and LogCollector.

• user contains all user provided code shipped with the EUDAQ distribution, for
example:

– user/example contains example code for the integration of user-provided
code.

– user/eudet contains the parts that depend on the EUDET-type telescope.

– e.g. user/calice, user/itkstrip. . . contain the code from third-party
users.

• extern global folder which contains external software which themselves are not
part of the EUDAQ project.

• cmake global folder which contains cmake files.

• etc contains configuration files of the EUDAQ installation.

• conf contains configuration files for running the beam telescope.

• doc contains source files of the documentation, such as this manual.

Each directory containing code has its own src and include subdirectories, as well as
a local CMakeLists.txt and an optional cmake folder containing the rules for building
that directory using CMake. Header files have a .hh extension so that they can be
automatically recognized as C++, and source files have either .cc for parts of libraries
and .cxx for executables. In the case of requiring any external dependencies, there could
be a local extern folder.
Each directory can contain a README.md file for brief documentation for this specific part,
e.g. as an installation advice. Using the *.md file ending allows the Markdown language
[6] to be applied. Accordingly, the content will be formatted on the the GitHub platform,
where the code is hosted online.

7

EUDAQ User Manual 2. Introduction

Binary Category GUI/CLI Description

euRun Run Control GUI (Sec. 5.4.1)
euLog Log Collector GUI (Sec. 4.3.2)

StdEventMonitor legacy Monitor GUI
euCliRun Run Control CLI (Sec. 5.4.1)

euCliLogger Log Collector CLI (Sec. 4.3.2)
euCliCollector Data Collector CLI (Sec. 4.3.3)
euCliProducer Producer CLI (Sec. 4.3.4)
euCliMonitor Monitor CLI (Sec. 4.3.5)

euCliConverter Offline Tool CLI data file converter (Sec.
4.5.2)

euCliReader Offline Tool CLI dump events from data
file (Sec. 4.5.1)

Table 1: Overview of EUDAQ executables.

2.3. Executables

All executable programs from the different subdirectories are in the bin subdirectory.
They should all accept a -h (or --help) command-line parameter, which will provide a
summary of possible different command-line options.
The executable programs can be split into two different categories: firstly, processes,
which are used for the data acquisition and communicating with the Run Control (DAQ);
and, secondly, utilities, which are used before or after the data taking in order to access
the data files (Test, Development, Tools). In Table 1, an overview of the most important
EUDAQ executables is given.

2.4. Libraries

The libraries are installed in the lib directory under the install path in Linux/MacOS
systems, and to the bin sub-folder in Windows systems. The suffix of libraries name can
be .so, .dylib, .dll depending on operate systems. There are 3 category of libraries:
core, extension and module:

• Core: the core library. It should be always built and installed.

• Extension: optional features of EUDAQ (e.g. support for external data format).
Static linked core library.

• Module: user module. Dynamic load by EUDAQ core library at run-time.

In Table 2, an overview of the all EUDAQ libraries is given.

8

EUDAQ User Manual 2. Introduction

Binary Category Source Code Description

libeudaq core Core main\lib\core core library

libeudaq lcio Extension main\lib\lcio lcio extension library
libeudaq std Extension main\lib\std standard extension li-

brary

libeudaq module test Module main\module\test test module library
libeudaq module example Module user\example\module module library by exam-

ple user

Table 2: Overview of EUDAQ libraries.

9

EUDAQ User Manual 3. Installation

3. Installation

To install the EUDAQ on Linux, Windows or MacOS, you have a choice to download
binary distribution package or build it from the source code.

3.1. Binary Package Installation

The portable precompiled packages are avaliable from EUDAQ website. You could unpack
the installation package to any folder and run the example directly. Please note, not
all features of EUDAQ are enabled in the precompiled package, since it is not sure at
compiling time whether the end user have the necessary dependency package installed.

3.2. Building from Source Code

The installation is described in four steps:1

1. Installation of (required) prerequisites

2. Downloading the source code (GitHub)

3. Configuration of the code (CMake)

4. Compilation of the code

If problems occur during the installation process, please have a look at the issue tracker
on GitHub.2 Here you can search whether your problem had already been experienced
by someone else, or you can open a new issue (see subsection 12.1).

3.2.1. Prerequisites

EUDAQ has some dependencies on other software, but some features do rely on other
packages:

• To get the code and stay updated with the central repository on GitHub, git is
used.

• To configure the EUDAQ build process, the CMake cross-platform, open-source
build system is used.

• To compile EUDAQ from source code requires a compiler that implements the
C++11 standard.

• Qt is required to build GUIs of e.g. the RunControl or LogCollector.

• ROOT is required for the lagecy StdEventMonitor.

1Quick installation instructions are also described on http://eudaq.github.io/ or in the main
README.md file of each branch, e.g. https://github.com/eudaq/eudaq/blob/master/README.md.

2Go to https://github.com/eudaq/eudaq/issues

10

http://eudaq.github.io/
https://github.com/eudaq/eudaq/blob/master/README.md
https://github.com/eudaq/eudaq/issues

EUDAQ User Manual 3. Installation

Git Git is a free and open source distributed version control and is available for all of
the usual platforms [7]. It allows local version control and provides repositories, but also
enables communication with central online repositories like GitHub.
In order to get the EUDAQ code and stay updated with the central repository on GitHub,
git is used (see subsubsection 3.2.2). For EUDAQ code development, requiring different
versions (tags) or branches (development repositories), git is also used.

CMake (required) In order to generate configuration files for building EUDAQ (make-
files) independently from the compiler and the operating platform, the CMake (at least
version 3.1) build system is used.
CMake is available for all major operating systems from http://www.cmake.org/cmake/

resources/software.html. On most Linux distributions, it can usually be installed via
the built-in package manager (aptitude/apt-get/yum etc.) and on MacOS using packages
provided by e.g. the MacPorts or Fink projects.

C++11 compliant compiler (required) The compilation of the EUDAQ source code
requires a C++11 compliant compiler and has been tested with GCC (at least version
4.8.1), Clang (at least version 3.1), and MSVC (Visual Studio 2013 and later) on Linux,
OS X and Windows.

Qt (for GUI) The graphical interface of EUDAQ uses the Qt graphical framework.
In order to compile the gui subdirectory, you must therefore have Qt installed. It is
available in most Linux distributions as the package qt5-devel or qt5-dev. It can also
be downloaded and installed from http://download.qt.io/archive/qt/.

ROOT (for the StdEventMonitor) The Online Monitor uses the ROOT package. It
can be downloaded from http://root.cern.ch.
Make sure ROOT’s bin subdirectory is in your path, so that the root-config utility
can be run. This can be done by sourcing the thisroot.sh (or thisroot.ch for csh-like
shells) script in the bin directory of the ROOT installation:

source /path-to/root/bin/thisroot.sh

LCIO (for LCIO extension) To enable the writing of LCIO files, or the conversion of
native files to LCIO format, EUDAQ must be linked against the LCIO libraries. When
the LCIO option is enabled during the configuration step, source files will be download
from the internet and compiled automatically.

3.2.2. Obtaining the source code

The EUDAQ source code is hosted on GitHub [8]. Here, we describe how to get the code
and install a stable version release. In order to get information about the work flow of
developing EUDAQ code, please find the relevant information in see section 12.

11

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://download.qt.io/archive/qt/
http://root.cern.ch

EUDAQ User Manual 3. Installation

Downloading the code (clone) We recommend using git to download the software,
since this will allow you to easily update to newer versions. The source code can be
downloaded with the following command:

git clone https://github.com/eudaq/eudaq.git eudaq

This will create the directory eudaq, and download the latest version into it.
Note: Alternatively and without version control, you can also download a zip/tar.gz
file of EUDAQ releases (tags) from https://github.com/eudaq/eudaq/releases. By
downloading the code, you can skip the next two subsections.

Changing to a release version (checkout) After cloning the code from GitHub, your
local EUDAQ version is on the master branch (check with git status). For using
EUDAQ without development or for production environments (e.g. at test beams), we
strongly recommend to use the latest release version. Use

git tag

in the repository to find the newest stable version as the last entry. In order to change
to this version in your local repository, execute e.g.

git checkout v2.0.0alpha

to change to version v2.0.0alpha.

Updating the code (fetch) If you want to update your local code, e.g to get the newest
release versions, execute in the eudaq directory:

git fetch

and check for new versions with git tag.

3.2.3. Configuration via CMake

CMake supports out-of-source configurations and generates building files for compilation
(makefiles). Enter the build directory and run CMake, i.e.

cd build

cmake ..

CMake automatically searches for required packages and verifies that all dependencies
are met using the CMakeLists.txt scripts in the main folder and in all sub directories.
You can modify this default behavior by passing the -D[eudaq build option] option
to CMake where [name] refers to an optional component, e.g.

cmake -DEUDAQ_BUILD_GUI=ON ..

12

https://github.com/eudaq/eudaq/releases

EUDAQ User Manual 3. Installation

to disable the GUI but enable additionally executable of the TLU producer. The most
important building options are given in Table 3.
If you are not familiar with cmake, cmake-gui is nice GUI tool to help you configure the
project.

option default dependency comment
EUDAQ BUILD EXECUTABLE <auto> none Builds main EUDAQ executables.
EUDAQ BUILD GUI <auto> Qt5 Builds GUI executables, such as the

RunControl (euRun) and LogCollec-
tor (euLog).

EUDAQ BUILD MANUAL OFF LaTex Builds manual in pdf-format.
EUDAQ BUILD STDEVENT MONITOR auto ROOT6 Builds lagecy standardevent moni-

tor.
EUDAQ INSTALL PREFIX <source folder> none In order to install the executables

into bin and the library into lib of
a specific path, instead of into the
<source folder> path.

EUDAQ LIBRARY BUILD CLI ON none Builds extension library of command
line interface.

EUDAQ LIBRARY BUILD LCIO <auto> LCIO Builds LCIO extension library.
EUDAQ LIBRARY BUILD TEST ON none Builds extension library for develop

test.
USER EXAMPLE BUILD ON none Builds example user code.
USER {user name} BUILD <unknown> <unknown> Builds user code inside user folder

{user name}.
CMAKE BUILD TYPE RelWithDebInfo none Only affect the building on Linux/-

MacOS, see CMake manual.

Table 3: Options for CMake.

Note: After building files by running cmake .., you can list all possible options and
their status by running cmake -L. Using a GUI version of CMake shows also all of the
possible options.
Corresponding settings are cached, thus they will be used again next time CMake is
run. If you encounter a problem during installation, it is recommended to clean the
cache by just removing all files from the build folder, since it only contains automatically
generated files.

3.2.4. Compilation

Universal command for all systems:

cmake --build {source_folder}/build --target install

Done!

13

EUDAQ User Manual 4. Run an Example Setup

4. Run an Example Setup

This section will describe running the DAQ system, mainly from the point of view of
running an example setup as a demonstration without dedicated hardware. However,
this description can be applied to a detector DAQ system in general.

4.1. Target Setup

In this example, a user hardware device is simulated and implemented as an example
Producer which can be configured to generate fake data. This works similarly to a real
Producer, but does not talk to any real hardware. An example DataCollector is also
implemented.
The runtime setup consists of the following EUDAQ processes.

RunControl : an example RunControl instanced by GUI application.

LogCollector : a default LogCollector instanced by GUI application.

Producer : Two example Producers instanced by the CLI command. Both of them
produces events at a rate of 1 Hz, they may have time offset of start run.

DataCollector : an example DataCollectors instanced by the CLI command.

Monitor : an example monitor which prints out the asambled Event from the DataCol-
lector in the command line terminal.

4.2. Preparation

Some preparation is needed to make sure the environment is set up correctly and the
necessary TCP ports are not blocked before the DAQ can run properly.

4.2.1. Directories

If no specified path is passed to EUDAQ (by configuration file or command line parameter),
EUDAQ will assume the working folder where executable is started up is writable. Data
and log files will be stored in the working folder.

4.2.2. Init/Config-Files

∗.ini-files for initialization and ∗.conf-files for configuration are text files in a specific
format, containing name-value pairs separated into different sections.3 Any text from a #

character until the end of the line is treated as a comment, and ignored. Each section in
the config file is delimited by a pair of names seperated by a perioid in square brackets
(e.g. [Producer.Example]). The name before peroid represents the type of process to
which it applies, the one after peroid is the runtime name of the applied process. . There

3https://en.wikipedia.org/wiki/INI_file

14

https://en.wikipedia.org/wiki/INI_file

EUDAQ User Manual 4. Run an Example Setup

is an exception, the section for Run Control is always [RunControl] in which there is no
runtime name. Within each section, any number of parameters may be specified, in the
form Name = Value. The EUDAQ native supported parmaters have a common prefix
EUDAQ . It is then up to the individual processes how these parameters are interpreted.
During the initialization and configuration, each process gets its section and does not
know about the other parts of the ini/conf files.

1 # example init file: Ex0.ini

2 [LogCollector.log]

3 EULOG_GUI_LOG_FILE_PATTERN = myexample_$12D.log
4

5 [Producer.my_pd0]

6 EX0_DEV_LOCK_PATH = /tmp/mydev0.lock

7

8 [Producer.my_pd1]

9 EX0_DEV_LOCK_PATH = /tmp/mydev1.lock

1 # example config file: Ex0.conf

2 [RunControl]

3 EX0_STOP_RUN_AFTER_N_SECONDS=60

4

5 [Producer.my_pd0]

6 EUDAQ_DC=my_dc

7 EX0_PLANE_ID=0

8 EX0_DURATION_BUSY_MS=1

9 EX0_ENABLE_TRIGERNUMBER=1

10

11 [Producer.my_pd1]

12 EUDAQ_DC=my_dc

13 EX0_PLANE_ID=1

14 EX0_DURATION_BUSY_MS=1

15 EX0_ENABLE_TRIGERNUMBER=1

16

17 [DataCollector.my_dc]

18 EUDAQ_MN=my_mon

19 EUDAQ_FW=native

20 EUDAQ_FW_PATTERN=$12D_run$6R$X
21 EX0_DISABLE_PRINT=1

22

23 [Monitor.my_mon]

24 EX0_ENABLE_PRINT=0

25 EX0_ENABLE_STD_PRINT=0

26 EX0_ENABLE_STD_CONVERTER=1

15

EUDAQ User Manual 4. Run an Example Setup

4.2.3. Ports and Firewall

The different processes communicate between themselves using TCP/IP sockets. The
ports can be configured when calling the the processors on the command line (see below).
By default, TCP port 44000 is listened to by the RunControl, and TCP port 44002 is
listened to by the LogCollector to get connections from clients. The DataCollector will
pick a random TCP port to listen to and get incoming data from its connected Producers
if there is no specific port assigned explicitly by user.
When all EUDAQ processes run on the same computer, common firewalls will not affect
the TCP connections among them. However, running EUDAQ distributively on several
computers may have issue from firewall blocking. You will have to open up those TCP
ports for incoming connections, temporally shut down the firewall. Shutting down the
firewall is operating-system dependent.

In this example, all processes will run on the same Linux computer, so we can skip the
setup of TCP port.

4.3. Startup

To start EUDAQ, all of the necessary processes have to be started in the correct order.
The first process must be the Run Control, since all other processes will attempt to
connect to it when they start up. Then it is recommended to start the Log Collector,
since any log messages it receives may be useful to help with debugging in case everything
does not start as expected. Finally, the Data Collector, Producers and Monitor can be
started in any order you want.

4.3.1. RunControl

There are two versions of the RunControl – a text-based version euCliRun and a graphical
version euRun (see Figure 2).
The command line pattern to start up a Log Collector is:

euRun -n {code_name} -a tcp://{listening_port}

-n 〈code name〉 : optional, if it is not specified, default RunControl will be instanced.

-a 〈listening addr〉 : optional, listening port default value is 44000.

For this example setup, we will startup the euRun GUI which internally instances the
default Run Control and make it serve at TCP port 44000:

euRun -n Ex0RunControl -a tcp://44000

After executing the above command, a new GUI windows is shown in Figure 2.

16

EUDAQ User Manual 4. Run an Example Setup

Figure 2: The Run Control graphical user interface.

Initialization Section
[RunControl]

The Ex0RunControl does not need any paramters.

Configuration Section
[RunControl]

EX0_STOP_RUN_AFTER_N_SECONDS = 60

4.3.2. LogCollector

It is recommended to start the Log Collector directly after having started the Run
Control and before starting other processors in order to collect all log messages generated
by all other processes.
There are also two versions of the Log Collector. The graphical version is called euLog,
and the text-based version is called euCliLogger.
The command line pattern to startup a Log Collector is:

euLog -r tcp://{run_contorl_hostname}:{run_contorl_port} -a ←↩
tcp://{listening_port}

-r 〈runcontrol addr〉 : optional, run control hostname default value: localhost; run contorl port

default value: 44000.

17

EUDAQ User Manual 4. Run an Example Setup

-a 〈listening addr〉 : optional, listening port default value is 44002.

For this example setup, we will startup the GUI version of Log Collector, connect it to
the Run Contorl at local port 44000 and make it serve at TCP port 44002:

euLog -r tcp://localhost:44000 -a tcp://44002

After executing the above command, a new GUI window, as shown in Figure 3, is opened
and the RunControl displays a new connection, as seen in ??.

Figure 3: The Log Collector graphical user interface.

Initialization Section
[LogCollector.log]

Currently, all LogCollectors have a hardcoded runtime name: log

EULOG_GUI_LOG_FILE_PATTERN = myexample_$12D.log
the $12D will be converted a data/time string with 12 digits.

the file path is allowed add as prefix in this file name pattern,

otherwise the log file is saved in working folder.

Configuration Section
[LogCollector.log]

Currently, all LogCollectors have a hardcoded runtime name: log

nothing

4.3.3. DataCollector

There is only a text-based version called euCliCollector. The command line pattern
to startup a DataCollector is:

18

EUDAQ User Manual 4. Run an Example Setup

euCliCollector -n {code_name} -t {runtime_name} -r ←↩
tcp://{run_control_hostname}:{run_contorl_port} -a tcp://{listening_port}

-n 〈code name〉 : required.

-t 〈runtime name〉 : required.

-r 〈runcontrol addr〉 : optional, run control hostname default value: localhost; run contorl port

default value: 44000.

-a 〈listening addr〉 : optional, listening port default value is random.

By default, an example DataCollector Ex0TgDataCollector is available with the stan-
dard installation of EUDAQ. For this example setup, we will startup two instances of
Ex0TsDataCollector with runtime names my dc and another dc

euCliCollector -n Ex0TgDataCollector -t my_dc -r tcp://localhost:44000 -a ←↩
tcp://45001

Initialization Section
[DataCollector.my_dc]

nothing

Configuration Section
[DataCollector.my_dc]

EUDAQ_MN=my_mon

send assambled event to the monitor with runtime name my_mon;

EUDAQ_FW=native

the format of data file

EUDAQ_FW_PATTERN=$12D_run$6R$X
the name pattern of data file

the $12D will be converted a data/time string with 12 digits.

the $6R will be converted a run number string with 6 digits.

the $X will be converted the suffix name of data file.

the file path is allowed add as a prefix to this name pattern,

otherwise the data file is saved in working folder.

4.3.4. Producer

There is only a text-based version called euCliProducer. The command line pattern to
startup a Producer is:

euCliProducer -n {code_name} -t {runtime_name} -r ←↩
tcp://{run_control_hostname}:{run_contorl_port}

19

EUDAQ User Manual 4. Run an Example Setup

-n 〈code name〉 : required.

-t 〈runtime name〉 : required.

-r 〈runcontrol addr〉 : optional, run control hostname default value: localhost; run contorl port

default value: 44000.

By default, an example Producer Ex0Producer is available with the standard installation
of EUDAQ. For this example setup, we will startup two instances of Ex0Producer with
runtime names my pd0 and my pd0

euCliProducer -n Ex0Producer -t my_pd0 -r tcp://localhost:44000

euCliProducer -n Ex0Producer -t my_pd1 -r tcp://localhost:44000

Initialization Section
[Producer.my_pd0]

EX0_DEV_LOCK_PATH = /tmp/mydev0.lock

[Producer.my_pd1]

EX0_DEV_LOCK_PATH = /tmp/mydev1.lock

Configuration Section
[Producer.my_pd0]

EUDAQ_DC=my_dc

send events to the producer with runtime name my_dc.

it is allowed to have a configure line as "EUDAQ_DC=his_dc,her_dc"

to make the producer send events to muiltiple DataCollectors.

EX0_PLANE_ID=0

EX0_DURATION_BUSY_MS=1

EX0_ENABLE_TRIGERNUMBER=1

[Producer.my_pd1]

EUDAQ_DC=my_dc

send events to the producer with runtime name my_dc.

EX0_PLANE_ID=1

EX0_DURATION_BUSY_MS=1

EX0_ENABLE_TRIGERNUMBER=1

4.3.5. Monitor

There is a text-based version called euCliMonitor. The command line pattern is:

euCliMonitor -n {code_name} -t {runtime_name} -r ←↩
tcp://{run_control_hostname}:{run_contorl_port} -a tcp://{listening_port}

20

EUDAQ User Manual 4. Run an Example Setup

-n 〈code name〉 : required.

-t 〈runtime name〉 : required.

-r 〈runcontrol addr〉 : optional, run control hostname default value: localhost; run contorl port

default value: 44000.

-a 〈listening addr〉 : optional, listening port default value is random.

By default, an example Monitor Ex0Monitor is available with the standard installation
of EUDAQ. To simplify this example, the Ex0Monitor has no graphic windows, it can
only print Event in commnad line terminal. For this example setup, we will startup two
instances of Ex0Producer with runtime names my mon

euCliMonitor -n Ex0Monitor -t my_mon -r tcp://localhost:44000 -a tcp://45002

Initialization Section
[Monitor.my_mon]

nothing

Configuration Section
[Monitor.my_mon]

EX0_ENABLE_PRINT=0

EX0_ENABLE_STD_PRINT=0

EX0_ENABLE_STD_CONVERTER=1

4.4. Operating

Once all the processes have been started, the RunControl GUI window will be as in
Figure 4.
All of the processes report their status to the RunControl. Depending on their status,
EUDAQ and all processes can be initialized, configured or re-configured, data taking
(runs) can be started and stopped, and the software can be terminated.

• First, the appropriate initialization file should be selected (see subsubsection 4.2.2
for creating and editing init-files). Then the Init button can be pressed, which
will send an initialization command to all connected processes.

• Second, the appropriate configuration should be selected (see subsubsection 4.2.2 for
creating and editing configurations). Then the Config button can be pressed, which
will send a configuration command (with the contents of the selected configuration
file) to all connected processes. so that this information is always available along
with the data.

21

EUDAQ User Manual 4. Run an Example Setup

Figure 4: The RunControl with all connections of the example setup.

• Once all connected processes are fully configured, a run may be started, by pressing
the Start button. Whatever text is in the corresponding text box (“Run:”) when
the button is pressed will be stored as a comment in the data file. This can be
used to help identify the different runs later.

• Once a run is completed, it may be stopped by pressing the Stop button.

• At any time, a message may be sent to the log file by filling in the (“Log:”) text box
and pressing the corresponding button. The text should appear in the LogCollector
window, and will be stored in the log file for later access.

• Once the run is stopped, the system may be reconfigured with a different configu-
ration, or another run may be started; or EUDAQ can be terminated.

4.5. After data taking

By default, EUDAQ provides tools to manage the the data saved in file by native EUDAQ
format. Those tools could also be examples for users to write new code for more specific
purpose.

4.5.1. Dump data

To dump print Event from data file, the tool euCliReader is provided. The command
line pattern is: The command line pattern is:

22

EUDAQ User Manual 4. Run an Example Setup

euCliReader -i {input_file} -e {event_number_begin} -E {event_number_end} ←↩
-tg {trigger_number_begin} -TG {tigger_number_end} -ts {timestamp_begin} ←↩
-TS {timestamp_end} -s -std

-i 〈input file〉 : required, the path of the input data file

-e 〈event number begin〉 : optional, the low limit of event number to be printed

-E 〈event number end〉 : optional, the high limit of event number to be printed

-tg 〈trigger number begin〉 : optional, the low limit of trigger number to be printed

-TG 〈trigger number end〉 : optional, the high limit of trigger number to be printed

-ts 〈timestamp begin〉 : optional, the low limit of timestamp to be printed

-TS 〈timestamp end〉 : optional, the high limit of timestamp to be printed

-s : optional, enable the print of statistics

-std : optional, enable the Standard Event Converter and print out StdEvent

The option pairs -e -E, -tg -TG and -ts -TS apply range limites and pick up the most
intreasting Event from data file. If an option pair is not specified by user, there will be
not range limit for this option pair.

4.5.2. Convert data format

To convert Event from data file, the tool euCliConverter is provided. The command
line pattern is: The command line pattern is:

euCliReader -i {input_file} -o {output_file} -ip

-i 〈input file〉 : required, the path of the input data file

-o 〈output file〉 : required, the path of the output data file.

-ip : optional, enable the print of input Event

If the output file has the suffix slcio and LCIO feature of EUDAQ is enabled at compiling
time, it will generate LCIO data file.

23

EUDAQ User Manual 5. Integration with User Hardware

Class Description

eudaq::Producer Sec. 6
eudaq::DataCollector Sec. 7
eudaq::RunControl Sec. 10
eudaq::Event Sec. 5.2.1
eudaq::LogCollector Sec. 4.3.2
eudaq::Monitor Sec. 9
eudaq::FileWriter Sec. 11.2
eudaq::FileReader Sec. 11.3
eudaq::StdEventConverter Sec. 8
eudaq::LCEventConverter Sec. 8
eudaq::TransportServer internal only
eudaq::TransportClient internal only

Table 4: Derivable Classes.

5. Integration with User Hardware

EUDAQ itself is only a data taking framework. It means that the users with their
dedicated hardware and readout software are required to write some code to bridge the
hardware specific readout software to the EUDAQ framework. The minimum adaptation
task is to write a Producer for each piece of hardware, a Data Collector to receive the
data (a.k.a. Event) from the Producers.

5.1. Announcement of Derived Class

The derived EUDAQ classes provided by the user will be compiled and packed to a
dynamic shared library (EUDAQ Module Library). At compiling/linking time of EUDAQ
core library, it does not know of the existence of any Module Library. When the EUDAQ
core library is being loaded by any application, the core library will look for any library
file with the name prefix libeudaq module in the module folder. All pattern matched
libraries will be loaded. It is the point at which each derived EUDAQ class announces
itself to the EUDAQ runtime environment.
Technically, the announcement of a derived class is done by a call to the correlated static
function provided by a generic C++ template (eudaq::Factory). Table 4 is the list of
derivable EUDAQ classes.

5.2. Serializable

As a distributed DAQ framework, a runtime setup of the EUDAQ system include several
applications. Data objects will go through the boundary of an application or a computer.
Those data objects should have the capability to be serialized. When a data object is
serialized, all the crucial data of this data object is fed to serialized memory which then
can be sent by plain binary to another application and reconstructed as a copy of the

24

EUDAQ User Manual 5. Integration with User Hardware

Class Description

eudaq::Event Sec. 5.2.1
eudaq::Configuration Contains configuration information
eudaq::LogMessage Messages reported to the LogCollector
eudaq::Status States reported to the RunControl

Table 5: Serializable Classes.

variable C++ type Description

m type uint32 t event type
m version uint32 t version
m flags uint32 t flags
m stm n uint32 t device/stream number
m run n uint32 t run number
m ev n uint32 t event number
m tg n uint32 t trigger number
m extend uint32 t reserved word
m ts begin uint64 t timestamp at the begin of event
m ts end uint64 t timestamp at the end of event
m dspt std::string description
m tags std::map<std::string, std::string> tags
m blocks std::map<uint32 t, std::vector<uint8 t>> blocks of raw data
m sub events std::vector<EventSPC> pointers of sub events

Table 6: Variables of eudaq::Event.

original data object.

All the classes which hold serializable data are derived from a base serializable class
(eudaq::Serializable). All serializable data class should implement the function Serialize

which serializes the inner data object and feeds an eudaq::Serializer, and a constructor
function which takes the reference of eudaq::Deserializer as input parameter.

Table 5 is the list of serializable EUDAQ classes.

5.2.1. Event

eudaq::Event is most important serializable class which holds physics data from the
hardware. The Producer is the EUDAQ component which creates the object eudaq::Event
and feeds it the physics data from measurements. Table 6 lists the variables inside the
eudaq::Event.

The m blocks is physics data which can only be known by the user who owns the
hardware. There is a pair of timestamps to define the time slice when the physics event
occurs, and a trigger number to identify the trigger sequence. Timestamps and trigger

25

EUDAQ User Manual 5. Integration with User Hardware

Figure 5: The FSM of EUDAQ.

number are optional to be set if you are going to use them to synchronize data from
multiple stream/device. It is also possible to have sub events inside an eudaq::Event
object. The sub eudaq::Event objects are held by std::shared ptr, see the next section.

5.3. Ownership

std::shared ptr and std::unique ptr are heavily used in EUDAQ to hold the object pointers
of the serializable class and the derivable class. They get rid of the unnecessary and
ineffective memory copy and are exception safe for any memory leakage.

5.4. Command/Status Handling

5.4.1. RunControl and CommandReceiver

RunControl eudaq::RunControl is the command sender which issues commands accord-
ing to user actions from the GUI or CLI.

CommandReceiver eudaq::Producer, eudaq::DataCollector, eudaq::LogCollector and
eudaq::Monitor are command receivers (eudaq::CommandReceiver) which executes the
correlated function according to the command. The command receiver will set up a
status (eudaq::Status) and report the status to RunControl.

5.4.2. State Model

The finite-state machine (FSM) is implemented in both the RunControl and the Com-
mandReceiver (see Figure 5) [9].

Each CommandReceiver can always be characterized by the current state (Table 7).
The state of RunControl is determined by the lowest state of the connected client in
the following priority: ERROR, UNINITIALISED, UNCONFIGURED, CONFIGURED,
RUNNING. It means, for example, that even if only one connection is in the ERROR

26

EUDAQ User Manual 5. Integration with User Hardware

State Enumerate Value Acceptable Command

Error eudaq::Status::STATE ERROR DoReset
Uninitialised eudaq::Status::STATE UNINIT DoInitialise DoReset
Unconfigured eudaq::Status::STATE UNCONF DoConfigure DoReset
Configured eudaq::Status::STATE CONF DoConfigure DoStartRun DoReset
Running eudaq::Status::STATE RUNNING DoStopRun

Table 7: States of RunControl client.

Command RunControl Side Client Side Pre State State of Success

Initialise Initialise DoInitialise Uninitialised Unconfigured
Configure Configure DoConfigure Unconfigured Configured Configured
StartRun StartRun DoStartRun Configured Running
StopRun StopRun DoStopRun Running Configured
Reset Reset DoReset Error Uninitialised
Terminate Terminate DoTerminate Any apart from Running -

Table 8: List of Commands.

state, the whole machine will also be in that state. This prevents such mistakes as
running the system before every component has finished the configuration.

5.4.3. Command

Initialise When an EUDAQ process is in the state of Uninitialised, it accepts the
Initialise command and executes the DoInitialise function provided by the user. When it
is initialized, it does not accept further Uninitialised commands until it is reset to the
Uninitialised state.

Configure When an EUDAQ process is in the state of Unconfigured or Configured, it
accepts the Configure command and executes the DoConfigure function provided by the
user. Please be aware that the second Configure command after a successful execution of
the Configure command is allowed. It means the EUDAQ process is re-configurable but
not re-initialisible.

StartRun When an EUDAQ process is in the state of Configured, it also accepts the
StartRun command and executes the DoStartRun function provided by the user. In
the case of the Producer, the Producer should talk to the hardware and produce and
send Event data. In the case of the DataCollector, the DataCollector will get the Event
stream from its connected Producer.

StopRun When an EUDAQ process is in the state of Running, it only accepts the
StopRun command and executes the DoStopRun function provided by the user. Run-
Control will not send the StopRun command to the DataCollector until all Producers
have returned from the DoStopRun function and feedback their status.

27

EUDAQ User Manual 5. Integration with User Hardware

Reset In any case when an EUDAQ process goes to the state of Error, only the Reset
command is allowed.

Terminate Except for the state of Running, the terminate command is allowed on all
other states. When the Terminate command is called, the EUDAQ processes will be
closed. If the user has to do something before exiting the EUDAQ process, this should
be entered into the DoTerminate function which will then carry out the process before
exiting.

28

EUDAQ User Manual 6. Writing a Producer

6. Writing a Producer

Producers are the binding part between a user DAQ and the central EUDAQ Run Control.
The base class of Producer is eudaq::Producer. The eudaq::Producer is an inherited
class of eudaq::CommandReceiver which receives commands from the eudaq::RunControl.
It also maintains a set of eudaq::DataSender comamnds which allow binary data (eu-
daq::Event) to be sent to each destination.

6.1. Producer Prototype

Listing 6.1, below, is part of the header file which declares the eudaq::Producer. You are
required to write the user Producer derived from eudaq::Producer. According the the
set of commands (subsubsection 5.4.3) in the EUDAQ framework, there are six virtual
functions which should be implemented in the user producer. They are DoInitialise(),
DoConfigure(), DoStopRun(), DoStartRun(), DoReset() and DoTerminate(). These
command-related functions should return as soon as possible since no further command
can be execuseted until the current command is finished.

32 class DLLEXPORT Producer : public CommandReceiver{

33 public:

34 Producer(const std::string &name, const std::string &runcontrol);

35 void OnInitialise() override final;

36 void OnConfigure() override final;

37 void OnStartRun() override final;

38 void OnStopRun() override final;

39 void OnReset() override final;

40 void OnTerminate() override final;

41 void Exec() override;

42

43 virtual void DoInitialise(){};

44 virtual void DoConfigure(){};

45 virtual void DoStartRun(){};

46 virtual void DoStopRun(){};

47 virtual void DoReset(){};

48 virtual void DoTerminate(){};

49

50 void SendEvent(EventSP ev);

51 static ProducerSP Make(const std::string &code_name, const std::string ←↩
&run_name,

52 const std::string &runcontrol);

53 private:

54 uint32_t m_pdc_n;

55 uint32_t m_evt_c;

56 std::map<std::string, std::unique_ptr<DataSender>> m_senders;

29

EUDAQ User Manual 6. Writing a Producer

57 };

The virtual function Exec() can optionally be implemented in the user Producer. If this
is not implemented, the default Exec() will connect to the RunControl and goes into an
infinite loop and will only return when the Terminate command is executed. In case you
are going to implement an Exec() function, please read the source code to find detailed
information.

6.2. Example Source Code: Dummy Event Producer

6.2.1. Declaration

Here we outline an example implementation of a user Producer. The full source code is
available at file path user/example/module/src/Ex0Producer.cc. Listing 6.2.2, below, is
the declaration part. There are six command related functions, a constructor function
and a Mainloop function.

12 class Ex0Producer : public eudaq::Producer {

13 public:

14 Ex0Producer(const std::string & name, const std::string & runcontrol);

15 void DoInitialise() override;

16 void DoConfigure() override;

17 void DoStartRun() override;

18 void DoStopRun() override;

19 void DoTerminate() override;

20 void DoReset() override;

21 void Mainloop();

22

23 static const uint32_t m_id_factory = eudaq::cstr2hash("Ex0Producer");

24 private:

25 bool m_flag_ts;

26 bool m_flag_tg;

27 uint32_t m_plane_id;

28 FILE* m_file_lock;

29 std::chrono::milliseconds m_ms_busy;

30 std::thread m_thd_run;

31 bool m_exit_of_run;

32 };

The line static const uint32_t m_id_factory = eudaq::cstr2hash("Ex0Producer"), de-
fines a static number which is a hash from the name string. This number will be used
later as a ID to register this Ex0Producer to the EUDAQ runtime environment.

30

EUDAQ User Manual 6. Writing a Producer

6.2.2. Register to Factory

To make the EUDAQ framework know of the existence of Ex0Producer, this Producer
should be registered to eudaq::Factory<eudaq::Producer> with its static ID number.
The input parameter types of the constructor function are also provided to the Register
function. See the example code:

35 namespace{

36 auto dummy0 = eudaq::Factory<eudaq::Producer>::

37 Register<Ex0Producer, const std::string&, const ←↩
std::string&>(Ex0Producer::m_id_factory);

38 }

6.2.3. Constructor

The Constructor function takes in two parameters, the runtime name of the instance of
the Producer and the address of the RunControl.

41 Ex0Producer::Ex0Producer(const std::string & name, const std::string & ←↩
runcontrol)

42 :eudaq::Producer(name, runcontrol), m_exit_of_run(false){

43 }

In this example of Ex0Producer, the constructor function does nothing beside passing
parameters to the base constructor function of Producer and initializes the m_exit_of_run

variable.

6.2.4. DoInitialise

This method is called whenever an initialize command is received from the RunControl.
When this function is called, the correlated section of the initialization file have arrived
to the Producer from the RunControl. This initialization section can be obtained by:
eudaq::ConfigurationSPC eudaq::CommandReceiver::GetInitConfiguration()

Here is an example DoInitialise of the Ex0Producer:

45 void Ex0Producer::DoInitialise(){

46 auto ini = GetInitConfiguration();

47 std::string lock_path = ini->Get("EX0_DEV_LOCK_PATH", "ex0lockfile.txt");

48 m_file_lock = fopen(lock_path.c_str(), "a");

49 #ifndef _WIN32

50 if(flock(fileno(m_file_lock), LOCK_EX|LOCK_NB)){ //fail

51 EUDAQ_THROW("unable to lock the lockfile: "+lock_path);

52 }

53 #endif

54 }

31

EUDAQ User Manual 6. Writing a Producer

The Configuration object ini is obtained. According to the value DUMMY STRING
and DUMMY FILE PATH in ini object, a new file is opened and filled by dummy data.
The path of the file is saved as a variable member for later access of this dummy data
file.

6.2.5. DoConfigure

This method is called whenever a configure command is received from the RunControl.
When this function is called, the correlated section of configuration file has arrived to
the Producer from the RunControl. The configuration section named by the Producer
runtime name can be obtained by:
eudaq::ConfigurationSPC eudaq::CommandReceiver::GetConfiguration()

Here is an example DoConfigure of Ex0Producer:

57 void Ex0Producer::DoConfigure(){

58 auto conf = GetConfiguration();

59 conf->Print(std::cout);

60 m_plane_id = conf->Get("EX0_PLANE_ID", 0);

61 m_ms_busy = std::chrono::milliseconds(conf->Get("EX0_DURATION_BUSY_MS", ←↩
1000));

62 m_flag_ts = conf->Get("EX0_ENABLE_TIEMSTAMP", 0);

63 m_flag_tg = conf->Get("EX0_ENABLE_TRIGERNUMBER", 0);

64 if(!m_flag_ts && !m_flag_tg){

65 EUDAQ_WARN("Both Timestamp and TriggerNumber are disabled. Now, ←↩
Timestamp is enabled by default");

66 m_flag_ts = false;

67 m_flag_tg = true;

68 }

69 }

The variables m_ms_busy, m_flag_ts and m_flag_tg are set according to the Configuration
object.

6.2.6. DoStartRun

This method is called whenever a StartRun command is received from the RunControl.
When this function is called, the run-number has already been increased by 1. For a
real hardware specific Producer, the hardware is told to startup. Here is an example
DoStartRun of Ex0Producer:

71 void Ex0Producer::DoStartRun(){

72 m_exit_of_run = false;

73 m_thd_run = std::thread(&Ex0Producer::Mainloop, this);

74 }

32

EUDAQ User Manual 6. Writing a Producer

Instead of talking to real hardware, a file is opened. Then, a new thread is started using
the function Mainloop.

6.2.7. DoStopRun

This method is called whenever a StopRun command is received from the RunControl.
Here is an example DoStopRun of Ex0Producer:

76 void Ex0Producer::DoStopRun(){

77 m_exit_of_run = true;

78 if(m_thd_run.joinable())

79 m_thd_run.join();

80 }

6.2.8. DoReset

When the Producer goes into an error state, only the Reset command is acceptable. It is
recommended to reset all member variables to their original value when the producer
object is instanced.
Here is an example DoReset of Ex0Producer:

82 void Ex0Producer::DoReset(){

83 m_exit_of_run = true;

84 if(m_thd_run.joinable())

85 m_thd_run.join();

86 #ifndef _WIN32

87 flock(fileno(m_file_lock), LOCK_UN);

88 #endif

89 fclose(m_file_lock);

90 m_thd_run = std::thread();

91 m_ms_busy = std::chrono::milliseconds();

92 m_exit_of_run = false;

93 }

For any case the data thread is running, it should be stopped.

6.2.9. DoTerminate

This method is called whenever a StopRun command is received from the RunControl.
After the return of DoTerminate, the application will exit.
Here is an example DoStopRun of Ex0Producer:

95 void Ex0Producer::DoTerminate(){

96 m_exit_of_run = true;

97 if(m_thd_run.joinable())

98 m_thd_run.join();

99 fclose(m_file_lock);

33

EUDAQ User Manual 6. Writing a Producer

100 }

The data thread is then closed.

6.2.10. Send Event

In DoStartRun, a data thread is created with the function Mainloop. Here is the im-
plementation of this function. The generated data Event depends on the value set by
DoInitialise and DoConfigure.

102 void Ex0Producer::Mainloop(){

103 auto tp_start_run = std::chrono::steady_clock::now();

104 uint32_t trigger_n = 0;

105 uint8_t x_pixel = 16;

106 uint8_t y_pixel = 16;

107 std::random_device rd;

108 std::mt19937 gen(rd());

109 std::uniform_int_distribution<uint32_t> position(0, x_pixel*y_pixel-1);

110 std::uniform_int_distribution<uint32_t> signal(0, 255);

111 while(!m_exit_of_run){

112 auto ev = eudaq::Event::MakeUnique("Ex0Raw");

113 auto tp_trigger = std::chrono::steady_clock::now();

114 auto tp_end_of_busy = tp_trigger + m_ms_busy;

115 if(m_flag_ts){

116 std::chrono::nanoseconds du_ts_beg_ns(tp_trigger - tp_start_run);

117 std::chrono::nanoseconds du_ts_end_ns(tp_end_of_busy - tp_start_run);

118 ev->SetTimestamp(du_ts_beg_ns.count(), du_ts_end_ns.count());

119 }

120 if(m_flag_tg)

121 ev->SetTriggerN(trigger_n);

122

123 std::vector<uint8_t> hit(x_pixel*y_pixel, 0);

124 hit[position(gen)] = signal(gen);

125 std::vector<uint8_t> data;

126 data.push_back(x_pixel);

127 data.push_back(y_pixel);

128 data.insert(data.end(), hit.begin(), hit.end());

129

130 uint32_t block_id = m_plane_id;

131 ev->AddBlock(block_id, data);

132 SendEvent(std::move(ev));

133 trigger_n++;

134 std::this_thread::sleep_until(tp_end_of_busy);

135 }

136 }

In each loop, a new object of Event named Ex0Event is created. Trigger number and

34

EUDAQ User Manual 6. Writing a Producer

Timestamp are options to be set depending on the flags. A data block with 100 zeros
is filled to the Event object by id 0. Another data block read from file is filled to some
Event object by id 2. Then, this Event object is sent out by SendEvent(std::move(ev)).
The first Event object has a flag BORE by the method eudaq::Event::SetBORE()

Tags The Event class also provide the option to store tags. Tags are name-value pairs
containing additional information which does not qualify as regular DAQ data which is
written in the binary blocks. Particularly in the beginning-of-run-event (BORE) this is
very useful to store information about the exact sensor configuration which might be
required in order to be able to decode the raw data stored. A tag is stored as follows:

event.SetTag("Temperature", 42);

The value corresponding to the tag can be set as an arbitrary type (in this case an
integer), it will be converted to a STL string internally.

6.2.11. Error

In the case when the Producer fails to run a command function an exception like this
will be produced
EUDAQ_THROW("dummy data file (" + m_dummy_data_path +") can not open for writing")

An error message is then sent to the RunControl.

35

EUDAQ User Manual 7. Writing a DataCollector

7. Writing a DataCollector

A DataCollector can take data from Producers and merge/synchronise those data. A
DataCollector consists of a CommandReceiver and a DataReceiver, where the first receives
commands from the Run Control while the latter receives binary data events from one or
more Producers. A dedicated synchronisation method should be implemented inside of
the DataCollector to pack the incoming data. The DataCollector base class is provided
in order to simplify the integration. Example code for Producers is provided.

7.1. DataCollector Prototype

Listing 7.1, below, is part of the header file which declares the eudaq::Producer. You
are required to write the user DataCollector derived from eudaq::DataCollector. There
are nine virtual methods, belonging to two categories, which should be implemented
by the user. The first category includes the methods DoInitialise, DoConfigure,
DoStopRun, DoStartRun, DoReset and DoTerminate which are called by command re-
ceived and should return as soon as possible. The other category includes the methods
DoConnect, DoDisconnect, and DoReveive which respond to a connection in establishing
or deleting, or a new coming Event.

33 class DLLEXPORT DataCollector : public CommandReceiver {

34 public:

35 DataCollector(const std::string &name, const std::string &runcontrol);

36 void OnInitialise() override final;

37 void OnConfigure() override final;

38 void OnStartRun() override final;

39 void OnStopRun() override final;

40 void OnReset() override final;

41 void OnTerminate() override final;

42 void OnStatus() override final;

43 void Exec() override;

44

45 //running in commandreceiver thread

46 virtual void DoInitialise(){};

47 virtual void DoConfigure(){};

48 virtual void DoStartRun(){};

49 virtual void DoStopRun(){};

50 virtual void DoReset(){};

51 virtual void DoTerminate(){};

52

53 //running in dataserver thread

54 virtual void DoConnect(ConnectionSPC id) {}

55 virtual void DoDisconnect(ConnectionSPC id) {}

56 virtual void DoReceive(ConnectionSPC id, EventSP ev){};

57

58 void WriteEvent(EventSP ev);

36

EUDAQ User Manual 7. Writing a DataCollector

59 void SetServerAddress(const std::string &addr){m_data_addr = addr;};

60 void StartDataCollector();

61 void CloseDataCollector();

62 bool IsActiveDataCollector(){return m_thd_server.joinable();}

63

64 static DataCollectorSP Make(const std::string &code_name,

65 const std::string &run_name,

66 const std::string &runcontrol);

67

68 private:

69 void DataHandler(TransportEvent &ev);

70 void DataThread();

71

72 private:

73 std::thread m_thd_server;

74 bool m_exit;

75 std::unique_ptr<TransportServer> m_dataserver;

76 std::string m_data_addr;

77 FileWriterUP m_writer;

78 std::map<std::string, std::unique_ptr<DataSender>> m_senders;

79 std::string m_fwpatt;

80 std::string m_fwtype;

81 std::vector<std::shared_ptr<ConnectionInfo>> m_info_pdc;

82 uint32_t m_dct_n;

83 uint32_t m_evt_c;

84 std::unique_ptr<const Configuration> m_conf;

85 };

The virtual function Exec() is optional to be implemented in user DataCollector. Inter-
nally, the base Exec() to create two threads for command execution and data receiving,
itself then goes to an infinite loop and can never return until the Terminate command is
executed. In case you are going to implement it yourselves, please read the source code
to find detailed information.

7.2. Example Code: DirectSave

Here is an example code of a derived DataCollector, named DirectSaveDataCollector.
As its name hints, it does nothing except save all incoming Event data to disk directly.
Printing out of the Event to screen is optional for debugging.

1 #include "eudaq/DataCollector.hh"

2 #include <iostream>

3 class DirectSaveDataCollector :public eudaq::DataCollector{

4 public:

5 using eudaq::DataCollector::DataCollector;

6 void DoConfigure() override;

7 void DoReceive(eudaq::ConnectionSPC id, eudaq::EventSP ev) override;

37

EUDAQ User Manual 7. Writing a DataCollector

8 static const uint32_t m_id_factory = ←↩
eudaq::cstr2hash("DirectSaveDataCollector");

9

10 private:

11 uint32_t m_noprint;

12 };

13

14 namespace{

15 auto dummy0 = eudaq::Factory<eudaq::DataCollector>::

16 Register<DirectSaveDataCollector, const std::string&, const std::string&>

17 (DirectSaveDataCollector::m_id_factory);

18 }

19

20 void DirectSaveDataCollector::DoConfigure(){

21 m_noprint = 0;

22 auto conf = GetConfiguration();

23 if(conf){

24 conf->Print();

25 m_noprint = conf->Get("DISABLE_PRINT", 0);

26 }

27 }

28

29 void DirectSaveDataCollector::DoReceive(eudaq::ConnectionSPC id, ←↩
eudaq::EventSP ev){

30 if(!m_noprint)

31 ev->Print(std::cout);

32 WriteEvent(ev);

33 }

Two virtual methods are implemented in DirectSaveDataCollector, DoConfigure() and
DoReceive(eudaq::ConnectionSPC id, eudaq::EventUP ev). It registers itself to the cor-
related eudaq::factory by the hash number from the name string DirectSaveDataCollector.

7.3. Example Code: SyncTrigger

Now, a more realistic example. The full source code is available here, Listing 7.3. It can
merge the eudaq::Event by trigger number from the connected eudaq::Producer.

1 #include "eudaq/DataCollector.hh"

2 #include <mutex>

3 #include <deque>

4 #include <map>

5 #include <set>

6

7 class Ex0TgDataCollector:public eudaq::DataCollector{

8 public:

9 Ex0TgDataCollector(const std::string &name,

38

EUDAQ User Manual 7. Writing a DataCollector

10 const std::string &rc);

11 void DoConnect(eudaq::ConnectionSPC id) override;

12 void DoDisconnect(eudaq::ConnectionSPC id) override;

13 void DoReceive(eudaq::ConnectionSPC id, eudaq::EventSP ev) override;

14

15 static const uint32_t m_id_factory = ←↩
eudaq::cstr2hash("Ex0TgDataCollector");

16 private:

17 std::mutex m_mtx_map;

18 std::map<eudaq::ConnectionSPC, std::deque<eudaq::EventSPC>> m_conn_evque;

19 std::set<eudaq::ConnectionSPC> m_conn_inactive;

20 };

21

22 namespace{

23 auto dummy0 = eudaq::Factory<eudaq::DataCollector>::

24 Register<Ex0TgDataCollector, const std::string&, const std::string&>

25 (Ex0TgDataCollector::m_id_factory);

26 }

27

28 Ex0TgDataCollector::Ex0TgDataCollector(const std::string &name,

29 const std::string &rc):

30 DataCollector(name, rc){

31 }

32

33 void Ex0TgDataCollector::DoConnect(eudaq::ConnectionSPC idx){

34 std::unique_lock<std::mutex> lk(m_mtx_map);

35 m_conn_evque[idx].clear();

36 m_conn_inactive.erase(idx);

37 }

38

39 void Ex0TgDataCollector::DoDisconnect(eudaq::ConnectionSPC idx){

40 std::unique_lock<std::mutex> lk(m_mtx_map);

41 m_conn_inactive.insert(idx);

42 if(m_conn_inactive.size() == m_conn_evque.size()){

43 m_conn_inactive.clear();

44 m_conn_evque.clear();

45 }

46 }

47

48 void Ex0TgDataCollector::DoReceive(eudaq::ConnectionSPC idx, ←↩
eudaq::EventSP evsp){

49 std::unique_lock<std::mutex> lk(m_mtx_map);

50 if(!evsp->IsFlagTrigger()){

51 EUDAQ_THROW("!evsp->IsFlagTrigger()");

52 }

53 m_conn_evque[idx].push_back(evsp);

39

EUDAQ User Manual 7. Writing a DataCollector

54

55 uint32_t trigger_n = -1;

56 for(auto &conn_evque: m_conn_evque){

57 if(conn_evque.second.empty())

58 return;

59 else{

60 uint32_t trigger_n_ev = conn_evque.second.front()->GetTriggerN();

61 if(trigger_n_ev< trigger_n)

62 trigger_n = trigger_n_ev;

63 }

64 }

65

66 auto ev_sync = eudaq::Event::MakeUnique("Ex0Tg");

67 ev_sync->SetFlagPacket();

68 ev_sync->SetTriggerN(trigger_n);

69 for(auto &conn_evque: m_conn_evque){

70 auto &ev_front = conn_evque.second.front();

71 if(ev_front->GetTriggerN() == trigger_n){

72 ev_sync->AddSubEvent(ev_front);

73 conn_evque.second.pop_front();

74 }

75 }

76

77 if(!m_conn_inactive.empty()){

78 std::set<eudaq::ConnectionSPC> conn_inactive_empty;

79 for(auto &conn: m_conn_inactive){

80 if(m_conn_evque.find(conn) != m_conn_evque.end() &&

81 m_conn_evque[conn].empty()){

82 m_conn_evque.erase(conn);

83 conn_inactive_empty.insert(conn);

84 }

85 }

86 for(auto &conn: conn_inactive_empty){

87 m_conn_inactive.erase(conn);

88 }

89 }

90 ev_sync->Print(std::cout);

91 WriteEvent(std::move(ev_sync));

92 }

Compared to previous DirectSaveDataCollector example, two more virtual methods are
implemented. They are DoConnect, DoDisconnect. The first, DoConnect, will be called
when a new connection from eudaq::Producer is created, and the other, DoDisconnect, will
be called when the connection is expired. The information of the correlated connection
is provided by the incoming parameter. The lifetime of the connection between the
eudaq::DataCollector and eudaq::Producer is a data-taking run. No DoConfigure method

40

EUDAQ User Manual 7. Writing a DataCollector

is implemented, and this DataCollector is not Configurable.

41

EUDAQ User Manual 8. Writing a Data Converter

8. Writing a Data Converter

As a framework, EUDAQ itself is developed with no knowledge of how hardware data can
be decoded. Only the user can know the specific details of the readout data from hard-
ware, so users are required to write a data converter derived from eudaq::DataConverter
to convert to another format. The converted data can then be stored on disk or used as
input data for any non-EUDAQ software.

Currently, as historical legacy, two different formats are provided along with the native raw
eudaq::Event. They are eudaq::StandardEvent for pixel detectors, and eudaq::LCEvent
as an EUDAQ wrapper for the LCIO format.

8.1. Event Structure

eudaq::Event is the most important data container in the EUDAQ system. eudaq::Event
should be filled by detector data properly in order to transmit among eudaq clients, e.g.
Producer and DataCollector. Table 6 lists all the member variables inside of eudaq::event.
Not all of these variables have to be filled. For example, in case there is a trigger number
but no timestamp information, the m ts begin and m ts end can be left untouched.
The eudaq::Event maye also have sub events.

8.1.1. RawDataEvent

eudaq::RawDataEvent is derived from eudaq::Event with the m type always set to
eudaq::cstr2hash(“RawDataEvent”). It has the same member variables and functions as
the base eudaq::Event. However the member variable m extend is used as an identification
number of the sub type of event.

8.1.2. StandardEvent

eudaq::StandardEvent is derived from eudaq::Event with the m type always set to
eudaq::cstr2hash(“StandardEvent”). Historically, it presents a beam telescope tracking-
hit event with all hit information of sensor planes. The hit information is contained by
eudaq::StandardPlane. The beam telescope planes are pixel sensors. The spatial position
and signal amplitude of the fired pixels are zero-compressed inside eudaq::StandaredPlane.

8.2. Example Code: RawEvent2StdEvent

This example DataConverter is named Ex0RawEvent2StdEventConverter. As indicated
by the name, it converts the eudaq::RawDataEvent to eudaq::StandardEvent. The sub
type of eudaq::RawDataEvent is “my ex0” which is also used to calculate the hash
and register it to the eudaq::Factory. If an eudaq::RawDataEvent object announcing
its sub-type by “my ex0” exists when doing the data converting, this object will be
forwarded to that Ex0RawEvent2StdEventConverter.

42

EUDAQ User Manual 8. Writing a Data Converter

1 #include "eudaq/StdEventConverter.hh"

2 #include "eudaq/RawEvent.hh"

3

4 class Ex0RawEvent2StdEventConverter: public eudaq::StdEventConverter{

5 public:

6 bool Converting(eudaq::EventSPC d1, eudaq::StdEventSP d2, ←↩
eudaq::ConfigSPC conf) const override;

7 static const uint32_t m_id_factory = eudaq::cstr2hash("Ex0Raw");

8 };

9

10 namespace{

11 auto dummy0 = eudaq::Factory<eudaq::StdEventConverter>::

12 Register<Ex0RawEvent2StdEventConverter>(Ex0RawEvent2StdEventConverter::m_id_factory);

13 }

14

15 bool Ex0RawEvent2StdEventConverter::Converting(eudaq::EventSPC d1, ←↩
eudaq::StdEventSP d2, eudaq::ConfigSPC conf) const{

16 auto ev = std::dynamic_pointer_cast<const eudaq::RawEvent>(d1);

17 size_t nblocks= ev->NumBlocks();

18 auto block_n_list = ev->GetBlockNumList();

19 for(auto &block_n: block_n_list){

20 std::vector<uint8_t> block = ev->GetBlock(block_n);

21 if(block.size() < 2)

22 EUDAQ_THROW("Unknown data");

23 uint8_t x_pixel = block[0];

24 uint8_t y_pixel = block[1];

25 std::vector<uint8_t> hit(block.begin()+2, block.end());

26 if(hit.size() != x_pixel*y_pixel)

27 EUDAQ_THROW("Unknown data");

28 eudaq::StandardPlane plane(block_n, "my_ex0_plane", "my_ex0_plane");

29 plane.SetSizeZS(hit.size(), 1, 0);

30 for(size_t i = 0; i < y_pixel; ++i) {

31 for(size_t n = 0; n < x_pixel; ++n){

32 plane.PushPixel(n, i , hit[n+i*x_pixel]);

33 }

34 }

35 d2->AddPlane(plane);

36 }

37 return true;

38 }

43

EUDAQ User Manual 9. Writing a Monitor

9. Writing a Monitor

eudaq::Monitor provides the the base class and common methods to monitor the data
quality online. The internal implementation of eudaq::Monitor is very similar to eu-
daq::DataCollector. The only difference between them is that eudaq::Monitor accepts only
a single connection from an eudaq::DataCollector or eudaq::Producer. (not implemented)

9.1. Monitor Prototype

31 class DLLEXPORT Monitor : public CommandReceiver {

32 public:

33 Monitor(const std::string &name, const std::string &runcontrol);

34 void OnInitialise() override final;

35 void OnConfigure() override final;

36 void OnStartRun() override final;

37 void OnStopRun() override final;

38 void OnReset() override final;

39 void OnTerminate() override final;

40 void OnStatus() override final;

41 void Exec() override;

42

43 //running in commandreceiver thread

44 virtual void DoInitialise(){};

45 virtual void DoConfigure(){};

46 virtual void DoStartRun(){};

47 virtual void DoStopRun(){};

48 virtual void DoReset(){};

49 virtual void DoTerminate(){};

50

51 //running in dataserver thread

52 virtual void DoReceive(EventSP ev){};

53

54 void SetServerAddress(const std::string &addr){m_data_addr = addr;};

55 void StartMonitor();

56 void CloseMonitor();

57 bool IsActiveMonitor(){return m_thd_server.joinable();}

58

59 static MonitorSP Make(const std::string &code_name,

60 const std::string &run_name,

61 const std::string &runcontrol);

62

63 private:

64 void DataHandler(TransportEvent &ev);

65 void DataThread();

66

44

EUDAQ User Manual 9. Writing a Monitor

67 private:

68 std::thread m_thd_server;

69 bool m_exit;

70 std::unique_ptr<TransportServer> m_dataserver;

71 std::string m_data_addr;

72 };

9.2. Example Code

Here is an example code of a derived Monitor, named Ex0Monitor. It gets configration
paratmeter at configration time and do print out the infomation of the received Events.
It might do an Event converting depending on how it is configured.

1 #include "eudaq/Monitor.hh"

2 #include "eudaq/StandardEvent.hh"

3 #include "eudaq/StdEventConverter.hh"

4 #include <iostream>

5 #include <fstream>

6 #include <ratio>

7 #include <chrono>

8 #include <thread>

9 #include <random>

10

11 //----------DOC-MARK-----BEG*DEC-----DOC-MARK----------

12 class Ex0Monitor : public eudaq::Monitor {

13 public:

14 Ex0Monitor(const std::string & name, const std::string & runcontrol);

15 void DoInitialise() override;

16 void DoConfigure() override;

17 void DoStartRun() override;

18 void DoStopRun() override;

19 void DoTerminate() override;

20 void DoReset() override;

21 void DoReceive(eudaq::EventSP ev) override;

22

23 static const uint32_t m_id_factory = eudaq::cstr2hash("Ex0Monitor");

24

25 private:

26 bool m_en_print;

27 bool m_en_std_converter;

28 bool m_en_std_print;

29 };

30

31 namespace{

32 auto dummy0 = eudaq::Factory<eudaq::Monitor>::

45

EUDAQ User Manual 9. Writing a Monitor

33 Register<Ex0Monitor, const std::string&, const ←↩
std::string&>(Ex0Monitor::m_id_factory);

34 }

35

36 Ex0Monitor::Ex0Monitor(const std::string & name, const std::string & ←↩
runcontrol)

37 :eudaq::Monitor(name, runcontrol){

38 }

39

40 void Ex0Monitor::DoInitialise(){

41 auto ini = GetInitConfiguration();

42 ini->Print(std::cout);

43 }

44

45 void Ex0Monitor::DoConfigure(){

46 auto conf = GetConfiguration();

47 conf->Print(std::cout);

48 m_en_print = conf->Get("EX0_ENABLE_PRINT", 1);

49 m_en_std_converter = conf->Get("EX0_ENABLE_STD_CONVERTER", 0);

50 m_en_std_print = conf->Get("EX0_ENABLE_STD_PRINT", 0);

51

52 EUDAQ_INFO("hello, info");

53 EUDAQ_DEBUG("hello, yi");

54

55 }

56

57 void Ex0Monitor::DoStartRun(){

58 }

59

60 void Ex0Monitor::DoStopRun(){

61 }

62

63 void Ex0Monitor::DoReset(){

64 }

65

66 void Ex0Monitor::DoTerminate(){

67 }

68

69 void Ex0Monitor::DoReceive(eudaq::EventSP ev){

70 if(m_en_print)

71 ev->Print(std::cout);

72 if(m_en_std_converter){

73 auto stdev = std::dynamic_pointer_cast<eudaq::StandardEvent>(ev);

74 if(!stdev){

75 stdev = eudaq::StandardEvent::MakeShared();

76 eudaq::StdEventConverter::Convert(ev, stdev, nullptr); //no conf

46

EUDAQ User Manual 9. Writing a Monitor

77 if(m_en_std_print)

78 stdev->Print(std::cout);

79 }

80 }

81 }

Two virtual methods are implemented in Ex0Monitor, DoConfigure() and DoReceive(eudaq::EventUP ←↩
ev). It registers itself to the correlated eudaq::factory by the hash number from the
name string Ex0Monitor.

9.3. Graphical User Interface

Normally, to monitoring the data quality, graphic plots are required. It means that an
external graphic library is required. ROOT, Qt and gnuplot can be the possible graphic
library.

9.3.1. StdEventMonitor

StdEventMonitor is an EUDAQ version 1 legacy. It was named as OnlineMonitor. Actu-
ally, it can only display the plots from StandardEvent. If the Converter to StandardEvent
of the incoming Event exists, StdEventMonitor will call the correlated Converter and do
the converting itself. StdEventMonitor depends ROOT to generate and plot graph.

47

EUDAQ User Manual 10. Writing a RunControl

10. Writing a RunControl

In most user cases, the base eudaq::RunControl can meet the requirements of the
controlling flow process to the detector system which use the EUDAQ framework. It
is still possible to override the default behavior of the base eudaq::RunControl by
implementing a derived RunControl class.

10.1. RunControl Prototype

The command methods are Initialise(), Configure(), StartRun(), StopRun(), Reset()
and Terminate().

The methods DoConnect(), DoDisconnect(), DoStatus() are also provided for the case
where the derived RunControl wants to be informed of any connection change and the
object eudaq::Status is sent to the RunControl.

10.2. Example Code: auto stop

Here is an example code of a derived RunControl, named Ex0RunControl. It can check the
elapsed time after the start of data taking, and stop the data taking after a configurable
time period.

1 #include "eudaq/RunControl.hh"

2

3 class Ex0RunControl: public eudaq::RunControl{

4 public:

5 Ex0RunControl(const std::string & listenaddress);

6 void Configure() override;

7 void StartRun() override;

8 void StopRun() override;

9 void Exec() override;

10 static const uint32_t m_id_factory = eudaq::cstr2hash("Ex0RunControl");

11

12 private:

13 uint32_t m_stop_second;

14 bool m_flag_running;

15 std::chrono::steady_clock::time_point m_tp_start_run;

16 };

17

18 namespace{

19 auto dummy0 = eudaq::Factory<eudaq::RunControl>::

20 Register<Ex0RunControl, const std::string&>(Ex0RunControl::m_id_factory);

21 }

22

23 Ex0RunControl::Ex0RunControl(const std::string & listenaddress)

48

EUDAQ User Manual 10. Writing a RunControl

24 :RunControl(listenaddress){

25 m_flag_running = false;

26 }

27

28 void Ex0RunControl::StartRun(){

29 RunControl::StartRun();

30 m_tp_start_run = std::chrono::steady_clock::now();

31 m_flag_running = true;

32 }

33

34 void Ex0RunControl::StopRun(){

35 RunControl::StopRun();

36 m_flag_running = false;

37 }

38

39 void Ex0RunControl::Configure(){

40 auto conf = GetConfiguration();

41 m_stop_second = conf->Get("EX0_STOP_RUN_AFTER_N_SECONDS", 0);

42 RunControl::Configure();

43 }

44

45 void Ex0RunControl::Exec(){

46 StartRunControl();

47 while(IsActiveRunControl()){

48 if(m_flag_running && m_stop_second){

49 auto tp_now = std::chrono::steady_clock::now();

50 std::chrono::nanoseconds du_ts(tp_now - m_tp_start_run);

51 if(du_ts.count()/1000000000>m_stop_second)

52 StopRun();

53 }

54 std::this_thread::sleep_for(std::chrono::milliseconds(500));

55 }

56 }

4 virtual methods are override in Ex0Monitor: Configure(), StartRun(), StopRun() and
Exec(). It registers itself to the correlated eudaq::factory by the hash number from the
name string Ex0RunControl.

10.3. RunControl Mode

There are two options when making the integration of the EUDAQ RunControl and
other DAQ systems which do not adapt the eudaq::Producer approach and can not talk
with base eudaq::RunControl. The Ex0RunControl example is working the first case.

49

EUDAQ User Manual 10. Writing a RunControl

10.3.1. EUDAQ Working as Master DAQ

In this case, the RunControl should behave as an entrance point to the full detector
system. As the base eudaq::RunControl can not manage the controlling of the non-
EUDAQ slave DAQ, users are required to implement a specific RunControl class derived
from eudaq::RunControl. With overloaded virtual methods, the user RunControl not
only governs the EUDAQ system but also talks to the non-EUDAQ component by user
specific communication protocols.
By this approach, the user RunControl can be instanced by the standard GUI RunControl
launcher (euRun).

10.3.2. EUDAQ Working as Slaver DAQ

In this case, the base eudaq::RunControl can be left as is without modification or
derivation. However, the standard GUI RunControl launcher is not usable. The master
DAQ should instance an object of eudaq::RunControl and call the correlated method
whenever it wants to issue the command to the EUDAQ subsystem and get the status
report.

50

EUDAQ User Manual 11. Support User Defined Event Type

11. Support User Defined Event Type

In the EUDAQ framework, the definition data usually means an object of eudaq::Event
or its derivations.

11.1. Event

eudaq::Event is serializable as it is derived from eudaq::Serializable and implements

Event(Deserializer &);

virtual void Serialize(Serializer &) const;

There are three eudaq::Event derivations in the default installation of EUDAQ. They are
RawDataEvent (subsubsection 8.1.1), StandardEvent (subsubsection 8.1.2) and LCEvent.
The eudaq::Event derivations are serializable. But if there are additional member variables
introduced to derived Events, the new variable should be serialized along with the other
variables defined in eudaq::Event. If this is not done, the unserialized data will be lost.
It is recommend to reuse the raw data blocks m_blocks of eudaq::Event. Then the base
eudaq::Event will serialize and deserialize the m_blocks.

11.2. FileWriter

Usually, the objects of eudaq::Event and its derivations are the only data going to be
stored in disk for later offline analysis. The user may prefer to write Event data in other
format which is human readable or widely used by other software. In order to define a
new file format, the user can define a class derived from eudaq::FileWriter.

11.2.1. FileWriter Prototype

30 class DLLEXPORT FileWriter {

31 public:

32 FileWriter();

33 virtual ~FileWriter() {}

34 void SetConfiguration(ConfigurationSPC c) {m_conf = c;};

35 ConfigurationSPC GetConfiguration() const {return m_conf;};

36 virtual void WriteEvent(EventSPC) {};

37 virtual uint64_t FileBytes() const {return 0;};

38 private:

39 ConfigurationSPC m_conf;

40 };

51

EUDAQ User Manual 11. Support User Defined Event Type

11.2.2. Example Code: NativeFileWriter

No matter if the user defined Event reuses the m_blocks raw data block or does serialization
of new variables itself, it can write to disk in binary format (aka native) which can only
be read by EUDAQ.

1 #include "eudaq/FileNamer.hh"

2 #include "eudaq/FileWriter.hh"

3 #include "eudaq/FileSerializer.hh"

4

5 class NativeFileWriter : public eudaq::FileWriter {

6 public:

7 NativeFileWriter(const std::string &patt);

8 void WriteEvent(eudaq::EventSPC ev) override;

9 uint64_t FileBytes() const override;

10 private:

11 std::unique_ptr<eudaq::FileSerializer> m_ser;

12 std::string m_filepattern;

13 uint32_t m_run_n;

14 };

15

16 namespace{

17 auto dummy0 = eudaq::Factory<eudaq::FileWriter>::

18 Register<NativeFileWriter, std::string&>(eudaq::cstr2hash("native"));

19 auto dummy1 = eudaq::Factory<eudaq::FileWriter>::

20 Register<NativeFileWriter, std::string&&>(eudaq::cstr2hash("native"));

21 }

22

23 NativeFileWriter::NativeFileWriter(const std::string &patt){

24 m_filepattern = patt;

25 }

26

27 void NativeFileWriter::WriteEvent(eudaq::EventSPC ev) {

28 uint32_t run_n = ev->GetRunN();

29 if(!m_ser || m_run_n != run_n){

30 std::time_t time_now = std::time(nullptr);

31 char time_buff[13];

32 time_buff[12] = 0;

33 std::strftime(time_buff, sizeof(time_buff),

34 "%y%m%d%H%M%S", std::localtime(&time_now));

35 std::string time_str(time_buff);

36 m_ser.reset(new eudaq::FileSerializer((eudaq::FileNamer(m_filepattern).

37 Set('X', ".raw").

38 Set('R', run_n).

39 Set('D', time_str))));

40 m_run_n = run_n;

41 }

52

EUDAQ User Manual 11. Support User Defined Event Type

42 if(!m_ser)

43 EUDAQ_THROW("NativeFileWriter: Attempt to write unopened file");

44 m_ser->write(*(ev.get())); //TODO: Serializer accepts EventSPC

45 m_ser->Flush();

46 }

47

48 uint64_t NativeFileWriter::FileBytes() const {

49 return m_ser ?m_ser->FileBytes() :0;

50 }

11.3. FileReader

To reconstruct the Event from a disk file in native format or user-defined format, the
class eudaq::FileReader is provided. Each writing data format should have its correlated
implementation of FileReader to access the disk file.

11.3.1. FileReader Prototype

26 class DLLEXPORT FileReader{

27 public:

28 FileReader();

29 virtual ~FileReader();

30 void SetConfiguration(ConfigurationSPC c) {m_conf = c;};

31 ConfigurationSPC GetConfiguration() const {return m_conf;};

32 virtual EventSPC GetNextEvent() {return nullptr;};

33 private:

34 ConfigurationSPC m_conf;

35 };

11.3.2. Example Code: NativeFileReader

1 #include "eudaq/FileDeserializer.hh"

2 #include "eudaq/FileReader.hh"

3

4 class NativeFileReader : public eudaq::FileReader {

5 public:

6 NativeFileReader(const std::string& filename);

7 eudaq::EventSPC GetNextEvent()override;

8 private:

9 std::unique_ptr<eudaq::FileDeserializer> m_des;

10 std::string m_filename;

11 };

12

13 namespace{

53

EUDAQ User Manual 11. Support User Defined Event Type

14 auto dummy0 = eudaq::Factory<eudaq::FileReader>::

15 Register<NativeFileReader, std::string&>(eudaq::cstr2hash("native"));

16 auto dummy1 = eudaq::Factory<eudaq::FileReader>::

17 Register<NativeFileReader, std::string&&>(eudaq::cstr2hash("native"));

18 }

19

20 NativeFileReader::NativeFileReader(const std::string& filename)

21 :m_filename(filename){

22 }

23

24 eudaq::EventSPC NativeFileReader::GetNextEvent(){

25 if(!m_des){

26 m_des.reset(new eudaq::FileDeserializer(m_filename));

27 if(!m_des)

28 EUDAQ_THROW("unable to open file: " + m_filename);

29 }

30 eudaq::EventUP ev;

31 uint32_t id;

32

33 if(m_des->HasData()){

34 m_des->PreRead(id);

35 ev = eudaq::Factory<eudaq::Event>::

36 Create<eudaq::Deserializer&>(id, *m_des);

37 return std::move(ev);

38 } else return nullptr;

39

40 }

54

EUDAQ User Manual 12. Contributing to EUDAQ

12. Contributing to EUDAQ

12.1. Reporting Issues

The GitHub server, on which EUDAQ is hosted, provides a system for reporting bugs
and for requesting new features. It is accessible at the following address:
https://github.com/eudaq/eudaq/issues.
Here you may submit new reports (you are required to register first to do this), or follow
the status of existing bugs and feature requests. This is recommended over (or at least, as
well as) sending an email to the developers, as it ensures a record of the issue is available,
and others may follow the progress.

12.2. Regression Testing

If a CMake version later than 3.1 is found and Python is installed together with the
numpy package, several regression tests are made available that can be executed through
CTest. The tests are based on the Python wrapper around EUDAQ components as
described in section ??. Run the tests by typing

cd build

cmake ..

ctest

This starts the script etc/tests/run dummydataproduction.py which runs a short
DAQ session with instances of RunControl, DataCollector and a (dummy) Producer and
compares the output to a reference file stored on AFS at DESY. If your system is set up
correctly, you have access to the reference file, and the basic components of the EUDAQ
library work, all tests should pass. To see the output of failing tests, you can add the
--output-on-failure parameter to the CTest command.
These basic tests can easily be extended to test other parts of the core framework or of
your own producer. Take a look at the etc/tests/testing.cmake CMake script and
the central CMakeLists.txt file where it is included for an example of how to set up
tests with CTest.
The automated nightly tests are defined in CMake scripts located in etc/tests/nightly

and are executed by the scripts run nightly.sh and run nightly.bat for Unix and
Windows platforms, respectively. In addition to the dummy run described above, the
nightly tests check out all changes from the central repository, build the full code base,
and submit all results to the CDash webserver hosted at DESY: http://aidasoft.desy.
de/CDash/index.php?project=EUDAQ

12.3. Commiting Code to the Main Repository

If you would like to contribute your code back into the main repository, please follow the
“fork & pull request” strategy:

• Create a user account on github, log in

55

https://github.com/eudaq/eudaq/issues
http://aidasoft.desy.de/CDash/index.php?project=EUDAQ
http://aidasoft.desy.de/CDash/index.php?project=EUDAQ

EUDAQ User Manual 12. Contributing to EUDAQ

• “Fork” the (main) project on github (using the button on the page of the main
repo)

• Either : clone from the newly forked project and add ’upstream’ repository to local
clone (change user names in URLs accordingly):

git clone https://github.com/your_account_name/eudaq eudaq

cd eudaq

git remote add upstream https://github.com/eudaq/eudaq.git

• or if edits were made to a previous checkout of upstream: rename origin to upstream,
add fork as new origin:

cd eudaq

git remote rename origin upstream

git remote add origin https://github.com/your_account_name/eudaq

git remote -v show

• Optional: edit away on your local clone! But keep in sync with the development in
the upstream repository by running

git fetch upstream # download named heads or tags

git pull upstream master # merge changes into your branch

on a regular basis. Replace master by the appropriate branch if you work on a
separate one. Don’t forget that you can refer to issues in the main repository
anytime by using the string eudaq/eudaq#XX in your commit messages, where XX

stands for the issue number, e.g.

[...]. this addresses issue eudaq/eudaq#1

• Push the edits to origin (our fork)

git push origin

(defaults to git push origin master where origin is the repo and master the
branch)

• Verify that your changes made it to your github fork and then click there on the
“compare & pull request” button

• Summarize your changes and click on “send”

• Thank you!

Working together on a branch: If you have a copy installed, and want to update it to the
latest version, you do not need to clone the repository again, just change to the eudaq

directory use the command:

56

EUDAQ User Manual 12. Contributing to EUDAQ

git pull

to update your local copy with all changes commited to the central repository.

57

EUDAQ User Manual A. Platform Dependent Issues/ Solutions

A. Platform Dependent Issues/ Solutions

A.1. Linux

A.1.1. GCC Compiler

Normally, CMake takes the default GCC Compiler shipped by Linux distrubtion, even
if alternative GCC tool suits exist and have prior in binary search paths. To use
an alternative GCC, it is necessary to set some CMake parameters which explicitly
locate the paths of GCC binaries. Those parameters are CMAKE CXX COMPILER,
CMAKE C COMPILER.

A.1.2. LLVM/Clang

LLVM/Clang Compiler has not been tested on Linux platform.

A.2. MacOS

A.2.1. Qt

Install Qt5 or later, e.g. by using MacPorts (http://www.macports.org/):

sudo port install qt5-mac-devel

A.3. Windows

A.3.1. Release/Debug Version

On Windows/Visual Studio, CMake option CMAKE BUILD TYPE does not really affect
the build type. It is possible to change the default build type Debug to Release by the
build time option “–config Release”.

cmake --build {source_folder}/build --target install --config Release

A.3.2. Qt

In case CMake can not find Qt5 installation at config time, set CMake option Qt5Widgets DIR
to the folder which contaion file Qt5WidgetsConfig.cmake .

58

EUDAQ User Manual Glossary

Glossary

BORE beginning-of-run-event, basically a run header.

FSM finite-state machine.

LCIO Linear Collider I/O, the file format used by the analysis software.

NI the National Instrument, system for reading out the Mimosa 26 sensors.

TLU the Trigger Logic Unit.

Acknowledgements

This project receives funding from the European Unions Horizon 2020 Research and
Innovation programme under Grant Agreement no. 654168. The support is gratefully
acknowledged. Disclaimer : The information herein only reflects the views of its authors
and not those of the European Commission and no warranty expressed or implied is
made with regard to such information or its use.
Before, this work was supported by the Commission of the European Communities under
the 6th Framework Programme “Structuring the European Research Area,” contract
number RII3–026126, and received funding from the European Commission under the
FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

References

[1] J. Dreyling-Eschweiler and H. Jansen, “EUDET-type beam telescopes”, Online Wiki.
URL https://telescopes.desy.de/

[2] P. Roloff, “The EUDET high resolution pixel telescope”, Nucl. Instrum. Meth., A604,
(2009), 265–268.

[3] H. Jansen, S. Spannagel, J. Behr, A. Bulgheroni, G. Claus et al., “Performance of the
EUDET-type beam telescopes”, EPJ Techniques and Instrumentation, 3 (1), (2016),
7.
URL http://dx.doi.org/10.1140/epjti/s40485-016-0033-2

[4] A. Bulgheroni, “EUTelescope, the JRA1 tracking and reconstruction software: a
status report”, EUDET-Memo-2008-48.
URL http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48.pdf

[5] S. Spannagel, “Test Beam Measurements for the Upgrade of the CMS Pixel Detector
and Measurement of the Top Quark Mass from Differential Cross Sections”, Ph.D.
thesis, U. Hamburg, Dept. Phys., Hamburg (2016).
URL http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&p=

reportnumber:DESY-THESIS-2016-010

59

https://telescopes.desy.de/
http://dx.doi.org/10.1140/epjti/s40485-016-0033-2
http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48.pdf
http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&p=reportnumber:DESY-THESIS-2016-010
http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&p=reportnumber:DESY-THESIS-2016-010

EUDAQ User Manual References

[6] GitHub, “Mastering Markdown”, GitHub.
URL https://guides.github.com/features/mastering-markdown/

[7] Git, “Git – local-branching-on-the-cheap”, Online Article.
URL https://git-scm.com/

[8] E. Developers, “EUDAQ code on GutHub”, GitHub.
URL https://github.com/eudaq/eudaq

[9] D. Shirokova, “Software Development for a common DAQ at test”, DESY Summer-
studetnts.

60

https://guides.github.com/features/mastering-markdown/
https://git-scm.com/
https://github.com/eudaq/eudaq

	License
	Introduction
	Architecture
	Directory and File Structure
	Executables
	Libraries

	Installation
	Binary Package Installation
	Building from Source Code

	Run an Example Setup
	Target Setup
	Preparation
	Startup
	Operating
	After data taking

	Integration with User Hardware
	Announcement of Derived Class
	Serializable
	Ownership
	Command/Status Handling

	Writing a Producer
	Producer Prototype
	Example Source Code: Dummy Event Producer

	Writing a DataCollector
	DataCollector Prototype
	Example Code: DirectSave
	Example Code: SyncTrigger

	Writing a Data Converter
	Event Structure
	Example Code: RawEvent2StdEvent

	Writing a Monitor
	Monitor Prototype
	Example Code
	Graphical User Interface

	Writing a RunControl
	RunControl Prototype
	Example Code: auto stop
	RunControl Mode

	Support User Defined Event Type
	Event
	FileWriter
	FileReader

	Contributing to EUDAQ
	Reporting Issues
	Regression Testing
	Commiting Code to the Main Repository

	Platform Dependent Issues/ Solutions
	Linux
	MacOS
	Windows

	Glossary

