

Update on B anomalies

SM@LHC 2018, Berlin, April 10 - 13

Michel De Cian, on behalf of the LHCb collaboration

Rare decays of B hadrons

- Goal is to search for physics beyond the Standard Model (SM).
- Rare B hadron decays are strongly suppressed in SM, new physics can be at the same level.
- Effectively probing virtual particles and their effects: Can reach higher masses than direct searches.
- B hadrons are copiously produced at the LHC.

- $b \to s \ell^+ \ell^-$ transitions are flavour-changing neutral currents and only occur on loop-level in the Standard Model
- In the past years, many interesting deviations from the SM predictions have appeared in several $b \rightarrow s\ell^+\ell^-$ channels, observed by different experiments.
- More anomalous results appeared in charged current b
 ightarrow c decays.
- Together they form the so-called "B anomalies"
- All results shown are with the Run I data set (3 fb^{-1}) of LHCb.

$b \rightarrow s \ell^+ \ell^-$: Branching fractions

••

[JHEP 06 (2014) 133] [JHEP 1308 (2013) 131] [JHEP 11 (2016) 047, JHEP 04 (2017) 142] [theo. predictions: see exp. papers]

 $b \rightarrow s\ell^+\ell^-$: Angular analyses

- Differential decay rate of P \rightarrow VV decays depends on 3 decay angles and an observable, depending on $q^2.$

• $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi} = \frac{9}{32\pi} \sum_i J_i(q^2) f(\cos\theta_\ell, \cos\theta_K, \phi)$

- Best studied case in LHCb: $B^0 \! \to K^{*0} \mu^+ \mu^-$

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (I)

$$\begin{aligned} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} &= \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \right. \\ &\left. \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + \right. \\ &\left. S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \right. \\ &\left. S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + \right. \\ &\left. S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + \right. \\ &\left. S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right] \end{aligned}$$

- Call the coefficient in front of the angular expressions "observable".
- $S_i = f(A_0^{L,R}, A_{\perp}^{L,R}, A_{\parallel}^{L,R})$
- $S_6 = \frac{4}{3}A_{FB}$: Forward-backward asymmetry of leptons
- F_L : Longitudinal polarization of K^{*0}

[JHEP 02 (2016) 104] [theo. prediction: see exp. paper]

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (II)

•

[JHEP 02 (2016) 104] [PRL 118.111801 (2017)] [arXiv:1710.02846] [ATLAS-CONF-2017-023] [theo, predictions: see exp. papers]

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (III)

- $P'_5 = \frac{S_5}{\sqrt{1 F_L}}$
- The P_i^\prime observables are less prone to hadronic form-factor uncertainties than the S_i ones.
- Measurements also by Belle, CMS, ATLAS, albeit with less statistical power.
- Global significance is about 3.4 σ from the SM (LHCb measurement alone).

[JHEP09(2015)179] [theo. prediction: see exp. paper]

• $B_s^0 \to \phi \mu^+ \mu^-$ in principle probes the same underlying physics as $B^0 \to K^{*0} \mu^+ \mu^-$.

- Decay is not self-tagging ightarrow only access to limited set of observables.
- The measured observables are all compatible with the SM predictions.

Lepton Flavour Universality in $B^+ \to K^+ \ell \ell$

- Measure $R_K=\frac{\mathcal{B}(B^+\to K^+\mu^+\mu^-)}{\mathcal{B}(B^+\to K^+e^+e^-)}$ in $q^2\in[1,6]\,\mathrm{GeV}^2\!/c^4$
- Use $B^+ \to J/\psi\,K^+, J/\psi \to \ell\ell$ as normalization and control channel.
- Electrons are more challenging than muons, due to lower reconstruction efficiency and energy loss due to bremsstrahlung.
- Hadronic uncertainties cancel in the ratio.
- 2.6σ deviation from the SM,

 $\mathcal{B}(B^+\!\to K^+e^+e^-)$ compatible with SM predictions.

LFU in $B^0 \to K^{*0}\ell\ell$

- Similar strategy as for R_K . Use $B^0 \to J/\psi K^*$, $J/\psi \to \ell \ell$ as normalization and control channel.
- Compatible at 2.2 and 2.4 σ with SM prediction for low and intermediate q^2 region.

LFU in $\overline{B}{}^0 \rightarrow D^{*+} \ell \nu$, muonic mode

- Measure lepton flavour universality in semileptonic (tree) decays.
- Measure $R_{D^*} = \frac{\mathcal{B}(\overline{B}^0 \rightarrow D^{*+} \tau^- \nu)}{\mathcal{B}(\overline{B}^0 \rightarrow D^{*+} \mu^- \nu)}$
- Use $\tau^- \rightarrow \mu^- \nu \nu$, *i.e.* τ and μ modes have the same final state.
 - Distinguish with kinematical distributions
- $R_{D^*, \exp, \mu} = 0.336 \pm 0.027 (\text{stat}) \pm 0.030 (\text{syst})$
- $R_{D^*,SM} = 0.252 \pm 0.003$
- + $pprox 2\sigma$ from the SM prediction.

LFU in $\overline{B}{}^0 \rightarrow D^{*+} \ell \nu$, 3-prong mode

- Use $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$
- Use $\overline{B}{}^0 \to D^{*+}3\pi$ as normalisation channel, and known ratio $\mathcal{B}(\overline{B}{}^0 \to D^{*+}3\pi)/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu\nu)$ to calculate R_{D^*}
- $R_{D^*,\exp,3\pi} = 0.286 \pm 0.019(\text{stat}) \pm 0.025(\text{sys}) \pm 0.021(\text{BR})$

LFU in $B_c^+ \rightarrow J/\psi \, \ell \nu$

- $R_{J/\psi,\text{theo}} = 0.25 0.28$
- + $R_{J\!/\!\psi\,,{
 m LHCb}}=0.71\pm0.17({
 m stat})\pm0.18({
 m syst})$ (compatible within 2 σ)
- Systematic uncertainties dominated by limited size of simulation and knowledge of $B_c^+\to J/\psi$ form factors.

15

Summary

- Deviations from the SM appeared in the last years in observables in $b \to s \ell^+ \ell^-$ and semileptonic decays in LHCb.
- They were confirmed by measurements from other experiments.
- The deviations show a consistent pattern and in combination (might) become significant (see Sebastian's talk on Thursday).
- Many updates from LHCb (R_{K,K^*,D,D^*} , angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$, $B^0 \to K^{*0} e^+ e^-$) will come up in the near future.

The B anomalies are alive and well!

BACKUP

Analyses of $b \rightarrow d\ell\ell$ transitions

- First evidence of $B^0_s
 ightarrow K^* \mu^+ \mu^-$ (3.4 σ)
- Using 3 fb $^{-1}$ of Run I and 1.6 fb $^{-1}$ of Run II.
- $\mathcal{B}(B^0_s \to K^* \mu^+ \mu^-) = (3.0 \pm 1.0 (\text{stat}) \pm 0.2 (\text{syst}) \pm 0.3 (\text{ext})) \cdot 10^{-8}$
- With the upgrade of LHCb from 2021, differential decay rates can be measured.

LHCb

*

[Int. J. Mod. Phys. A 30, 1530022 (2015)] [Eur. Phys. J. C 73 (2013) 2431]

LHCb: Performance numbers

- Excellent momentum / mass resolution:
 - $\frac{\delta p}{p}$ = 0.5% (10 GeV/c) 1.0% (200 GeV/c)
 - $\sigma_m(B^0_s\!\rightarrow\mu^+\mu^-)\approx 20\,{\rm MeV}\!/c^2$
- Impact parameter resolution:
 - 15 +29/ $p_{
 m T}$ [GeV/c]) $\mu{
 m m}$
- High particle identification efficiency.
 - $\varepsilon_{\mu} pprox$ 97% with 1-3% $\pi
 ightarrow \mu$ misidentification
 - $\varepsilon_K \approx$ 95% with \approx 5% $\pi \rightarrow K$ misidentification

