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Abstract: In this article we show how the resummation of infrared and collinear loga-

rithms within Soft-Collinear Effective Theory (SCET) can be formulated in a way that

makes it suitable for a Monte-Carlo implementation. This is done by applying the tech-

niques developed for automated resummation using the branching formalism, which have

resulted in the general resummation approach CAESAR/ARES. This work builds a connection

between the two resummation approaches, and paves the way to automated resummation in

SCET. As a case study we consider the resummation of the thrust distribution in electron-

positron collisions at next-to-leading logarithm (NLL). However, the results presented here

are easily generalizable to more complicated observables and processes as well as to higher

orders in the logarithmic accuracy.
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1. Introduction

A well known fact of perturbation theory is the presence of logarithmic terms, sensitive to

the ratio of scales in the problem, whose power grows with the perturbative order. For most

processes of interest at high energy colliders, two powers of such logarithms (L) arise for

every power of the strong coupling constant, and the numerical size of these logarithms can

be of order L ∼ 1/αs. This makes fixed order (FO) perturbation theory for such processes

ill behaved, requiring a rearrangement of the perturbative expansion, in which these large

logarithms are resummed to all orders in perturbation theory. Instead of simply counting

the powers of the strong coupling constant, where NnLO refers to a calculation satisfying

σexact/σNnLO−1 ∼ αn+1
s , one instead performs a logarithmic resummation, in which NnLL
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implies that ln[σexact/σNnLL] ∼ αms L
m−n for any m ≥ n. As long as the ratio of scales

in the logarithm is large (L � 1), this reorganization of perturbation theory provides a

sensible expansion.

In this paper we will study the 2-jet cross section at lepton colliders (equivalent con-

siderations apply to the 0-jet cross sections at hadron colliders), that we denote as

Σ(v) =
1

σB

∑
n

∫
dΦn

dσ

dΦn
Θ [V (Φn) < v] , (1.1)

where σB denotes the Born cross section and V (Φn) an observable that goes to zero in the

Born kinematics. The radiation phase space Φn has the property that in the limit v → 0

each strongly interacting particle is either infinitely soft or it is collinear to either of the

two Born legs (either the directions of the 2-jets in lepton colliders or the beam directions

for hadron colliders). The resummed expression commonly takes the form

Σ(v) = σB

[
1 + αsC

(1) + α2
s C

(2) + . . .
]

exp [Lg1(αsL) + g2(αsL) + . . .] . (1.2)

Resummation to order NkLL requires knowledge of the functions gm(αsL) with m ≤ k+ 1

and the coefficients C(m) with m ≤ k−1. So for example, for NLL resummation one needs

g1(αsL) and g2(αsL), but only the leading order coefficient C(0) = 1.

There are two main approaches to calculate the resummed expressions. The first is

based on deriving a factorization theorem for the specific cross section under consideration,

and then using evolution equations to resum the logarithms of the various ingredients of

the factorization theorem. This approach was started by Collins, Soper and Sterman [1],

where the transverse momentum distribution of the vector boson in W and Z production

was studied. The development of soft-collinear effective theory (SCET) [2–5] has formu-

lated this approach in the framework of effective field theories. In SCET, the interactions

between particles are already factorized at the level of the Lagrangian [4]. As long as

the measurement function can be shown to factorize [6, 7], the relevant interactions can

be separated as arising from collinear and soft particles, which do not interact with one

another directly. Once a factorization theorem for a given observable has been derived, the

important property of SCET is that in dimensional regularization each element of the fac-

torization theorem only depends on a single scale through the ratio to the renormalization

scale [2,3]. This means that all logarithmic terms can be obtained from the renormalization

(RG) group evolution of each element in the factorization theorem, resulting in analytic

results for resummed cross sections.

An alternate approach to resummation is based on the branching formalism [8,9], which

is built on the factorization properties of the QCD squared amplitudes. It relies on slicing

the radiation phase space by means of a resolution scale q0 and then describing the radiation

of particles above and below that scale separately. At lowest order this approach is the

same as what is used in a parton shower, but by not requiring to produce fully exclusive

final states which satisfy momentum conservation, one can systematically improve the

branching formalism to any logarithmic accuracy desired. The logarithmic dependence on

the resolution scale q0 cancels for infrared and collinear (IRC) safe observables, leaving only

– 2 –



a power suppressed dependence on q0, which allows one to take the limit for q0 → 0. The

key difference between the branching formalism and the resummation from factorization

is that in the factorization approach the resummation is obtained by solving a set of

differential equations (RG equations in the case of SCET), while in the branching formalism

resummation is usually performed through an all order calculation in perturbation theory

using a Monte-Carlo (MC) algorithm. For sufficiently simple observables one can rewrite

the branching formalism in terms of differential equations, reproducing the results from

the factorization approach.

Each of these two approaches has its advantages and disadvantages. The factoriza-

tion approach has the advantage that to perform resummation only requires to obtain

the desired differential RG equations that, in particular using SCET, can be obtained by

computing well defined loop diagrams. On the other hand, the formalism only works for

observables for which a factorization theorem is known. While these factorization theorems

can easily be obtained for the simplest observables, for more complicated observables the

factorization formulae are not known. In fact, the most difficult part to obtain resumma-

tion in SCET is often the derivation of the appropriate factorization theorem. Since the

branching formalism does not rely on a specific factorization theorem, it can be applied

to a rather wide class of observables. In fact, one can show that for any continuously

global, recursively infrared and collinear (rIRC) safe observable [10], resummed results can

be obtained using an appropriate MC algorithm. The downside of the branching formalism

is that going to higher logarithmic accuracy requires a careful definition of the necessary

squared amplitudes and phase space constraints, making extensions to arbitrarily high ac-

curacy less systematic. Besides the formulation of resummation, the two approaches differ

in a number of important aspects. For instance, while in the branching formalism the

uncertainties associated with higher-order terms are estimated by varying the renormal-

ization (and factorization in the hadronic case) and resummation scales, in SCET each of

the ingredients of the factorization theorem has a characteristic scale that can be sepa-

rately varied (commonly done through profile functions [11]) to estimate the perturbative

uncertainty. Another important difference is in the way the two methods are sensitive to

non-perturbative effects. While in the branching formalism this sensitivity comes from

the scale at which the running coupling is evaluated, in a factorized approach one has an

operator definition of the factorization ingredients in the non-perturbative regime.

As was shown in refs [10, 12, 13], one can reduce the requirements of the accuracy of

the ingredients in the MC algorithm by one order if one has analytic knowledge of the

resummation of any other observable that has the same double logarithmic structure as

the observable one is interested in resumming. In other words, if one wants to resum Σ(v)

for a given observable v to order NnLL, and one knows the resummmation analytically for

Σ(vs), where vs is a different (simpler) observable that has the same double logarithmic

structure as Σ(v), then the ratio Σ(v)/Σ(vs) can be computed using a MC that only requires

ingredients at Nn−1LL accuracy. This was used in [10] to construct a completely generic

method capable of computing any IRC safe observable to NLL accuracy. The simplified

observable was chosen such that the branching formalism could be solved analytically. This

approach was later reformulated to NNLL for generic rIRC safe observables in [13,14] and
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to even higher orders for specific observables [15].

Both approaches can be applied to obtain high-order resummations for a multitude of

final-state observables for scattering processes in e+e− [13,14,16–23] as well as in hadronic

collisions [15,24–39].

By combining the two approaches with one another one keeps the advantages of each,

while removing the main obstacle. If one can find for any observable v a simplified ob-

servable vs with a simple factorization formula, one can use SCET to obtain the analytical

resummation of this simplified observable, while using the branching formalism to relate

this analytical result to the resummed result for the more complicated observable, for which

a factorization formula might be difficult or impossible to obtain. This is in spirit very

similar to the CAESAR/ARES approach, but instead of finding a simplified observable for

which the branching formalism can be solved analytically, one chooses the simplified ob-

servable such that a factorization theorem is easily derived and its resummation performed

in SCET. In fact, there is a large body of observables for which high logarithmic accuracy

is known in SCET (see references above). By combining this with the branching formalism

allows one to obtain results for all related observables to the same level of accuracy.

It is this combination of SCET results with the branching formalism that we will

address in this paper. A major part of this discussion will explain how to deal with UV

divergent phase space regions that are crucial in the SCET approach (since it is the UV

divergences from these regions that give rise to the anomalous dimensions leading to the

RG equations in SCET), but can not be present in a MC approach which has to integrate

over physical regions of phase space. We will explain this combination using the thrust

distribution (using τ = 1 − T ) as an explicit example. Although the ingredients for a

N3LL resummation are currently known [11,16,40–42] (with the sole exception of the four-

loop cusp anomalous dimension), in this paper we limit ourselves to NLL for the sake of

simplicity. However our results are easily generalizable to more complicated observables

of interest as well as to the computation of higher-order corrections. We leave this to a

forthcoming publication [43].

This paper is organized as follows: We review the resummation using the branching

formalism in Section 2 and the SCET approach to resummation in Section 3. The main

part of the paper is contained in Section 4, where we discuss how to combine the two

approaches to obtain a numerical approach to resummation in SCET. Conclusions and an

outlook to future work is presented in Section 5.

2. Review of QCD resummation in the CAESAR/ARES framework

In this section we briefly review how resummation is carried out in the approach of refs. [10,

13]. We begin by discussing the basic setup of the formalism for a general observable v and

to arbitrary order in the resummation, but then restrict ourselves to the specific case of the

thrust distribution when deriving the NLL result in more detail. We consider observables

that vanish in the 2-jet limit, and when considering the thrust distribution we use τ ≡ 1−T .

At Born level, the final state consists of two back-to-back particles along the thrust

axis with center of mass energy Q. Beyond Born level, further radiation is present and the
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final state consists in general of n secondary emissions, k1, . . . , kn, and of the primary quark

and antiquark which recoil against these additional emissions. We denote the value of the

observable by V (ΦB; k1, . . . , kn), where the Born phase space ΦB contains the dependence

on the two Born momenta.

In order to single out the dependence on the Born phase space, we write

Σ(v) =
1

σB

∫
dΦB Σ(ΦB; v) , (2.1)

and we will work with the expression Σ(ΦB; v) for most of this paper. This means that the

ΦB phase space integral needs to be performed at the end, and the final result needs to be

divided by the Born cross section σB.

In the infrared and collinear limit, Σ(ΦB; v) receives contributions from either virtual,

or soft and/or collinear real corrections. In the following, we denote by V(ΦB) the quark

form factor at all orders (see e.g. [44]). Therefore we can write

Σ(ΦB; v) = V(ΦB)
∞∑
n=0

∫ n∏
i=1

[dki]|M(ΦB; k1, . . . , kn)|2 Θ [V (ΦB; k1, . . . , kn) < v] , (2.2)

where M is the matrix element for n real emissions (the case with n = 0 reduces to the

Born matrix element), and [dki] denotes the phase space for the emission ki. Each matrix

element in Eq. (2.2) receives higher-order virtual corrections, while the number of real

emissions is fixed by the index of the sum. The Θ function represents the measurement

function for the observable under consideration.

2.1 The simplified observable and the transfer function

The general strategy of the CAESAR/ARES approach is to write the cross section for a rIRC

safe observable v into the cross section of a simpler observable vs which has the same

logarithmic structure as v at lowest order1, and a transfer function that accounts for the

difference between the two observables v and vs. The latter is formulated in such a way

that it can be evaluated efficiently using Monte Carlo methods.

As we will discuss in a little while, a good choice for such a simple observable is

vs = vmax, where the simple observable is defined by taking a suitably defined maximum

of the observable calculated for independent emissions. We use the following notation

Σmax(ΦB; v) ≡ Σ(ΦB; vmax) (2.3)

from now on. A detailed definition of this observable will follow shortly.

Using some trivial manipulations, one can write

Σ(ΦB; v) = Σmax(ΦB; v)
Σmax(ΦB; δv)

Σmax(ΦB; v)

Σ(ΦB; v)

Σmax(ΦB; δv)

≡ Σmax(ΦB; v)F(ΦB; v) , (2.4)

1This last requirement is not, strictly speaking, necessary, although it will lead to important simplifica-

tions in formulating a Monte Carlo solution.
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where we introduced the small positive parameter δ � 1 that is independent of the observ-

able’s value v. An important comment at this stage is in order. Eq. (2.4) is strictly valid

only for observables that admit a resummed cross section of the type (1.2). This is not

the case for observables which can vanish also in the presence of resolved emissions due to

kinematic cancellations (for instance for the transverse momentum of a color singlet in pp

collisions). In this case Eq. (2.4) takes the form of a convolution between Σmax and F . In

this article we limit ourselves to observables that behave like Eq. (1.2) in the v → 0 limit,

and leave the study of the above observables for a future publication.

The product of ratios gives the relation between the cross section of the desired ob-

servable Σ(ΦB; v) and the cross section of the simplified observable Σmax(ΦB; v), and it

accounts for the exact behavior of the observable in the presence of radiation. For this

reason it is normally referred to as multiple-emissions functions. For the sake of brevity,

we have dubbed it transfer function

F(ΦB; v) ≡ Σmax(ΦB; δv)

Σmax(ΦB; v)

Σ(ΦB; v)

Σmax(ΦB; δv)
. (2.5)

An important property of this transfer function is that it is IRC and UV finite, and

as long as Σmax(ΦB; v) has the same LL structure as Σ(ΦB; v) (as we are assuming), its

contribution starts at NLL (as will be shown later). The small parameter δ was introduced

in order to allow for the transfer function to be easily calculable in a MC framework, as we

will discuss below. The basic idea is that in the second ratio, Σ(ΦB; v)/Σmax(ΦB; δv), the

denominator removes the unresolved emissions with V < δv, such that this ratio is IRC

finite. The resulting dependence on the resolution parameter δ is cancelled against the first

ratio, which can be calculated analytically once Σmax is known.

The first step in computing a resummed expression for Σ(ΦB; v) is to build an explicit

logarithmic counting for the squared matrix elements. To achieve this, one introduces the

n-particle correlated (nPC) squared matrix elements |M̃(k1, . . . , kn)|2, which are defined

recursively as

|M̃(ka)|2 =
|M(ΦB; ka)|2

|M(ΦB)|2
≡ |M(ka)|2 , (2.6)

|M̃(ka, kb)|2 =
|M(ΦB; ka, kb)|2

|M(ΦB)|2
− |M(ka)|2|M(kb)|2 ,

|M̃(ka, kb, kc)|2 =
|M(ΦB; ka, kb, kc)|2

|M(ΦB)|2
− |M(ka)|2|M(kb)|2|M(kc)|2

− |M̃(ka, kb)|2|M(kc)|2 − |M̃(ka, kc)|2|M(kb)|2 − |M̃(kb, kc)|2|M(ka)|2

. . .

These denote the parts of the squared amplitudes with n real emissions that can not

be obtained by multiplying together squared amplitudes with less than n real emissions,

and therefore represent the fully correlated part. With these definitions, the renormalized
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squared amplitude for n real emissions can be decomposed as

|M(ΦB; k1, . . . , kn)|2

|MB(ΦB)|2
=

n∏
i=1

|M(ki)|2 +
∑
a>b

∣∣∣M̃(ka, kb)
∣∣∣2 n∏

i=1
i 6=a,b

|M(ki)|2

+
∑
a>b>c

∣∣∣M̃(ka, kb, kc)
∣∣∣2 n∏

i=1
i 6=a,b,c

|M(ki)|2

+
∑
a>b

∑
c>d

c,d6=a,b

∣∣∣M̃(ka, kb)
∣∣∣2 ∣∣∣M̃(kc, kd)

∣∣∣2 n∏
i=1

i 6=a,b,c,d

|M(ki)|2 + . . . (2.7)

Each of the correlated squared amplitudes admits a perturbative expansion

|M̃(ka, . . . , kn)|2 ≡
∞∑
j=0

(αs
2π

)n+j
nPC(j)(ka, . . . , kn) , (2.8)

where the index j denotes the order of virtual corrections to the squared amplitude with n

real emissions. The rIRC safety of the observables considered here guarantees a hierarchy

between the different blocks in the decomposition (2.7), in the sense that correlated blocks

with n particles generally start contributing at one logarithmic order higher than correlated

blocks with n− 1 particles [10,13].

Having introduced the nPC decomposition of the squared matrix elements allows one

to precisely define the simplified observable Vmax. It is defined to be the maximum value

of the full observable V calculated on the sum of momenta in each correlated block. In

equations, this becomes

Σmax(ΦB; v) = V(ΦB)
∞∑
n=0

∫ n∏
i=1

[dki] |M(ΦB; k1, . . . , kn)|2 Θ [Vmax(ΦB; k1, . . . , kn) < v] ,

(2.9)

where Vmax(ΦB; k1, . . . , kn) is defined through its action on the n-particle correlated blocks

as∫ n∏
i=1

[dki]
∣∣∣M̃(k1, . . . , km1)

∣∣∣2 . . . ∣∣∣M̃(kmk+1, . . . , kn)
∣∣∣2 Θ [Vmax(ΦB; k1, . . . , kn) < v] (2.10)

=

∫ n∏
i=1

[dki]

∫
[dq1]δ(q1 − k1 − . . .− km1) . . .

∫
[dqk]δ(qk − kmk+1 − . . .− kn)

×
∣∣∣M̃(k1, . . . , km1)

∣∣∣2 . . . ∣∣∣M̃(kmk+1, . . . , kn)
∣∣∣2 Θ

[
max{Ṽ (ΦB; q1), . . . , Ṽ (ΦB; qk)} < v

]
.

where Ṽ (ΦB; q) denotes the functional form of the observable on a single emission. It is

important that the content of each correlated block is treated inclusively when computing

the relative Ṽ so that the above definition is collinear safe and can be extended at all

orders. It is obvious that, in general, the cross section Σmax has no physical meaning, but

it simply defines one ingredient for our resummation approach.
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It is worth stressing that one has some freedom in choosing the form of Ṽ . Conceptu-

ally, the simplest choice is to set Ṽ = V evaluated on the inclusive content of each block. In

general, however, the only important feature is that it shares the same leading logarithms

with the observable we are ultimately interested in. It is therefore very useful to define the

simple observable such that the corresponding Σmax can be used for a whole class of more

complicated observables. This can be achieved, for instance, by using the soft-collinear

approximation of the full observable Ṽ = Vsc instead of its full form V . This indeed, be-

sides simplifying further the computation of Σmax, guarantees that this ingredient can be

directly used for the resummation of all observables that share the same soft-collinear limit

for a single emission, which defines a much broader class than the first definition given

above. For the sake of simplicity, however, we avoid this technical complication in the rest

of this article, and refer the interested reader to refs. [10, 13] for more details.

We now continue with the derivation of the master formula. Using Eq. (2.9) together

with Eqs. (2.7) and (2.10), Σmax(ΦB; v) can be written in terms of the nPC(j) blocks. Since

the observable acts separately on each nPC block, the expression in Eq. (2.9) can easily be

shown to exponentiate. To perform a NkLL resummation for global, rIRC-safe observables,

one needs to include nPC(j) blocks with n+ j ≤ k+ 1, but additional simplifications might

be made on each nPC(j) block. For example, to LL accuracy, only the 1PC(0) block is

required, and one only needs to keep the soft-collinear limit of it. Thus, one obtains

ΣLL
max(ΦB; v) = |MB(ΦB)|2V(ΦB)

1

n!

n∏
i=1

{∫
[dki]|M (0)

sc (ki)|2Θ
[
Ṽ (ΦB; ki) < v

]}
= |MB(ΦB)|2 e−RLL(ΦB ;v) , (2.11)

where the 1/n! prefactor accounts for n identical gluons in the final state. The LL radiator

function RLL(ΦB; v) is the combination of the virtual and real contribution which at this

order simply reads

RLL(ΦB; v) =

∫
[dk]|M (0)

sc (k)|2 Θ
[
Ṽ (ΦB; k) > v

]
. (2.12)

The definition of Vmax ensures the exponentiation at higher orders as well, such that one

can always write

Σmax(ΦB; v) = |MB(ΦB)|2 Σ0
maxe

−R(ΦB ;v) (2.13)

where R(ΦB; v) is called the radiator function, and Σ0
max denote constant terms. Σ0

max

differs from one starting at NNLL order.

Using the expression for Σmax(ΦB; v) obtained just above, the first ratio in Eq. (2.5)

can easily be computed, and we give the explicit expression when deriving the results at

NLL accuracy below.

To compute the second ratio in Eq. (2.5) we need to carefully define the notion of

resolved (unresolved) momenta, by demanding that the value Vmax evaluated on the set of

momenta is above (below) a resolution scale δv

Θδv [{ki}] ≡ Θ [Vmax(ΦB; {ki}) > δv]

Θδv [{ki}] ≡ Θ [Vmax(ΦB; {ki}) < δv] . (2.14)
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A key point now is to notice that for δ → 0 one can neglect the unresolved real emissions in

the observable measurement function as they are much softer and/or more collinear than

any other resolved emission in the final state. rIRC safety then guarantees that

Θ [V (ΦB; k1, . . . , kn) < v] Θδv [{k1, . . . , kl}]
= Θ [V (ΦB; kl+1, . . . , kn) < v] Θδv [{k1, . . . , kl}] + v δp , (2.15)

where p is a positive and real constant, independent of v. This allows one to split the total

momentum q of each nPC block in Σ(ΦB; v) into a resolved and unresolved component

(depending on whether the value of Ṽ (ΦB; q) is greater or less than δv).2

Thus, for each nPC block we use∫
[dk] |M(k)|2 =

∫
[dk] |M(k)|2

[
Θδv (k) + Θδv (k)

]
≡
∫ δv

[dk] |M(k)|2 +

∫
δv

[dk] |M(k)|2 ,∫
[dk1][dk2] |M̃(k1, k2)|2 =

∫
[dk1][dk2] |M̃(k1, k2)|2

[
Θδv (k1, k2) + Θδv (k1, k2)

]
≡
∫ δv

[dk1][dk2] |M̃(k1, k2)|2 +

∫
δv
[dk1][dk2] |M̃(k1, k2)|2, (2.16)

and so on. Up to power corrections in the small parameter δ, this allows us to separate

Σ(ΦB; v) into a resolved component (where all momenta are resolved) and an unresolved

component,

Σ(ΦB; v) = |MB(ΦB)|2V(ΦB)

[ ∞∑
n=0

∫ δv n∏
i=1

[dki]
|M(ΦB; k1, . . . , kn)|2

|MB(ΦB)|2

]

×

[ ∞∑
n=0

∫
δv

n∏
i=1

[dki]
|M(ΦB; k1, . . . , kn)|2

|MB(ΦB)|2
Θ [V (ΦB; k1, . . . , kn) < v]

]
+O(v δp)

= Σmax(ΦB; δv)

[ ∞∑
n=0

∫
δv

n∏
i=1

[dki]
|M(ΦB; k1, . . . , kn)|2

|MB(ΦB)|2
Θ [V (ΦB; k1, . . . , kn) < v]

]
+O(v δp) . (2.17)

One therefore finds for the second ratio in Eq. (2.5)

Σ(ΦB; v)

Σmax(ΦB; δv)
=
∞∑
n=0

∫
δv

n∏
i=1

[dki]
|M(ΦB; k1, . . . , kn)|2

|MB(ΦB)|2
Θ [V (ΦB; k1, . . . , kn) < v] +O(v δp) .

(2.18)

2A second comment is in order. Once again, for observables that can vanish because of kinematic

cancellations (a primary example being the transverse momentum of a color singlet in pp collisions), our

choice of the simple observable can have issues when the above cancellations occur. A more appropriate,

and more general, prescription would be to use δV (q1) as a resolution scale, where q1 is the total four

momentum of the hardest correlated block. In this case Eq. (2.4) takes the form of a convolution as

discussed in Refs. [12,39]. We will however proceed with the initial choice in the rest of this article for the

sake of simplicity, since all of the other considerations made here are fully general.
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Σmax(v) F(v)

[nPC(j)]sc [nPC(j)]�sc [nPC(j)]sc [nPC(j)]�sc

LL n+ j ≤ 1 – – –

NLL n+ j ≤ 2 n+ j ≤ 1 n+ j ≤ 1 –

NNLL n+ j ≤ 3 n+ j ≤ 2 n+ j ≤ 2 n+ j ≤ 1

NkLL n+ j ≤ k + 1 n+ j ≤ k n+ j ≤ k n+ j ≤ k − 1

Table 1: The order at which the various nPC(j) are required for the computation of Σmax(v) and

F(v).

Note that the above discussion holds to any logarithmic accuracy. To go to a given

order in the resummation of Σ(v) or Σmax(v) one needs to rewrite the full matrix element

in terms of the nPC(j) blocks, and only keep the blocks that are relevant at the desired

logarithmic order.

For the two ratios required in the transfer function Eq. (2.5), the argument of the

numerator and denominator scale with the observable v. This implies that to compute the

ratio to a given logarithmic accuracy, one needs the numerator and denominator at one

logarithmic order lower [10, 13]. To understand this fact better, let us consider the first

ratio in Eq. (2.5) as an example. At NLL order, we can write Σmax(v) = exp[Lvg1(αsLv) +

g2(αsLv)], where Lx = ln(1/x). We find

Σmax(δv)

Σmax(v)
= exp {Lδvg1(αsLδv)− Lvg1(αsLv) + g2(αsLδv)− g2(αsLv)}

= exp
{
Lδ
[
g1(αsLv) + αsLvg

′
1(αsLv)

]
+ . . .

}
, (2.19)

where we have dropped all terms contributing beyond NLL. One can clearly see that the

result depends only on the LL function g1(αsLv), such that each term is only required to

LL accuracy.

Furthermore, one can perform additional kinematical expansions to simplify the ex-

pressions of the nPC(j) blocks, and we decompose each block nPC(j) by singling out its

most singular (hence leading) term [nPC(j)]sc, that is obtained by taking the soft and

collinear limit of all emissions, i.e.

nPC(j) = [nPC(j)]sc + [nPC(j)]�sc. (2.20)

In summary, the ingredients required to a given order in logarithmic counting are sum-

marized in Table 1. In the next section we perform the calculation at NLL for the thrust

event shape.

2.2 Resumming the thrust distribution to NLL accuracy

In this section we compute all ingredients necessary to obtain Σ(ΦB; τ) for the thrust

distribution to NLL accuracy, using Eq. (2.4). The thrust distribution is an additive
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observable, which satisfies

V (ΦB; k1, . . . , kn) =
n∑
i=1

τi , with τi ≡ V (ΦB; ki) . (2.21)

The first ingredient is the NLL resummation of the simplified observable. To NLL

accuracy one obtains [using the obvious extension of the LL result given in Eq. (2.11)]

ΣNLL
max (ΦB; τ) = |MB(ΦB)|2 e−RNLL(ΦB ;τ) , (2.22)

with

RNLL(ΦB; τ) =

∫
[dk]

[
|M (0)(k)|2 + |M (1)

sc (k)|2 +

∫
[dka][dkb]|M̃ (0)

sc (ka, kb)|2δ(k − ka − kb)
]

×Θ
[
Ṽ (ΦB; k) > τ

]
, (2.23)

where one keeps the full kinematical dependence in the tree level contribution of |M(ki)|2,

but only the soft-collinear limit of the one-loop contribution to |M(ki)|2 and of |M̃ (0)(ka, kb)|2.

One can evaluate the integrals involving |M (1)
sc (k)|2 and |M̃ (0)

sc (ka, kb)|2 in dimensional reg-

ularization, and neglecting NNLL corrections one finds

RNLL(ΦB; τ) =

∫
[dk]

[
|M (0)(k)|2 +

αs(kt)

2π
|M (0)

sc (k)|2K
]

Θ
[
Ṽ (ΦB; k) > τ

]
, (2.24)

where

K =

(
67

18
− π2

6

)
CA −

5

9
nf . (2.25)

For the computation of the transfer function one only needs to keep the 1PC(0) block

in its soft-collinear limit. Therefore, the first ratio in FNLL(τ) can be written as

ΣLL
max(ΦB; δτ)

ΣLL
max(ΦB; τ)

= eRLL(ΦB ;τ)−RLL(ΦB ;δτ) ≡ ∆LL(ΦB; τ, δτ) , (2.26)

where RLL(ΦB; v) was given in Eq. (2.12).

To compute the second ratio of the transfer function to NLL accuracy, one uses

Eq. (2.18), which leads to (up to power corrections in δ)

ΣLL(ΦB; τ)

ΣLL
max(ΦB; δτ)

=

∞∑
n=0

1

n!

n∏
i=1

{∫
δτ

[dki]|M (0)
sc (ki)|2

}
Θ

[∑
i

τi < τ

]
. (2.27)

Combining Eqs. (2.26) and (2.27), we obtain the final expression for the transfer function

FNLL(ΦB; τ) = ∆LL(ΦB; τ, δτ)

∞∑
n=0

 1

n!

∫
δτ

n∏
i=1

[dki]|M (0)
sc (ki)|2

Θ

[∑
i

τi < τ

]
. (2.28)

Eqs. (2.22), (2.24), (2.26) and (2.28) provide all the ingredients to calculate Σ(v) to NLL

accuracy.
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The transfer function in Eq. (2.28) can easily be computed using an MC approach.

Using Eq. (2.12) one can write (recall that we choose Ṽ = V )

R′LL(ΦB; τ) ≡ dRLL(ΦB; τ)

d ln(1/τ)
= τ

∫
[dk]|M (0)

sc (k)|2δ(V (ΦB; k)− τ)

=

∫
dkt
kt

∫ ln Q
kt

0
dη

dφ

2π
4CF

αs(kt)

π
δ [ln(V (ΦB; k))− ln(τ)] . (2.29)

Trading the 1/n! in Eq. (2.28) with an ordering in vi, this allows us to write the transfer

function in the form

FNLL(ΦB; τ) = ∆LL(ΦB; τ, δτ)

[
1 +

∫ τ

δτ

dτ1

τ1
R′LL(ΦB; τ1)

+

∫ τ

δτ

dτ1

τ1
R′LL(ΦB; τ1)

∫ τ1

δτ

dτ2

τ2
R′LL(ΦB; τ2) + . . .

]
Θ

[∑
i

τi < τ

]

=

[
∆LL(ΦB; τ, δτ) +

∫ τ

δτ

dτ1

τ1
∆LL(ΦB; τ, τ1)R′LL(ΦB; τ1)∆LL(ΦB; τ1, δτ)

+ . . .

]
Θ
[∑

i

τi < τ
]
, (2.30)

where to obtain the second identity we have used

∆LL(ΦB; τ1, τ2) = ∆LL(ΦB; τ1, τ
′)∆LL(ΦB; τ ′, τ2) . (2.31)

Since ∆LL(ΦB; τ, τ ′) and R′LL(ΦB; τ) satisfy

τ ′
d

dτ ′
∆LL(ΦB; τ, τ ′) = R′LL(ΦB; τ ′) ∆LL(ΦB; τ, τ ′) , (2.32)

this strongly resembles the standard parton shower evolution. It is therefore solved using

the usual parton shower algorithm:

1. Start with i = 0 and τ0 = τ

2. Increase i by one

3. Generate τi randomly according to3 ∆LL(ΦB; τi−1, τi)R
′
LL(ΦB; τi)

4. If τi < δτ exit the algorithm, otherwise go back to step 2

If the sum over all generated τi is less than τ , accept the event, otherwise reject it. The

value of F(τ) is equal to the fraction of the accepted events.

3This is done by generating a random number r and then solving ∆LL(ΦB ; τi−1, τi) =
∆LL(ΦB ;τi−1,δτ)

∆LL(ΦB ;τi,δτ)
= r

for τi
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2.3 Neglecting subleading effects: the CAESAR formula

The expression for the transfer function obtained in the previous section contains effects

beyond NLL. It is often useful to be able to neglect all subleading effects and hence have

a pure NLL answer. This can be done through a set of simplifications that we briefly

summarize below. We stress that the operations performed in the present section are not,

strictly speaking, necessary, but they can simplify considerably the numerical evaluation

of the transfer function, and allow for an analytic solution in some cases.

There are two important sources of subleading corrections in the treatment presented

in the previous section. First, since the relevant squared amplitudes in the transfer function

1PC(0) are taken in the soft-collinear limit, it is natural to also approximate the observable

V in the same limit. It is convenient to parametrize the emissions’ momenta as

ki = z
(1)
i p1 + z

(2)
i p2 + κt,i , (2.33)

where κt,i is a space-like four-vector κt,i = (0,~kt,i), orthogonal to the two reference momenta

p1 and p2 that are aligned with the thrust axis ~nT

p1 =
Q

2
(1, ~nT ) , p2 =

Q

2
(1,−~nT ) . (2.34)

Finally, we introduce the emission’s rapidity ηi with respect to the thrust axis, which is

given by

ηi =
1

2
ln
z

(1)
i

z
(2)
i

, with |ηi| < ln
Q

kt,i
, (2.35)

where the boundary for ηi is obtained by imposing z
(`)
i < 1 for any leg ` = 1, 2.

Using the additivity of thrust one finds

Vsc(ΦB; k1, . . . , kn) =
n∑
i=1

τi , with τi ≡ Vsc(ΦB; ki) =
kti
Q
e−|ηi| . (2.36)

The above expression for the observable can be used in the evaluation of both the Sudakov

radiator and the transfer function, neglecting terms beyond NLL order. Starting again

from ΣNLL
max , we can evaluate the integral (2.24) by parametrizing the phase space [dq] in

terms of the transverse momentum qt and rapidity η of the emission q in the centre-of-mass

frame of the emitting dipole. For the soft-collinear contribution one finds∫
[dk]

[
1 +

αs(kt)

2π
K

]
|M (0)

sc (k)|2Θ [Vsc(ΦB; k) > τ ]

=

2∑
`=1

∫ Q

0

dkt
kt

∫ ln Q
kt

0
dη(`)

∫ π

−π

dφ

2π
2CF

αs(kt)

π

[
1 +

αs(kt)

2π
K

]
Θ

[
kt
Q
e−|η

(`)| > τ

]
,

(2.37)

where the sum runs over the two Born emitters. The remaining hard-collinear contribution

can be recast as [10,13]∫
[dk]|M (0)

hc (k)|2Θ [Vsc(ΦB; k) > τ ] = −3

2
CF

2∑
`=1

∫ Q

0

dkt
kt

αs(kt)

π
Θ

[
k2
t

Q2
> τ

]
. (2.38)
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Using the above integrals, one can express RNLL(ΦB; v) as

RNLL(ΦB; τ) = −Lg1(αsL)− g2(αsL) , (2.39)

where L = ln 1
τ and the expressions of gi have been long known [9] and are summarized in

Appendix A. The derivative of the LL radiator, required in the transfer function, is then

given by

R′LL(ΦB; τ) = −αsLg′1(αsL)− g1(αsL) . (2.40)

The second source of subleading corrections in the formulation of Section 2.2 has to do

with the phase space bounds of the resolved radiation. In particular, we see from Eq. (2.37)

that

|η(`)
i | < ln

Q

kti
=

1

2
ln

1

τi
, (2.41)

where in the last step we used Eq. (2.36). At NLL the upper rapidity bound can be

approximated as
1

2
ln

1

τi
=

1

2
ln

1

τ
+O

(
ln
τ

τi

)
, (2.42)

which is then common to all resolved emissions. In our notation, this operation amounts

to Taylor expanding the functions R′LL(ΦB; vi) in the resolved radiation as

R′LL(ΦB; τi) = R′LL(ΦB; τ) +R′′LL(ΦB; τ) ln
τ

τi
+O

(
R′′′
)
, (2.43)

where all terms in the r.h.s. beyond the first one are logarithmically subleading (each extra

derivative suppresses the contribution by one logarithmic order). Similarly, the first ratio

in the transfer function can be expanded about τ , in order to retain only the actual NLL

terms necessary to cancel the δ dependence of the resolved radiation

ΣLL
max(ΦB; δτ)

ΣLL
max(ΦB; τ)

= eRLL(ΦB ;τ)−RLL(ΦB ;δτ) ' e−R′LL(ΦB ;τ) ln 1
δ . (2.44)

With these simplifications, we can recast the transfer function as

FNLL(ΦB; τ) = δR
′
LL(ΦB ;τ)

∞∑
n=0

 1

n!

n∏
i=1

∫ τ

δτ

dτi
τi
R′LL(ΦB; τ)

Θ

[∑
i

τi < τ

]
, (2.45)

which can be written as

FNLL(ΦB; τ) =

[( τ
δτ

)−R′LL(ΦB ;τ)
+

∫ τ

δτ

dτ1

τ1
R′LL(ΦB; τ)

(
τ

τ1

)−R′LL(ΦB ;τ) ( τ1

δτ

)−R′LL(ΦB ;τ)

+ . . .

]
Θ

[∑
i

τi < τ

]
. (2.46)

Eq. (2.45) is purely NLL, and does not contain any correction of subleading logarithmic

nature, but still has the same general form as Eq. (2.30). The algorithm to compute it

simplifies considerably:
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1. Start with i = 0 and τ0 = τ

2. Increase i by one

3. Generate τi randomly according to (τi−1/τi)
−R′LL(ΦB ;τ) = r, with r ∈ [0, 1]

4. If τi < δτ exit the algorithm, otherwise go back to step 2

If the sum over all generated τi is less than τ , accept the event, otherwise reject it. The value

of F(v) is equal to the fraction of the accepted events. The form of the transfer function

can be manipulated further in order to make its numerical evaluation more efficient by

getting rid of the Θ function in Eq. (2.46), as shown in refs. [10, 13].

There is a second advantage of using Eq. (2.46) rather than Eq. (2.30). We notice

that the starting equation (2.30) involves the function R′ (and hence the running coupling)

evaluated at scales Qτi that can get as small as Qδτ . When δ → 0 the above scale hits the

Landau pole of the theory, which requires a prescription to deal with the non-perturbative

region (e.g. a cutoff or a non-perturbative model) if this equation is implemented in a

Monte Carlo method. On the other hand, the final equation (2.46) does not have this issue

since we expanded the arguments of the couplings about Qτ � ΛQCD, hence avoiding the

Landau pole as long as the observable τ is sufficiently large.

For an additive observable such as thrust considered here, further manipulations are

possible to obtain an analytic solution which reads

FNLL(ΦB; τ) =
e−γER

′
LL(ΦB ;τ)

Γ[1 +R′LL(ΦB; τ)]
, (2.47)

which leads to the following NLL formula for the thrust cumulative distribution

Σ(τ) = eLg1(αsL)+g2(αsL) e−γER
′
LL(ΦB ;τ)

Γ[1 +R′LL(ΦB; τ)]
. (2.48)

3. Review of resummation in SCET

SCET [2–5] is an effective field theory of QCD constructed to capture the long distance

physics arising from soft and collinear radiation. To describe these different types of long

distance effects requires two separate types of fields in the effective theory: soft and collinear

fields. All short distance physics is integrated out of the theory, and contributes only via

short distance matching coefficients.

Given that SCET has several degrees of freedom and exhibits a rich gauge structure,

a detailed derivation of it is beyond the scope of this work and we refer the reader to the

original literature [2–5] for details. One important feature, however, is that by defining

the collinear fields in an appropriate way [5], the SCET Lagrangian can be written in a

way that at leading power the collinear and soft degrees of freedom can be completely

separated, giving

LSCET = Ls +
∑
i

Lni (3.1)
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(p, p )r
= i

n/
2

n̄·p
n·pr n̄·p+ p2⊥+i0

(p, p )r
=

(−i)gµνδa,b
n·pr n̄·p+ p2⊥+i0

k =
(−i)gµνδa,b
k2+i0

p p’
= ig T a

[
nµ +

γ⊥µ p/⊥
n̄·p +

p ′/⊥γ
⊥
µ

n̄·p ′ −
p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µ

]
n̄/
2

k
= −g T a nµ

n·k

p

= −g T a n̄µ
n̄·p

Figure 1: Feynman rules for the leading-power SCETI Lagrangian and operators: collinear quark

and gluon propagator with label p and residual momentum pr, soft gluon propagator, coupling of

collinear quark and gluon, emission from a soft (Yn) and collinear (Wn) Wilson line, respectively.

When cutting a propagator, we replace the denominator a of the propagator with (−2πi)δ(a).

where the soft Lagrangian is identical to the full QCD Lagrangian. In the following we are

going to use the collinear fermionic Lagrangian which can be written as

Lfn = ξ̄n

(
in ·Dn + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

) /̄n
2
ξn . (3.2)

Here ξn denotes a collinear fermion field after a so-called BPS [5] field redefinition, and the

derivatives Dn are covariant with respect to collinear gauge transformations and therefore

only include collinear gluons fields. Note that a single collinear fermion field ξn can be made

invariant under collinear gauge transformations by combining it with a collinear Wilson

line Wn to define

χ = W †nξn . (3.3)

Operators in SCET are typically constructed out these gauge invariant fields. The Feynman

rules that are obtained from the SCET Lagrangian are given in Fig. 1.

The starting point for resummation in SCET is the derivation of a factorization theo-

rem that expresses the cross section as a combination of contributions arising from three

different singular sectors: hard, soft and collinear. Although such a type of separation is

already performed at the level of the SCET Lagrangian [4], the observable under consid-

eration mixes the various soft and collinear modes in its definition. Therefore, in order to

derive a factorization theorem one must decompose the observable into soft and collinear
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contributions [6, 7], which can be treated separately and then combined to give the final

value of the observable. This allows for a separation between the phase space of the soft

and collinear sectors, and therefore makes the factorization manifest. A clear complication

arises for complex observables, for which the separation between soft and collinear modes

in the measurement function can become quite cumbersome.

We express a generic factorization theorem as

Σ(v) = Hn1n2(µ) Jn1(v, . . . ;µ)⊗ Jn2(v, . . . ;µ)⊗ Sn1n2(v, . . . ;µ) . (3.4)

The hard function Hn1n2 only depends on the directions ni, but is independent of the ob-

servable. The jet functions describe the evolution of the radiation collinear to the directions

ni, and the soft function describes the soft interaction between the two jet functions. The

precise definition of the jet and soft functions, as well as of the convolution ⊗ in Eq. (3.4),

depend on the definition of the observable whose value is required to be less than v in the

integrated cross section Σ(v).

In this paper we will need two types of observables. The first is the thrust observable we

intend to resum, which is an additive observable for which the total value of the observable

is the sum over the contributions from each particle. The factorization formula for such an

additive observable takes the form [45–47]

Σ(v) = Hn1n2(µ)

[
2∏
i=1

∫
dvi Jni(vi;µ)

]∫
dvs Sn1n2(vs;µ) Θ[v >

∑
i

vi + vs] . (3.5)

The two collinear directions n1 and n2 are back to back along the thrust axis t such that

n1 = n, n2 = n̄ with n = (1, t̂), n̄ = (1,−t̂) and n·n̄ = 2. Suppressing the dependence of

the hard and soft function on the directions n and n̄, we write

Σ(τ) = H(µ)

∫
dτn Jn(τn;µ)

∫
dτn̄ Jn̄(τn̄;µ)

∫
dτs S(τs;µ) Θ[τ > τn + τn̄ + τs] . (3.6)

We will also need an expression for the simple observable used to define Σmax in the

previous section. This is defined by first grouping the various collinear and soft emissions

separately into clusters in an infrared and collinear safe manner, computing the observable

from each cluster and taking the maximum value of those. Such an observable factorizes

in a multiplicative way, such that no convolutions are required

Σmax(v) = H(µ)

[
2∏
i=1

Jmax
ni (v;µ)

]
Smax(v;µ) . (3.7)

We start by discussing the resummation for the additive observables described by the fac-

torization formula (3.5), and then we comment in more detail on the definition of Σmax in

SCET.
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The soft and jet functions that appear in the above factorization theorems have the

operator definition [46,48–51]

S(τs;µ) =
1

Nc
Tr〈0|Ȳ †n̄ (0)Y †n (0)δ(τs − Vsoft)Yn(0)Ȳn̄(0)|0〉 ,

Jn(τn;µ) =

∫
dl+

2π
Jn(τn, l

+;µ) ,

Jn̄(τn̄;µ) =

∫
dl−

2π
Jn̄(τn̄, l

−;µ) , (3.8)

where

Jn(τn, l
+;µ)

/nαβ
2

=
1

Nc
Tr

∫
d4x eil·x〈0|χn,α(x)δ(τn − Vn)χ̄n,β(0)|0〉 ,

Jn̄(τn̄, l
−;µ)

/̄nαβ
2

=
1

Nc
Tr

∫
d4x eil·x〈0|χ̄n̄,β(x)δ(τn̄ − Vn̄)χn̄,α(0)|0〉 , (3.9)

and Yn(x) denotes a soft Wilson line along the n direction. Vsoft, Vn and Vn̄ denote the

expression of either thrust V or the simple observable Vmax as function of the final state

momenta in the soft and collinear approximations, respectively. For notational simplicity,

from now on we will omit the trace operation as well as the 1/Nc prefactor in the color

average of the above expressions, which will be understood in the rest of this article.

3.1 Resummation via Renormalization group equations

Once a factorization theorem has been obtained, one can use the renormalization group

equations to resum the logarithmic dependence in the various contributions to the factorized

cross sections. For this to work, it is crucial that each contribution depends kinematically

on only a single scale µF . This ensures that the logarithmic dependence in each contribution

is directly tied to the dependence on the renormalization scale, since it can only occur in

the form ln(µ/µF ). It immediately follows that each contribution is free from logarithmic

dependence if one chooses µ = µF (the initial condition), and that the logarithms can be

resummed using the RG equations.

Before we discuss this in more detail, we take a short digression and discuss a feature

of SCET that will be important later. In SCET, both the physical phase space and the

observable’s measurement function are expanded out according to the scaling of soft and

collinear modes, since it ensures that each ingredient in the factorization formula depends

on only a single scale4. Written in terms of the invariants yqg = sqg/Q
2 and yq̄g = sq̄g/Q

2,

the matrix element squared of the real radiation behaves as 1/(yqgyq̄g), such that diver-

gences arise both in the IR (y → 0) or UV (y →∞) limit. To understand the consequences

of this, we investigate the phase space boundary of a single emission, which are given in

full QCD as

QCD :

∫
dyqg dyq̄g Θ[min(yqg, yq̄g, 1− yqg − yq̄g) < τ ] Θ[0 < yij < 1] , (3.10)

4An exception is given by some observables which require the introduction of an additional regulator

to handle the rapidity divergences, which are classified as SCETII problems [52]. In this case soft and jet

functions will generally depend on two scales. This fact does not affect the treatment we present in the rest

of this article, as our final formulation of the resummation in Section 4 equally applies to both cases.
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where yij denotes both yqg and yq̄g. They are shown graphically in Fig 2a). Clearly, neither

of the two Mandelstam variables can exceed the physical bound set by the total energy in

the event Q2, and therefore the phase space integration over each variable is bounded from

above.

a)
QCD1

1

τ

τ

yqg

yqg

1

1

τ

τ

b)
Soft

yqg

yqg

Coll

0-bin

c)
Collinear 1

1

1

τ

τ

yqg

yqg

yqg

yqg

d)
Collinear 2

Coll

0-bin

1

1

τ

τ

Figure 2: The regions of phase space contributing to the various pieces. In a) we show the phase

space region of full QCD, in b) that of the soft function, and in c) and d) the region of the jet

functions.

The phase space boundary of the soft function in SCET is obtained by expanding the

full QCD phase space boundary about the limit yqg, yq̄g � 1. This gives

Soft :

∫
dyqg dyq̄g Θ[min(yqg, yq̄g) < τ ] Θ[0 < yij ] , (3.11)

which is shown graphically in Fig 2b). This implies that the larger of the two Mandelstam

variables yqg or yq̄g is unbounded from above, leading to a UV divergence.

The first collinear limit is obtained by taking the limit yqg � yq̄g ∼ 1 (the second is

the same under the replacement yqg ↔ yq̄g). This gives

Coll1 :

∫
dyqg dyq̄g Θ[min(yqg, 1− yq̄g) < τ ] Θ[0 < yq̄g < 1] Θ[0 < yqg] . (3.12)

The collinear regions are shown by the hatched region in Fig 2 c) and d). In this case both

variables are bounded from above, just as in the case of the full theory. However, adding the

soft and collinear regions naively, leads to a double counting of the soft-collinear region [53],

which is handled in SCET by subtracting a 0-bin region from the collinear integrals, which

is nothing but the soft limit of the collinear integral. The soft limit of the first collinear

phase space region (with the obvious replacement to the obtain the soft limit of the second

collinear phase space region) is given by

0− bin1 :

∫
dyqg dyq̄g Θ[0 < yqg < τ ] Θ[0 < yq̄g] , (3.13)

such that the integral over yq̄g is again unbounded from above, leading to a UV divergence.

Diagrammatically, the 0-bin regions are summarized by the gray region in Fig. 2 c) and d).

While UV divergences are present in SCET as just discussed, each of the terms in

the factorization formula Eq. (3.5) is IRC finite. Thus all divergences are of UV origin

and are removed by renormalization. The renormalization of the UV divergences leads to

renormalization group equations (RGE) for each component. As already discussed, each
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of the ingredients of the factorization theorem has its own characteristic scales that we

denote by µH , µJ , and µS for the hard, jet, and soft functions respectively. At these scales

no logarithms are present to any order in perturbation theory. For the thrust observable

considered in this work, the scales are [16,47]

µH = Q , µJ = Q
√
τ , µS = Qτ . (3.14)

The resummation in SCET is then performed by evolving the hard, soft and jet func-

tions from their characteristic scales to a common renormalization scale µ. The evolution

is simply obtained by solving the corresponding RGE. The hard function is always multi-

plicatively renormalized, giving the following evolution equation

µ
d

dµ
H(µ) =

{
2Γcusp[αs(µ)] ln

Q2

µ2
+ 2γH [αs(µ)]

}
H(µ) . (3.15)

The precise form of the RGE for the soft and jet function depends on the observable under

consideration. This dependence arises from the way the observable behaves in the presence

of multiple soft or collinear emissions which make up the soft and jet functions. For

instance, in the case of thrust, each new emission contributes to the observable additively,

which implies the following non-local form for the RGEs [16,46,47,54,55]

µ
d

dµ
Jni(τ ;µ) =

{
−2Γcusp[αs(µ)] ln

τQ2

µ2
− 2γJ [αs(µ)]

}
Jn(τ ;µ)

+ 2Γcusp[αs(µ)]

∫ τ

0
dτ ′

Jni(τ ;µ)− Jni(τ ′;µ)

τ − τ ′
, (3.16)

µ
d

dµ
S(τ ;µ) =

{
2Γcusp[αs(µ)] ln

τ2Q2

µ2
− 2γS [αs(µ)]

}
S(τ ;µ)

− 4Γcusp[αs(µ)]

∫ τ

0
dτ ′

S(τ ;µ)− S(τ ′;µ)

τ − τ ′
. (3.17)

Eqs. (3.16) and (3.17) are simplified in Laplace space, where the convolutions become

simple products

µ
d

dµ
J̃ni(u;µ) =

{
−2Γcusp[αs(µ)] ln

u0Q
2

uµ2
− 2γJ [αs(µ)]

}
J̃ni(u;µ) , (3.18)

µ
d

dµ
S̃(u;µ) =

{
2Γcusp[αs(µ)] ln

u2
0Q

2

u2µ2
− 2γS [αs(µ)]

}
S̃(u;µ) , (3.19)

where J̃ and S̃ denote the Laplace transform of the jet and soft functions, u is the Laplace

variable conjugate to τ , and u0 = e−γE . Since the cross section Σ(v) is independent

of the renormalization scale, the anomalous dimensions of the various pieces satisfy the

consistency condition

γH [αs(µ)] = 2γJ [αs(µ)] + γS [αs(µ)] , . (3.20)

An analogous condition, trivially satistfied, holds for the terms in the anomalous dimension

proportional to Γcusp. We write the solution to the RGEs in Eqs. (3.15), (3.16) and (3.17)
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as

H(µ) = H(µH)UH(µ, µH) ,

J(τ ;µ) =

∫
dτ J(τ ;µJ)UJ(τ − τ ′;µ, µJ) ,

S(τ ;µ) =

∫
dτ S(τ ;µS)US(τ − τ ′;µ, µS) , (3.21)

where, as discussed above, all logarithms arise from the RG Kernels UF (. . . ;µ, µF ). This

leads to the final resummed Σ(τ), which takes the form

Σ(τ) =H(µH)UH(µ, µH)

∫
dτndτ ′n Jn(τ ′n;µJ)UJ(τn − τ ′n;µ, µJ)

×
∫

dτn̄dτ ′n̄ Jn̄(τ ′n̄;µJ)UJ(τn̄ − τ ′n̄;µ, µJ)

×
∫

dτsdτ
′
s S(τs;µS)US(τs − τ ′s;µ, µS) Θ[τ − τn − τn̄ − τs] . (3.22)

For an observable that is multiplicatively renormalized, such as Σmax(τ), one finds the

simpler expression

Σmax(τ) =H(µH)UH(µ, µH) Jn(τ ;µJ)UJ(τ ;µ, µJ) Jn̄(τ ;µJ)UJ(τ ;µ, µJ)

× S(τ ;µS)US(τ ;µ, µS) . (3.23)

The boundary conditions F (. . . ;µF ), as well as the anomalous dimensions Γcusp and

γF (for F = H,J, S) have a perturbative expansion

Γcusp[αs(µ)] =
αs(µ)

2π
Γ(1)

cusp +

[
αs(µ)

2π

]2

Γ(2)
cusp + . . .

γF [αs(µ)] =
αs(µ)

2π
γ

(1)
F +

[
αs(µ)

2π

]2

γ
(2)
F + . . .

F (. . . ;µF ) = 1 +
αs(µ)

2π
F (1) +

[
αs(µ)

2π

]2

F
(2)
F + . . . . (3.24)

The logarithmic accuracy is determined by the perturbative order with which the anoma-

lous dimensions and boundary conditions are determined. For example, to achieve LL

accuracy, one only needs Γ
(1)
cusp, while for NLL accuracy Γ

(n)
cusp for n ≤ 2 and γ

(1)
F . For

NkLL accuracy, one needs Γ
(n)
cusp for n ≤ k + 1, γ

(n)
F for n ≤ k and boundary condition

F (n) with n ≤ k − 1. The numerical values for Γ
(1,2)
cusp and γ

(1)
F , which are required for NLL

resummation are given in Appendix A.

SCET and resummation based on factorization theorems in general is extremely pow-

erful. Since higher logarithmic accuracy is achieved simply by computing anomalous di-

mensions and boundary conditions at higher perturbative accuracy, progress in our ability

to perform fixed order calculations directly leads to higher logarithmic resummation, and

some of the highest logarithmic accuracy has been achieved for several observables using

this approach. The main drawback is that only observables for which a factorization theo-

rem is known can be resummed using this approach. Deriving such a factorization theorem

is often quite complicated, and for many observables it is not known.
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Γcusp[αs] γF [αs] F (µF )

LL 1 – –

NLL 2 1 –

NNLL 3 2 1

NkLL k+1 k k-1

Table 2: The loop order at which the various pieces ingredients to the RGE need to be computed

to reach a given level in resummation accuracy.

3.2 NLL resummation for thrust

In this section we give the result for the thrust distribution at NLL accuracy, repeating the

example of Section 2.

Figure 3: Diagrams contributing to the one-loop soft function

Figure 4: Diagrams contributing to the one-loop jet functions

We will perform all required calculations at 1-loop order, but will include the 2-loop

cusp anomalous dimension when giving the final result. We parametrize the generic mo-

mentum q as

qµ =
q · n

2
n̄µ +

q · n̄
2
nµ + qµ⊥ =

q+

2
n̄µ +

q−

2
nµ + qµ⊥ , (3.25)

and define

ddk =
1

2
dk+dk−dd−2k⊥ . (3.26)

In the following we also use

dd−2k⊥δ(k
2) =

π1−ε

Γ(1− ε)
(k+k−)−εΘ(k−)Θ(k+) . (3.27)
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We start with the computation of the soft function. The diagrams contributing to

the one-loop corrections are reported in Figure 3. The virtual correction is given by a

scaleless integral, and hence vanishes in dimensional regularization, allowing us to set

εIR = εUV = ε. Conversely, the real correction (plus its conjugate) is obtained by cutting

the gluon propagator. Using the Feynman rules given in Fig 1 this gives

Sbare(τs;µ) = δ(τs) + 2g2
sµ

2εCF n·n̄ Q
∫

ddk

(2π)d
(2π)δ(k2)

1

n · k
1

n̄ · k
δ
[
min(k+, k−)−Qτs

]
= δ(τs) + CF

αs
π
Q(τsQ)−1−εµ2ε (4π)ε

Γ(1− ε)

[∫ ∞
τsQ

dk−

(k−)1+ε
+ {k− → k+}

]
= δ(τs) + 2CF

αs
π

(
µ

Q

)2ε

(τs)
−1−2ε (4π)ε

Γ(1− ε)
1

ε
. (3.28)

After renormalizing the coupling in the MS scheme (αs(4π)ε → αs(µ)eγEε) we take the

Laplace transform of the result and expand it in αs(µ) to obtain

S̃bare(u;µ) = 1 + CF
αs(µ)

π

[
− 1

ε2
+

2

ε
ln
Qu0

µu
− 2 ln2 Qu0

µu
− π2

4

]
, (3.29)

where u0 = e−γE . One can see that this soft function does not contain any logarithms at

the characteristic scale

µS =
Qu0

u
, (3.30)

which corresponds to µS = Qτ in thrust space.

Next, we compute the jet function along the n direction (analogous considerations

apply to Jn̄), whose one-loop corrections are given by the diagrams of Figure 4. Virtual

corrections are again given by scaleless integrals, so the only non-vanishing contribution is

obtained by cutting through the loop in the diagrams of Figure 4. The sum of the diagrams

(a) and (c) can be obtained by using the SCET Feynman rules reported in Fig. 1. We obtain

(using l− ' Q)

J
(a)+(c)
n bare (τn;µ) = 2g2

sµ
2εCFn · n̄ Q

∫
dl+

∫
dk+dk−dd−2k⊥

2(2π)d−1

1

l+
Q− k−

k−
δ(k2)Θ[k− > 0]

× δ
[
(Q− k−)(l+ − k+)− k2

⊥
]

Θ(Q > k−)δ(l+ − τnQ)

= CF
αs
π

(4π)ε
(
µ2

Q2

)ε
τ−1−ε
n

1

Γ(1− ε)

∫ 1

0
dx (1− x)1−ε x−1−ε

= CF
αs
π

(4π)ε
(
µ2

Q2

)ε
τ−1−ε
n

Γ(2− ε)Γ(−ε)
Γ(2− 2ε)Γ(1− ε)

, (3.31)

where we have defined x = k−/Q. The calculation of the remaining two diagrams ((b) and

(d) in Figure 4) can be simplified further by noticing that their sum is related to the QCD

wave function [3] as follows
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where the projectors Pn and Pn̄ read

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
. (3.32)

The result therefore reads

J
(b)+(d)
nbare (τn;µ) = g2

sµ
2εCF n · n̄

d− 2

2
Q

∫
dl+

l2+

∫
dk+dk−dd−2k⊥

2(2π)d−1
(l+ − k+)δ(k2)Θ[k− > 0]

× δ
[
(Q− k−)(l+ − k+)− k2

⊥
]

Θ(Q > k−) δ(l+ − τnQ)

= CF
αs
2π

(4π)ε
(
µ2

Q2

)ε
τ−1−ε
n

1

Γ(1− ε)
d− 2

2

∫ 1

0
dxx1−ε(1− x)−ε

= CF
αs
π

(4π)ε
(
µ2

Q2

)ε
τ−1−ε
n

1− ε
2

Γ(1− ε)Γ(2− ε)
Γ(3− 2ε)Γ(1− ε)

. (3.33)

Since the integrals above include a contribution where the momentum kµ becomes soft

(and these effects have already been included in the soft function), this soft contribution

needs to be subtracted. In SCET this procedure is called zero-bin subtraction [53], but

in this case is given by scaleless integrals and hence vanishes. Combining Eqs. (3.31)

and (3.33) (after the usual MS renormalization), performing the Laplace transform and

expanding the result in αs(µ) one finds

J̃nbare(u;µ) = 1 + CF
αs(µ)

π

 1

ε2
+

3
4 + ln µ2u

Q2u0

ε
+

1

4

(
3 + 2 ln

µ2u

Q2u0

)
ln

µ2u

Q2u0
+

7

4
− π2

6

 .
(3.34)

One can see that the jet function does not contain any logarithmically enhanced terms at

the characteristic scale

µJ =
Q
√
u0√
u

, (3.35)

which corresponds to µS = Q
√
τ in thrust space.

The 1/ε divergences are of UV origin, and in Laplace space can be renormalized with

a multiplicative renormalization constant as follows

S̃ = Z−1
S S̃bare ,

J̃ = ZψZ
−1
J J̃bare , (3.36)
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where we defined

ZS = 1 + CF
αs(µ)

π

(
− 1

ε2
+

2

ε
ln
Qu0

µu

)
,

ZJ = 1 + CF
αs(µ)

π

(
1

ε2
+

1

2ε
+

1

ε
ln

µ2u

Q2u0

)
, (3.37)

and Zψ is the wave-function renormalization

Zψ = 1− CF
αs(µ)

4π

1

ε
. (3.38)

By imposing the RG invariance for the bare soft and jet functions one can obtain the

RGE of the renormalized ones

d ln S̃(u;µ)

d lnµ
= 4CF

αs(µ)

π
ln
Qu0

µu
,

d ln J̃n(u;µ)

d lnµ
= 2CF

αs(µ)

π

(
ln

µ2u

Q2u0
+

3

4

)
, (3.39)

which agrees with Eq. (3.19), with Γ
(1)
cusp = 2CF and γ

(1)
J = −3CF . One could directly

renormalize Eqs. (3.28), (3.34) in thrust space, which contain plus distributions. In this

case the resulting RGEs take the form reported in Eqs. (3.16) and (3.17).

Using only these one-loop results, the solution to the previous RGE reads (where

F = J, S)

F̃ (u;µ) = F̃ (u;µF ) ŨS (u;µ, µF ) , (3.40)

where at NLL the initial conditions read

F̃ (u;µF ) = 1 +O(αs) . (3.41)

and

ŨS(u;µ, µS) = exp

{∫ µ

µS

dµ′

µ′
4CF

αs(µ
′)

π
ln
µS
µ′

}
ŨJ(u;µ, µ0) = exp

{∫ µ

µJ

dµ′

µ′
2CF

αs(µ
′)

π

(
ln
µ′2

µ2
J

+
3

4

)}
. (3.42)

Now Eq. (3.40) can be inverted to thrust space. One can decide to set the scales

as in Eqs. (3.30), (3.35) and perform the Laplace transform or, rather, to first perform

the inverse Laplace transform with symbolic µS and µJ and then set the scales to µS =

τsQ, µJ =
√
τnQ directly in thrust space. The difference between the two procedures is

subleading, therefore we choose the latter which yields

S(τs;µ) = exp

{∫ µ

µS

dµ

µ
4CF

αs(µ)

π
ln
µS
µ

}[
1

τsQ

(
τsQ

µS

)ηS e−γEηS
Γ(ηS)

]
Jn(τn;µ) = exp

{∫ µ

µJ

dµ

µ
CF

αs(µ)

π

(
2 ln

µ2

µ2
J

+
3

2

)}[
1

τnQ2

(
τnQ

2

µ2
J

)ηJ e−γEηJ
Γ(ηJ)

]
, (3.43)

– 25 –



where µS = τsQ, µJ =
√
τnQ and

ηj = −η(µ, µJ)

2
, ηs = η(µ, µS) , (3.44)

with

η(µ, µF ) =

∫ µ

µF

dµ′

µ′
4CF

αs(µ
′)

π
. (3.45)

Combining all results together, setting the common renormalization scale to µ = µH =

Q, such that the hard function contains no logarithmically enhanced terms and to NLL

order can be set to unity, and including the 2-loop cusp anomalous dimension, one obtains

ΣNLL(τ) = exp

{∫ Q

√
τQ

dµ

µ

(
4Γcusp[αs(µ)] ln

µ2

τQ2
− 4γJ [αs(µ)]

)}
× exp

{∫ Q

τQ

dµ

µ
4Γcusp[αs(µ)] ln

τQ

µ

}
e−γE(2ηJ+ηS)

Γ(1 + (2ηJ + ηS))
, (3.46)

where the expressions for the anomalous dimensions are reported in Appendix A. After

evaluating the integrals in the exponent, and neglecting terms beyond NLL, one finds

ΣNLL(τ) = exp {Lg1(αsL) + g2(αsL)} e−γE(2ηj+ηs)

Γ(1 + (2ηj + ηs))
, (3.47)

where the functions gi are reported in Appendix A. One can easily show that the above

equation is equivalent to the QCD result of Eq (2.48) by writing

2ηJ + ηS =

∫ √τQ
τQ

dµ

µ
4CF

αs(µ)

π
, (3.48)

which is equal to R′LL(ΦB; v) given in (2.29)

R′LL(ΦB; v) =

∫
dkt
kt

∫ ln Q
kt

0
dη

dφ

2π
4CF

αs(kt)

π
δ [ln(kt/Q)− η − ln(τ)]

=

∫ √τQ
τQ

dkt
kt

4CF
αs(kt)

π
. (3.49)

Before moving on, we report the result for Σmax(τ), which enters as an ingredient of the

decomposition that will be used in Section 4. The simple observable used to define Σmax(τ)

is such that its UV divergences can be renormalized in a multiplicative way in thrust space,

that is, the corresponding factorization theorem is multiplicative (see Eq. (3.7)). To the

order we are working, the resulting soft and jet functions are trivially obtained from the

Laplace space results reported above by simply evaluating them directly in thrust space,

i.e.

Smax(τ ;µ) = S̃(u = u0/τ ;µ)

Jmax(τ ;µ) = J̃(u = u0/τ ;µ) . (3.50)
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This gives

ΣNLL
max (τ) = exp

{∫ Q

√
τQ

dµ

µ

(
4Γcusp[αs(µ)] ln

µ2

τQ2
− 4γJ [αs(µ)]

)}
× exp

{∫ Q

τQ

dµ

µ
4Γcusp[αs(µ)] ln

τQ

µ

}
. (3.51)

At higher orders the initial conditions in Laplace space are different than they are in

thrust space, such that the Eq. (4.23) is no longer exactly correct. To obtain the correct

expression requires to perform the calculation of Smax and Jmax directly in thrust space

according to the factorization theorem (3.7).

3.3 Neglecting subleading logarithmic effects

The exact definition of the logarithmic order in resummation is somewhat convention de-

pendent, and different prescriptions can be found in the literature. The prescription given

in the previous section in Eq. (3.47) includes in fact various subleading logarithmic terms.

For example, the cusp anomalous dimensions at 2-loop order is only required for the con-

tribution in the first line of Eqs. (3.16) and (3.17), while in the second line it is enough to

include the cusp anomalous dimension at 1-loop order. This implies that, instead of using

the full expression for η ≡ 2ηj + ηs in the term e−γEη/Γ(1 + η), one can perform a Taylor

expansion of this result. For example, to NNLL accuracy one has

e−γEηNNLL

Γ(1 + ηNNLL)
=

e−γEηNLL

Γ(1 + ηNLL)
+
ηNNLL − ηNLL

ηNLL

d

dηNLL

e−γEηNLL

Γ(1 + ηNLL)
+ . . . (3.52)

where

ηNLL = 4

∫ √τQ
τQ

dµ

µ

[
αs(µ)

2π
Γ(1)

cusp

]
ηNNLL = 4

∫ √τQ
τQ

dµ

µ

[
αs(µ)

2π
Γ(1)

cusp +

(
αs(µ)

2π

)2

Γ(2)
cusp

]
. (3.53)

Also, in general one finds differences depending on how the RG equations are solved.

As already mentioned, performing resummation to a given order in Laplace space and then

inverting the Laplace transform, gives results that differ beyond the order one is working

compared to solving the RG equations directly in thrust space. A second example is that

resumming the thrust distribution dσ/dτ ′ (by setting the scales to the characteristic scales

of the distribution) and then computing Σ(τ) by integrating over 0 < τ ′ < τ yields results

that again differ at higher logarithmic order from those obtained by directly resumming the

distribution Σ(τ). For a detailed discussion of differences in logarithmic counting, see [56].

This existence of different conventions needs to be kept in mind in the next section

when comparing the results obtained from an automated SCET resummation with the

analytical results. In particular, a consistent comparison between different approaches can

be only performed up to formally subleading terms.
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4. Automated resummation in SCET

The starting equation for the automated resummation in Section 2 was the separation of

the desired cross section Σ(v) into the product of the simplified cross section Σmax(v) and

the transfer function F(v) given in Eq. (2.5). The resummation of the simplified observable

was computed analytically, while the transfer function could be obtained numerically. In

this section we derive a similar result, but where all ingredients are defined within SCET.

To simplify the discussion, we consider here a factorizable observable (such as thrust)

and perform a similar decomposition at the level of the individual soft and jet functions.

The SCET factorization theorem (3.5) for the thrust event shape that can be recast as

(note that we drop the ΦB dependence from now on)

Σ(τ) = H

∫
dτn Σ′Jn(τn, µ)

∫
dτn̄ Σ′Jn̄(τn̄, µ)

∫
dτs Σ′S(τs, µ) Θ[τ > τn + τn̄ + τs], (4.1)

where we expressed the soft and jet functions as (with F = S, Jn, Jn̄)

F (τF , µ) ≡ Σ′F (τF , µ) =
dΣF (τF )

dτF
. (4.2)

Next, we define

ΣF (τF , µ) ≡ Σmax
F (τ, µ)FF (τF , τ, µ) . (4.3)

with

FF (τF , τ, µ) =
Σmax
F (δτ, µ)

Σmax
F (τ, µ)

ΣF (τF , µ)

Σmax
F (δτ, µ)

. (4.4)

This allows us to write

Σ(τ) = Σmax(τ)

∫
dτnF ′Jn(τn, τ, µ)

∫
dτn̄F ′Jn̄(τn̄, τ, µ)

∫
dτsF ′S(τs, τ, µ) Θ[τ > τn + τn̄ + τs] ,

(4.5)

where we defined F ′F ≡ dF ′F /dτF with F = S, Jn, Jn̄.

The goal is to compute each of the transfer functions through a MC algorithm defined

uniquely in terms of either soft or collinear fields, in a way that is similar to Section 2.

We will show in Section 4.2 that in the framework of SCET one can compute each of the

transfer functions FJ(τn, τ, µ) and FS(τs, τ, µ) through a separate MC. This ensures that

all observable dependence is restricted to the numerical MC algorithm.

The computation of Eqs. (4.4) via MC methods requires that each can be obtained in

4 dimensions by recursively computing real emissions. This relies on two important facts:

First, the transfer function has to be determined entirely through the real radiation, and

second, each contribution needs to be finite in 4 dimensions. The first fact is trivially

satisfied, since in the ratios ΣF (τ)/Σmax
F (δτ) the purely virtual corrections cancel exactly.

The second requirement deserves some closer investigation.

The IRC divergences cancel quite trivially in the ratio ΣF (τ)/Σmax
F (δτ), since the nu-

merator and denominator include the same unresolved real radiation (for rIRC safe observ-

ables). However, as we discussed in Section 3.1 and contrary to full QCD, in the standard
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formulation of SCET real radiation is UV divergent. The resulting UV divergences of the

real radiation appear both in the soft and in the jet functions and they cancel entirely

only in their combination to give the physical cross section. The existence of the above

divergences is a feature of the effective theory formulation in which the UV bounds of the

theory are completely integrated out into Wilson coefficients. This guarantees that each of

the soft and jet functions only depends on a single characteristic scale, which allows for the

resummation of the dominant logarithmic terms via RG equations. In the usual formula-

tion of SCET the UV divergences from the real radiation are regulated using dimensional

regularization, and they constitute a crucial contribution to the anomalous dimensions

which resummation is based on. However, the presence of the additional UV divergences

prohibits a MC formulation of the problem that requires the phase-space integrals of the

real radiation to be computable in 4 dimensions.

We solve this problem by introducing an explicit UV regulator for real phase space

integrals into SCET. In this formulation of SCET, the UV divergences from virtual dia-

grams are regulated in dimensional regularization, just as before, while those from the real

radiation are regulated with an alternative regulator, which can be chosen to be either a

physical cutoff or an analytic regulator. This will give rise to a different RG structure in

SCET, resulting in different logarithmic structures for the soft and jet functions individ-

ually. However, when soft and jet functions are combined into physical observables, one

reproduces the same result as in the standard SCET formulation. By introducing such a

regulator, we make sure that the UV divergences in the real radiation are now regulated in 4

dimensions, hence allowing for a formulation of the resummation through a MC algorithm.

In Section 4.1 we discuss the standard resummation in SCET in the presence of this new

UV regulator for real-emission phase space integrals. We perform an explicit computation

of the relevant soft and jet functions at one loop, and we show how the resummation

can be performed through RG evolution. In Section 4.2 we show how to formulate a MC

solution to the corresponding RG equations. We briefly comment on the extension to other

observables in the conclusions, while the detailed generalization will be treated in a future

publication. An alternative interpretation of the results presented in this section in the

context of SCET is reported in Appendix C, where we comment on the structure of the

theory when a IRC regulator δτ is included.

4.1 SCET with a UV regulator for real radiation

In this section we perform the calculation of the one-loop soft and jet functions by using

an additional UV regulator for the phase-space integrals of the real radiation. This can be

compared directly with Section 3.2, where the same calculations were performed without

the additional UV regulator. The infrared and collinear divergences, as well as the UV

divergences of the virtual corrections, are regularized by conventional dimensional regular-

ization as before. One has some freedom in choosing the form of the UV regulator. In

what follows we employ a cutoff Λ on the light-cone components of the emissions’ momenta

which is assumed to be larger than any other scale in the problem, which implies

Λ ≥ Q . (4.6)
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This mimics what happens in the full theory where the upper bound is set by the center-

of-mass energy of the reaction. As a cross check, we have performed the calculations shown

below using the exponential regulator proposed in Ref. [57], and found analogous results.

As we will see, introducing this new regulator moves UV divergences between the soft

and the jet functions, but of course does not affect the result after soft and jet functions

have been combined into the total cross section. Since the UV divergences determine the

RG equations, and therefore the logarithmic structure, this also implies that logarithmic

contributions are moved between the soft and the jet functions. That is of course not a

problem, since the separation into the logarithms of contributions from the various ingre-

dients of the factorization theorem is to some extent arbitrary. Even in standard SCET

one can move contributions between the different ingredients by changing the choice of the

common renormalization scale µ.

4.1.1 The soft and jet functions at one loop

Consider the soft function of the factorization theorem given in Eq. (3.5) or Eq. (3.7). As

before, the virtual contribution (plus its conjugate) is given by

S
(V)
bare(τs;µ) = −2g2

sCFn · n̄µ2ε

∫
ddk

(2π)d
1

n · k
1

n̄ · k
1

k2
δ(τs) = 0 . (4.7)

This integral is scaleless and therefore vanishes, hence setting εUV = εIR.

The real contribution to the soft function is obtained by cutting the gluon propagator

and imposing that the contribution to thrust from the real emission is smaller than τs.

This gives (remember that we impose k+, k− < Λ)

Sbare(τs;µ,Λ) = δ(τs) + 2g2
sµ

2εCF n·n̄ Q
∫

ddk

(2π)d
(2π)δ(k2)

1

n · k
1

n̄ · k
δ
(
min(k+, k−)−Qτs

)
= δ(τs) + CF

αs
π
Q(τsQ)−1−εµ2ε (4π)ε

Γ(1− ε)

[∫ Λ

τsQ

dk−

(k−)1+ε
+ {k− → k+}

]
= δ(τs) + 2CF

αs
π

(
µ

Q

)2ε

(τs)
−1−ε

[
(τs)

−ε −
(

Λ

Q

)−ε] (4π)ε

Γ(1− ε)
1

ε
. (4.8)

After renormalization, we take the Laplace transform and expand in αs(µ). We obtain

S̃bare(u;µ,Λ) = 1 + CF
αs(µ)

π

[
1

ε2
+ 2

(
ln
Q

Λ
+ ln

µ

Q

)
1

ε
− 2 ln

Q

Λ
ln
u0

u
− ln2 u0

u

+

(
−π

2

4
+ ln2 Q

Λ
+ 4 ln

Q

Λ
ln
µ

Q
+ 2 ln2 µ

Q

)]
= 1 + CF

αs(µ)

π

[
1

ε2
+

2

ε
ln
µ

Λ
− ln2 Qu0

Λu
+ 2 ln2 µ

Λ
− π2

4

]
. (4.9)

From the above expression one can see that the soft function does not contain any loga-

rithmically enhanced terms at the characteristic scales

µS = ΛS =
Qu0

u
. (4.10)
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Next, we consider the jet function along the direction nµ. The virtual contribution is

again scaleless (also for the zero-bin subtraction) and thus vanishes, so the only non-zero

contribution is obtained from the real radiation. The collinear diagrams are unaffected by

the extra UV regulator, since their integrals are cut off by the scale Q. Thus, we find the

same result as in Eq. (3.34), which we repeat here for convenience

J̃coll
nbare(u;µ) = 1 + CF

αs(µ)

π

 1

ε2
+

3
4 + ln µ2u

Q2u0

ε
+

1

4

(
3 + 2 ln

µ2u

Q2u0

)
ln

µ2u

Q2u0
+

7

4
− π2

6

 .
(4.11)

However, unlike in common dimensional regularization, in the zero-bin subtraction corre-

sponding to the diagrams (a) and (c) of Figure 4 (obtained by taking the limit k � l) the

k− component is cut off by Λ, hence giving

J
(0−bin)
n bare (τn;µ,Λ) = 2g2

sµ
2εCFn · n̄ Q

∫
dl+

∫
dk+dk−dd−2k⊥

2(2π)d−1

1

l+
l−

k−
δ(k2)Θ[k− > 0]

× δ(l−(l+ − k+)− k2
⊥)Θ[Λ > k−]δ(l+ − τnQ)

= CF
αs
π

(4π)εµ2ετ−1−ε
n Q−ε

1

Γ(1− ε)

∫ Λ

0

dk−

(k−)1+ε

= −CF
αs
π

(4π)ε
(
µ2

QΛ

)ε
τ−1−ε
n

1

εΓ(1− ε)
. (4.12)

Putting everything together and renormalizing the strong coupling, we obtain the following

result for the one-loop jet function in Laplace space

J̃n bare(u;µ,Λ) = 1 + CF
αs(µ)

π

[
3

4ε
− 1

ε
ln
Q

Λ
+

3

2
ln
µ

Q
− 1

2
ln2 Q

Λ
(4.13)

−2 ln
Q

Λ
ln
µ

Q
+ ln

Q

Λ
ln
u0

u
− 3

4
ln
u0

u
+

7

4
− π2

6

]
= 1 + CF

αs(µ)

π

[
3

4ε
− 1

ε
ln
Q

Λ
+ ln

µ2 u

Q2 u0

(
3

4
− ln

Q

Λ

)
− 1

2
ln2 Q

Λ
+

7

4
− π2

6

]
.

The jet function does not contain any logarithmically enhanced terms at the characteristic

scales

µJ =
Q
√
u0√
u

ΛJ = Q . (4.14)

By combining the soft function Eq. (4.9) and two jet functions (Eq. (4.13) plus the

analogous contribution for the direction n̄µ) one sees that the dependence on the cutoff Λ

cancels, and that the result coincides with the usual SCET result obtained in pure dimen-

sional regularization. The new regularization scheme that we have introduced, therefore,

only changes the expression of the soft and jet function while leaving their combination in

the physical cross section unchanged.

One can now proceed to write the RG equations for the soft and jet function. Since

there are now two scales characterizing the UV structure of the theory, one needs to write
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two separate evolution equations for each subprocess, the first of which describes the evolu-

tion in the dimensional regularization scale µ and the second one describes the dependence

on the UV cutoff Λ. This is in spirit similar to what happens in SCETII problems [52]

where a rapidity regulator is introduced to regularize the additional UV divergence of the

real radiation [53, 57–61]. In fact, the same conclusions that follow would apply in that

case. One finds for the soft and jet functions5

d ln S̃(u;µ,Λ)

d lnµ
= 4CF

αs(µ)

π
ln
µ

Λ

d ln S̃(u;µ,Λ)

d ln Λ
= −

∫ µ√
u0QΛ
u

dµ′

µ′
4CF

αs(µ
′)

π
,

d ln J̃n(u;µ,Λ)

d lnµ
=

(
3

2
+ 2 ln

Λ

Q

)
CF

αs(µ)

π

d ln J̃n(u;µ,Λ)

d ln Λ
=

∫ µ√
u0QΛ
u

dµ′

µ′
2CF

αs(µ
′)

π
,

(4.15)

where the lower bound of the Λ RGE arises from the fact that the corresponding anomalous

dimension vanishes at this scale, which occurs at

µ =

√
Λ

ΛF
µF , with F = S, J . (4.16)

From the system of equations (4.15) one can easily see that the Λ dependence cancels in

the combination of the soft and two jet functions at a given µ.

One can now solve the RG equations by evolving the jet and soft functions simulta-

neously from their characteristic scales in µ and Λ to a common scale. Since the order of

taking the derivatives with respect to lnµ and ln Λ commutes, this evolution is independent

of the path chosen in the 2-dimensional µ−Λ plane. We can therefore write the evolution

kernels relating the soft and jet functions at the characteristic scales µF and ΛF to the

common scales µ and Λ as

ŨF (u;µ,Λ, µF ,ΛF ) = Ũ
(µ)
F (u;µ, µF ; Λ) Ũ

(Λ)
F (u; Λ,ΛF ;µF ) , (4.17)

with

Ũ
(µ)
S (u;µ, µS ; Λ) = exp

{∫ µ

µS

dµ′

µ′
4CF

αs(µ
′)

π
ln
µ′

Λ

}
, (4.18)

Ũ
(Λ)
S (u; Λ,ΛS ;µ) = exp

{
−
∫ Λ

ΛS

dΛ′

Λ′

∫ µ√
Λ′
ΛS

µS

dµ′

µ′
4CF

αs(µ
′)

π

}
, (4.19)

Ũ
(µ)
J (u;µ, µJ ; Λ) = exp

{∫ µ

µJ

dµ′

µ′

(
3

2
+ 2 ln

Λ

Q

)
CF

αs(µ
′)

π

}
, (4.20)

Ũ
(Λ)
J (u; Λ,ΛS ;µ) = exp

{∫ Λ

ΛJ

dΛ′

Λ′

∫ µ√
Λ′
ΛJ

µJ

dµ′

µ′
2CF

αs(µ
′)

π

}
, (4.21)

From Eq. (4.20) we observe that the evolution of the jet function now starts at NLL.

All double logarithms are entirely contained in the soft function, contrary to the case of

5We have renormalized the Λ anomalous dimension by using the fact that the derivatives in µ and Λ

commute.
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standard SCET, where both the soft and jet function contained double logarithmic terms

when evolved to the hard scale. However, as shown in Appendix B once the soft and

jet functions are combined into a physical cross section, the logarithmic terms in the two

formulations of SCET agree to all orders in perturbation theory, and one reproduces again

the result given in Eq. (3.46). The logarithmic structure of the soft and jet radiation in

this formulation of SCET reproduce exactly the physical structure in full QCD, allowing

us to establish a one-to-one correspondence between the two formulations. Notably, this

makes it possible to formulate the resummation in SCET via a Monte-Carlo approach, as

it will be described in the next section.

4.2 Monte-Carlo resummation of the transfer functions at NLL

Using the decomposition in Eqs. (4.1) and (4.4), we first consider the soft transfer function.

We start from the definition of the thrust soft function as the following expectation value

S(τs, µ) =
∑
|k〉

|〈k|YnȲn̄|0〉|2δ(τs − Vsoft(pn, pn̄)), (4.22)

where |k〉 denotes a generic state with a fixed number of soft particles, e.g. |k〉 = |k1〉
for a single real emission, |k〉 = |k1, k2〉 for two real emissions and so on. In Eq. (4.22),

Vsoft(pn, pn̄) denotes the expression of thrust in the soft limit, and pn (pn̄) denotes the sum

of the momenta of the soft particles in the n (n̄) hemisphere. Our goal is to use Eq. (4.22)

such that the soft transfer function FS(τ, τs, µ) required in Eq. (4.5) can be computed via

a MC algorithm.

The first ingredient to evaluate Eq. (4.3) for the soft function is Σmax
S . To the order we

are working, the result for Σmax both for soft (jet) function is trivially obtained from the

Laplace space results reported in the previous section by simply evaluating the soft (jet)

function with the Λ regulator directly in thrust space, i.e.

Smax(τ ;µ,Λ) = S̃(u = u0/τ ;µ,Λ)

Jmax(τ ;µ,Λ) = J̃(u = u0/τ ;µ,Λ) . (4.23)

At higher orders the initial conditions in Laplace space are different than they are in thrust

space, such that the Eq. (4.23) is no longer exactly correct. To obtain the correct expression

requires to perform the calculation of Smax and Jmax directly in thrust space according to

the factorization theorem (3.7) with the additional UV regulator Λ. Eq. (4.23) leads to

Σmax,NLL
S (τ) = Σmax,NLL

S (τ, µ = Q,Λ = Q)

= exp

{∫ Q

τQ

dµ

µ
4Γcusp[αs)] ln

µ

Q

}
exp

{∫ Q

τQ

dΛ

Λ

∫ √τΛQ

τQ

dµ

µ
4Γcusp[αs]

}
.

(4.24)

We now consider the soft transfer function of Eq. (4.4), defined as

FNLL
S (τs, τ, µ) =

Σmax,LL
S (δτ, µ)

Σmax,LL
S (τ, µ)

ΣLL
S (τs, µ)

Σmax,LL
S (δτ, µ)

. (4.25)
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The first ingredient is the ratio Σmax
S (δτ, µ)/Σmax

S (τ, µ), which is obtained using Eq. (4.24).

Since the leading logarithms cancel in the ratio of the Σmax
S (δτ) and Σmax

S (τ), one needs

the resummed expression only to LL, which is given by Eq. (4.24) where only the one-loop

cusp anomalous dimension is considered.

The second ratio ΣS(τs)/Σ
max
S (δτ) can be now computed numerically, as it is both IRC

and UV finite. Indeed, the UV finiteness is guaranteed by the presence of the cutoff Λ in

the real radiation, while the IRC finiteness is due to the rIRC safety of the observable that

ensures that the radiation below the resolution scale δτ cancels out completely in the ratio.

To achieve this, we introduce the decomposition for the squared amplitude in Eq. (4.22),

similar to what was done in Section 2

|MS(k1)|2 = |〈k1|YnȲn̄|0〉|2,
|M̃S(k1, k2)|2 = |〈k1, k2|YnȲn̄|0〉|2 − |MS(k1)|2|MS(k2)|2,

|M̃S(k1, k2, k3)|2 = |〈k1, k2, k3|YnȲn̄|0〉|2 − |M̃S(k1, k2)|2|MS(k3)|2 − |M̃S(k3, k1)|2|MS(k2)|2

− |M̃S(k2, k3)|2|MS(k1)|2 − |MS(k1)|2|MS(k2)|2|MS(k3)|2,
. . . (4.26)

We recall that the reason for the above decomposition is that squared amplitudes M̃S with n

correlated real emissions start contributing at Nn−1LL to the evolution of the soft function

for all rIRC safe observables. Using SCET with a UV regulator for the real emissions, as

discussed in Section 4.1, these are now in clear correspondence with the QCD counterparts

discussed in Section 2. Just as before, each of the squared amplitudes in the r.h.s. of

Eq. (4.26) admits a perturbative expansion in powers of αs due to virtual corrections

|M̃S(k1, . . . , kn)|2 ≡
∞∑
j=0

(
αs(µ)

2π

)n+j

nPC
(j)
S (k1, . . . , kn) . (4.27)

The notation nPCS in Eq. (4.26) denotes the soft n-particle correlated blocks. In order to

compute the transfer function to NLL accuracy, we only require the 1PC
(0)
S block, or in

other words the squared amplitude |MS(k1)|2 at tree level.

Putting all this together one finds

FNLL
S (τs, τ, Q) =

Σmax
S (δτ)

Σmax
S (τ)

∞∑
n=1

1

n!

n∏
i=1

∫
δτ

[dki]|MS(ki)|2Θ[τs > Vsoft(k1, . . . , kn)] , (4.28)

which can be evaluated with the same MC algorithm described in Section 2.2.

Next we consider the jet function. As for the soft function, the expression for Σmax
J (τ)

is immediately obtained from the results of Section 4.1.1 [see Eq. (4.23)]

Σmax
Jn (τ) = Σmax

Jn (τ, µ = Q,Λ = Q) = exp

{∫ Q

√
τQ

dµ

µ

3

2
CF

αs(µ)

π

}
. (4.29)

The computation of the jet transfer function is trivial at NLL order. As we have seen in

Section 4.1.1, the jet function is only single logarithmic once the additional UV regulator

Λ has been introduced, since the only kinematic region of phase space giving rise to large
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logarithms is of hard-collinear origin. Given that the collinear sensitivity is the same in

ΣJ(v) and Σmax
J (v), the resulting logarithmic dependence due to the phase space bounds

cancels in their ratio, and the only logarithmic sensitivity in the jet transfer function

comes from the running coupling constant. This implies that each additional emission is

suppressed by an additional power of αs, such that only a finite number of emissions need

to be taken into account at a given order NkLL. In particular, to NLL accuracy, the jet

transfer function does not contribute for the reasons stated above, and one has the trivial

result

FNLL
Jn (τn, τ, Q) = Θ[τn > 0] . (4.30)

We can now combine the result for the two jet functions just computed with the NLL

soft function as in Eq. (4.1) obtaining

ΣNLL(τ) = exp

{∫ Q

τQ

dµ

µ
4Γcusp[αs(µ)] ln

µ

Q

}
exp

{∫ Q

τQ

dΛ

Λ

∫ √τΛQ

τQ

dµ

µ
4Γcusp[αs(µ)]

}

× exp

{∫ Q

√
τQ

dµ

µ
3CF

αs(µ)

π

}∫
dτs FNLL

S (τs, τ, Q) Θ[τ > τs]

= Σmax(τ)FNLL
S (τ, τ,Q) , (4.31)

where we have performed the trivial integrations over τn and τn̄. We note that the prefactor

given by the product Σmax = Σmax
S Σmax

Jn
Σmax
Jn̄

can be directly computed in the standard

SCET without the need for the Λ regulator, whose dependence will completely cancel in

the product of the three terms.

Using the same steps as in Section 2, one can neglect terms that only contribute to

order NNLL and higher, such that one can write the above result in a way that allows for

a simpler MC implementation. To this end, we define

R′LL(τ) ≡ τ
∫

[dk]|MS(k)|2δ(τ − Vsoft(k))

=

∫
dkt
kt

∫ ln Q
kt

0
dη

dφ

2π
4CF

αs(kt)

π
δ [ln(kt/Q)− η − ln(τ)]

=

∫ √τQ
τQ

dkt
kt

4CF
αs(kt)

π
, (4.32)

where we have evaluated the scale of the running coupling constant at kt =
√
k+k−. This is

the only available choice in the soft function differential in the two light-cone components,

since it is the only possible scale which is invariant under a rescaling of the directions of

the Wilson lines. FNLL
S (τ, τ,Q) becomes

FNLL
S (τ, τ,Q) = δR

′
LL(τ)

∞∑
n=0

 1

n!

n∏
i=1

∫ τ

δτ

dτi
τi
R′LL(τ)

Θ

[∑
i

τi < τ

]
, (4.33)

which can be solved with the following MC procedure:
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1. Start with i = 0 and v0 = τ

2. Increase i by one

3. Generate τi randomly according to (τi−1/τi)
−R′LL(ΦB ;τ) = r, with r ∈ [0, 1]

4. If τi < δτ exit the algorithm, otherwise go back to step 2

If the sum over all generated τi are less than τ , accept the event, otherwise reject it. The

value of FNLL
S (τ, τ,Q) is equal to the fraction of the accepted events.

One can compare the result obtained in Eq. (4.31) using the MC algorithm above

to determine the transfer function FNLL
S (τ, τ,Q) to the analytical expression, given in

Eq. (3.46). We show this comparison in Figure. 5, where we observe a perfect agreement

between the two predictions.
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Figure 5: The left figure shows the thrust cross section at NLL obtained with the Monte-Carlo

algorithm given in the text (crosses in the plot). The analytic result is reported as a solid line

for comparison. The right plot reports the comparison between numerical and analytical solutions

for the soft transfer function at the same order. The numerical results have been obtained with

ln(δ) = −20.

Although the extension to the general case is beyond the scope of this article, we do

want to mention that it is possible to apply the above method to a more complicated

observable than thrust. In general, if one is able to find an SCET Lagrangian for the

simple observable and define Σmax which by definition contains the same LL as the full

observable v, then the resummation for v can be obtained by means of a transfer function

that is defined in terms of the fields of the same Lagrangian, and can be computed via

Monte Carlo methods.

5. Conclusions and Outlook

In this work we have shown how to formulate a numerical approach to resummation in

SCET using the example of NLL resummation of the thrust distribution. This was achieved

by combining the automated CAESAR/ARES approach to resummation with the factorization

of the long distance degrees of freedom in SCET.

– 36 –



In SCET, resummation is obtained by first factorizing the required cross section such

that a process independent hard function (H) multiplies the convolution over jet (J) and

soft (S) functions

Σ(τ) = H J ⊗ J ⊗ S . (5.1)

The jet and soft functions describe the long distance physics of the process and therefore

contain all observable dependence. Each of the factorization ingredients depend on only

a single scale, and logarithms can be resummed by solving RG equations for each of the

factorization ingredients separately. This general approach makes resummation relatively

straightforward once the appropriate factorization formula has been obtained, and simply

requires the computation of anomalous dimensions at a given order in perturbation theory.

In the numerical approach introduced in this paper, we identify a simplified observable,

which has the same leading logarithmic structure as the thrust distribution, and for which a

factorization theorem can be built in SCET. This simplified (max) observable is constructed

such that it has a very simple multiplicative factorization theorem, which is just the product

of the same hard function (H) multiplied by jet (Jmax) and soft (Smax) functions

Σmax(τ) = H Jmax Jmax Smax . (5.2)

Due to this simple multiplicative form of the factorization theorem, resummation is achieved

in a straightforward manner by solving multiplicative renormalization group equations. The

ratio between the full and simplified jet and soft functions defines a transfer function

FF ≡
F

Fmax
, (5.3)

where F = J, S. The main result of this work was to show how to compute this transfer

function by performing the phase space integration over real emission diagrams to all orders

in perturbation theory. To NLL accuracy, this was shown to result in a rather simple

expression, which can be numerically implemented into a straightforward MC algorithm.

In order to compute the phase space integrals numerically, we needed to ensure that

they are finite in 4 dimensions. This is not the case in regular SCET, where the multipole

expansion of the phase space limits of the soft function (and the 0-bin of the jet functions)

leads to UV divergences in the real integration. In order to overcome this, we introduced

an additional regulator to control the UV divergences in the soft real phase space integra-

tions. While this modifies the UV structure of the theory, and requires to perform the RG

evolution in two different variables, we showed that the results obtained in SCET with and

without this extra regulator are in fact equivalent.

While we have focused for simplicity only on the NLL resummation of the thrust

distribution, our results are very general and are readily extended to higher orders in

resummation accuracy and to more general observables as long as one can find a simple

observable that has the same LL as the full observable, and it is factorizable in SCET.

Using the general definition of Σmax given in this article, this is an almost trivial task

for most observables. In the approach discussed in this paper, the degrees of freedom
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required, and hence the effective Lagrangian, are determined by the simple observable

which can be resummed analytically through a factorization theorem. The required transfer

function, that relates the simple observable to the desired observable, can then be computed

numerically using the Feynman rules of the above Lagrangian. Moreover, owing to the fact

that the UV limit is now separately regularized, SCETII problems can be formulated exactly

on the same footing as SCETI ones.

Higher-logarithmic accuracy can be obtained in a relatively straightforward manner

by keeping subleading terms in the expansions performed in this work. Furthermore,

the numerical approach to resummation in SCET applies even to observables for which a

factorization theorem is not known. This opens the door to a systematic resummation for

a wide class of observables by combining the analytical power of SCET with numerical MC

integrations, which can be automated in an algorithmic way. The details of the general

formulation are discussed in a forthcoming paper [43].
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A. Sudakov radiator for Thrust at NLL

In this appendix we report the analytic expressions for the radiator used in the text. The

NLL radiator is generally expressed as

R(v) = −Lg1(αsL)− g2(αsL) = −
2∑
`=1

(
Lg

(`)
1 (αsL) + g

(`)
2 (αsL)

)
, (A.1)

where L = ln 1
v , and the gi functions read (we define λ = αsβ0L):

g
(`)
1 (αsL) =

Γ
(1)
cusp (2(1− λ) ln (1− λ)− (1− 2λ) ln (1− 2λ))

4πβ0λ
, (A.2)

g
(`)
2 (αsL) =

Γ
(2)
cusp (ln (1− 2λ)− 2 ln (1− λ))

8π2β0
2 +

γ
(1)
J ln (1− λ)

2πβ0

+
Γ

(1)
cusp

(
β12 ln2 (1− λ) + 2β12 ln (1− λ)

)
8πβ0

3

− Γ(1)
cusp

ln (1− 2λ) (β1 ln (1− 2λ) + 2β1)

8πβ0
3 .

(A.3)
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The coefficients of the QCD beta function are given by

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (A.4)

while the anomalous dimensions appearing in the gi functions read

Γ(1)
cusp = 2CF , Γ(2)

cusp = CF

[
CA

(
67

9
− π2

3

)
− 10

9
nf

]
, γ

(1)
J = −3

2
CF . (A.5)

B. Equivalence of SCET with and without additional UV regulator

The resummation of the large logarithms in the Laplace transform of the cross section in

standard SCET is given by

ΣNLL(u) = S̃ (u;µS) J̃2 (u;µJ) ŨS (u;µH , µS) Ũ2
J (u;µH , µJ) , (B.1)

with

ŨS (u;µH , µS) = exp

{∫ µH

µS

dµ

µ
4Γcusp[αs] ln

µS
µ
− 2γS [αs]

}
ŨJ (u;µH , µJ) = exp

{∫ µH

µJ

dµ

µ

(
2Γcusp[αs] ln

µ2

µ2
J

− 2γJ [αs]

)}
, (B.2)

with

µS =
u0

u
Q , µJ =

√
u0

u
Q , µH = Q . (B.3)

Here we have chosen the common renormalization scale to be µ = µH , such that we need

to include the RG evolution of the jet function from µJ to µH (given by the first line) and

the RG evolution of the soft function from µS to µH (given by the second line). Taking

the inverse Laplace transform and dropping the matching coefficients, one reproduces the

result given in Eq. (3.46).

In SCET with an explicit regulator for the UV divergences in real radiation one finds

ΣΛ
NLL(u) = S̃Λ (u;µS ,ΛS) J̃2

Λ (u;µJ ,ΛJ) ŨS (u;µH ,ΛH , µS ,ΛS) Ũ2
J (u;µH ,ΛH , µJ ,ΛJ) .

(B.4)

with µF being the same as in Eq. (B.3) and

ΛS =
u0

u
Q , ΛJ = ΛH = Q . (B.5)

In the evolution Kernels Ũ
(Λ)
F (u;µH ,ΛH , µF ,ΛF ) one has to evolve both µ and Λ from

their characteristic scale to the corresponding hard scale. Since the derivatives in Λ and µ

commute, one can choose any path in this 2-dimensional evolution, and we choose here to

first evolve in Λ from ΛF to ΛH holding µ fixed at µF , and then evolve in µ from µF to

µH holding Λ fixed at ΛH . This allows us to write

ŨS(u;µH ,ΛH , µS ,ΛS) ≡ Ũ (µ)
S (u;µH , µS ; ΛH) Ũ

(Λ)
S (u; ΛH ,ΛS ;µS)

ŨJ(u;µH ,ΛH , µJ ,ΛJ) ≡ Ũ (µ)
J (u;µH , µJ ; ΛH) , (B.6)
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where we have used that ΛJ = ΛH , such that one does not need any Λ evolution for the

jet function, and we have defined

Ũ
(µ)
S (u;µH , µS ; ΛH) = exp

{∫ µH

µS

dµ

µ

[
4Γcusp[αs] ln

µ

ΛH
− 2γ′S [αs]

]}
,

Ũ
(Λ)
S (u; ΛH ,ΛS ;µH) = exp

{∫ ΛH

ΛS

dΛ

Λ

∫ √
Λ

ΛS
µS

µS

dµ

µ
4Γcusp[αs]

}
, (B.7)

Ũ
(µ)
J (u;µH , µJ ; ΛH) = exp

{∫ µH

µJ

dµ

µ

[
−2γ′J [αs]

]}
, (B.8)

The two anomalous dimensions γ′S and γ′J are different from the usual SCET ones

starting from their NLO expression. However, they satisfy γ′S + 2γ′J = γS + 2γJ . The inte-

gration over Λ′ in the Λ evolution kernels Ũ
(Λ)
F can be performed analytically by changing

the order of integration. For this, we write

∫ ΛH

ΛF

dΛ

Λ

∫ √
Λ

ΛF
µF

µF

dµ

µ
f(µ) =

∫ √
ΛH
ΛF

µF

µF

dµ

µ
f(µ)

∫ ΛH

µ2

µ2
F

ΛF

dΛ

Λ

=

∫ √
ΛH
ΛF

µF

µF

dµ

µ
f(µ) ln

µ2
F ΛH
µ2 ΛF

. (B.9)

This gives for the Ũ
(Λ)
S evolution kernel, using ΛH = µH and µS = ΛS

Ũ
(Λ)
S (u; ΛH ,ΛS ;µH) = exp

{∫ √µHµS
µS

dµ

µ
4Γcusp[αs] ln

µHµS
µ2

}

= exp

{∫ µJ

µS

dµ

µ
4Γcusp[αs] ln

µHµS
µ2

}
= exp

{∫ µH

µS

dµ

µ
4Γcusp[αs] ln

µHµS
µ2

}
× exp

{∫ µH

µJ

dµ

µ
4Γcusp[αs] ln

µ2

µHµS

}
(B.10)

Putting this together with the Ũ
(µ)
S one finds for the combined soft evolution factor

ŨS(u;µH ,ΛH , µS ,ΛS) = exp

{∫ µH

µS

dµ

µ

[
4Γcusp[αs] ln

µS
µ
− 2γ′S [αs]

]}
× exp

{∫ µH

µJ

dµ

µ
4Γcusp[αs] ln

µ2

µ2
J

}
(B.11)

where we have used in the last line µ2
J = µSµH . This combined evolution factor therefore

contains the complete evolution due to the cusp anomalous dimension, which is usually

split between the soft and the jet evolution kernels, as well as the non-cusp part of the soft

evolution. The evolution factor of the jet function only contains the non-cusp part of the
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collinear evolution which reads

ŨJ(u;µH ,ΛH , µJ ,ΛJ) = exp

{∫ µH

µJ

dµ

µ

[
−2γ′J [αs]

]}
, (B.12)

from which it is easy to see that the product of Eqs. (B.11) and (B.12) fulfills the following

equality

ŨS(u;µH ,ΛH , µS ,ΛS)Ũ2
J (u;µH ,ΛH , µJ ,ΛJ) = ŨS (u;µH , µS) Ũ2

J (u;µH , µJ) , (B.13)

which shows that the physical combination of the evolution factors is identical to the

standard SCET one at all orders.

C. RGE of the thrust soft function with a IRC resolution scale

In this appendix we wish to comment more on the logarithmic structure of the decompo-

sition (4.5) for the resummed cross section. It is instructive to consider the soft function

as a case study, although the same conclusions apply to the two jet functions. We express

the soft function as in Eq. (4.3), namely

S(τs;µ) =
dΣS(τs)

dτs

ΣS(τs, µ) ≡ Σmax
S (τ, µ)FS(τs, τ, µ) = Σmax

S (τ, µ)
Σmax
S (δτ, µ)

Σmax
S (τ, µ)

ΣS(τs, µ)

Σmax
S (δτ, µ)

. (C.1)

In this paper we have shown how Σmax
S is computed analytically, while the transfer function

FS is obtained via MC methods. The latter task requires the introduction of an explicit UV

regulator in the theory, which led to the results in Section 4.2. The goal of this appendix

is to study how the decomposition (C.1) modifies the soft function’s RGE if it were used

in the standard SCET formulation, i.e. without the Λ cutoff. This is a useful exercise to

understand from a different viewpoint the method proposed in this article.

We start by simplifying, without lost of generality, Eq. (C.1) by getting rid of the

Σmax
S (τ, µ) factor and recast it as

S(τs;µ) = Σmax
S (δτ, µ)

Σ′S(τs, µ)

Σmax
S (δτ, µ)

. (C.2)

The full soft function for thrust in momentum space fulfills the non-local RGE [see Eqs. (3.16)

and (3.17)]

µ
d

dµ
S(τs;µ) =

{
2Γcusp[αs(µ)] ln

τ2
sQ

2

µ2
− 2γS [αs(µ)]

}
S(τs;µ)

− 4Γcusp[αs(µ)]

∫ τs

0
dτ ′s

S(τs;µ)− S(τ ′s;µ)

τs − τ ′s
, (C.3)

where the precise observable dependence (in particular its additive nature) is reflected in

the second term in the right-hand-side of the above equation, that essentially shows how an

extra real emission modifies the existing value of the observable (i.e. in an additive way).
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Now we study how the RGE is modified by the introduction of the IR resolution scale

δτs. We first consider the contribution Σmax
S (δτ, µ), which fulfills the following local RG

equation in momentum space [see Eqs. (3.19) and (4.23)]

dΣmax
S (δτ, µ)

d lnµ
=

[
4Γcusp[αs(µ)] ln

δτQ

µ
− 2γs[αs(µ)]

]
Σmax
S (δτ, µ) , (C.4)

which can be easily solved by setting the initial conditions at µ = δτQ.

Next we consider the remaining ratio Σ′S(τs, µ)/Σmax
S (δτ, µ) which, by means of Eqs. (C.3)

and (C.4), fulfills the non-local RGE

µ
d

dµ

Σ′S(τs, µ)

Σmax
S (δτ, µ)

=
Σ′S(τs, µ)

Σmax
S (δτ, µ)

4Γcusp[αs(µ)] ln
τs
δτ

− 4Γcusp[αs(µ)]

Σmax
S (δτ, µ)

∫ τs

0
dτ ′

Σ′S(τs, µ)− Σ′S(τ ′, µ)

τs − τ ′
. (C.5)

Since by definition the resolution scale is small (δτ � τ), one can write∫ τs

0
dτ ′

Σ′S(τs, µ)− Σ′S(τ ′, µ)

τs − τ ′

=

∫ τs

0

du

u

[
Σ′S(τs;µ)− Σ′S(τs − u;µ)

]
=

∫ τs

δτ

du

u

[
Σ′S(τs;µ)− Σ′S(τs − u;µ)

]
+

∫ δτ

0

du

u

[
Σ′S(τs;µ)− Σ′S(τs;µ)

]
=

∫ τs

δτ

du

u

[
Σ′S(τs;µ)− Σ′S(τs − u;µ)

]
+O(δτ) , (C.6)

where the power suppressed O(δτ) corrections can be ignored in the limit δ → 0. The

remaining integral can be split as∫ τs

δτ

du

u

[
Σ′S(τs;µ)− Σ′S(τs − u;µ)

]
= ln

τs
δτ

Σ′S(τs;µ)−
∫ τs

δτs

du

u
Σ′S(τs − u;µ) . (C.7)

By plugging the above expression into Eq. (C.5) we obtain

µ
d

dµ

Σ′S(τs, µ)

Σmax
S (δτ, µ)

= 4Γcusp[αs(µ)]

∫ τs

δτ

du

u

Σ′S(τs − u;µ)

Σmax
S (δτ, µ)

. (C.8)

Thus, the decomposition of (C.1) allowed us to separate the initial evolution equation into

a local piece (C.4) and a non-local piece (C.8). The precise definition of the non-local

piece depends on the form of the observable, and the result given here holds for an additive

observable. The decomposition of Eq. (C.1) allows to separate the RGE into a local piece,

which is independent of the definition of the observable and can therefore easily be solved

analytically, and a purely non-local piece, which contains all the observable dependence.

While we have discussed how to compute the non-local piece via a MC algorithm, for

an additive observable it can easily be calculated analytically, as we now show. We take

the Laplace transform L of the ratio defined as

Σ′S(τs, µ)

Σmax
S (δτ, µ)

=
1

2πi

∫
du euτsΠ(δ)(u, µ) , (C.9)
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and one finds the RG equation

dΠ(δ)(u, µ)

d lnµ
= 4Γcusp[αs(µ)]Γ(0, δτsu)Π(δ)(u, µ) , (C.10)

where we used the result

L
(

Θ[u > δτ ]

u

)
=

∫ ∞
u

du
e−δτu

u
= Γ(0, δτu) ' ln

u0

uτδ
+O(δ) , (C.11)

with u0 = e−γE . The above anomalous dimension can be easily obtained from an explicit

calculation of the soft function by fixing the thrust value to τs, while requiring that it be

larger than δτ . The solution to Eq. (C.10) reads

Π(δ)(u, µ) = Π(δ)(u, µ0)
( u0

uδτ

)η(µ,µ0)
, (C.12)

where

η(µ, µ0) =

∫ µ

µ0

dµ′

µ′
4Γcusp[αs(µ

′)] . (C.13)

The solution in momentum space can be obtained by performing the inverse Laplace trans-

form which, at NLL, yields

Σ′S(τs, µ)

Σmax
S (δτ, µ)

=
1

τsQ

( τs
δτ

)η(µ,µ0) e−γE η(µ,µ0)

Γ(η(µ, µ0))
. (C.14)

This can be combined with the solution to Eq. (C.4) to obtain the full NLL result (at this

order we set γs = 0)

S(τs;µ) = exp

{∫ µ

µ0

dµ′

µ′
4Γcusp(αs(µ

′)) ln
δτQ

µ′

}
1

τsQ

( τs
δτ

)η(µ,µ0) e−γEη(µ,µ0)

Γ(η(µ, µ0))
. (C.15)

By writing the logarithm in the exponential function as ln δτQ
µ′ = ln τsQ

µ′ + ln δτ
τs

we obtain

S(τs;µ) = exp

{∫ µ

µ0

dµ′

µ′
4Γcusp(αs(µ

′)) ln
τsQ

µ′

}
1

τsQ

e−γEη(µ,µ0)

Γ(η(µ, µ0))
, (C.16)

which reproduces the NLL result for the thrust soft function with µ0 = τsQ.
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