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Abstract

A search for a new scalar resonance decaying to a pair of Z bosons is performed in
the mass range from 130 GeV to 3 TeV, and for various width scenarios. The analysis
is based on proton-proton collisions recorded by the CMS experiment at the LHC in
2016, corresponding to an integrated luminosity of 35.9 fb−1 at a center-of-mass en-
ergy of 13 TeV. The Z boson pair decays are reconstructed using the 4`, 2`2q, and
2`2ν final states, where ` = e or µ. Both gluon fusion and electroweak production
of the scalar resonance are considered, with a free parameter describing their relative
cross sections. A dedicated categorization of events, based on the kinematic prop-
erties of associated jets, and matrix element techniques are employed for an optimal
signal and background separation. A description of the interference between signal
and background amplitudes for a resonance of an arbitrary width is included. No sig-
nificant excess of events with respect to the standard model expectation is observed
and limits are set on the product of the cross section for a new scalar boson and the
branching fraction for its decay to ZZ for a large range of masses and widths.
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1 Introduction
The standard model (SM) of particle physics postulates the existence of a single Higgs boson as
the manifestation of a scalar field responsible for electroweak (EW) symmetry breaking [1–7].
The ATLAS and CMS Collaborations have discovered a boson with a mass close to 125 GeV [8–
10] with properties consistent with those expected for the SM Higgs boson [11–15], and no
other fundamental particle that would require explanation beyond the SM (BSM) has been
discovered to date. Nonetheless, searches for BSM physics are motivated by a number of phe-
nomena such as the presence of dark matter or baryon asymmetry in the universe that are not
explained by the SM. Extensions of the SM that attempt to address these questions include two-
Higgs-doublet models (2HDM) [16], of which supersymmetry is an example, or other models
predicting an extended Higgs-like EW singlet [17]. In the following, we denote the recently
discovered scalar boson as H(125). The search for a heavy scalar partner of the H(125), which
we will generically denote as X, is the subject of this paper.

The ZZ decay has a sizable branching fraction for a SM-like Higgs boson for masses larger
than the Z boson pair production threshold, 2mZ, and is one of the main discovery channels
for masses less than 2mZ [8–10]. Since the mass of a new state X is unknown, the search is
performed over a wide range of masses from 130 GeV up to 3 TeV. Three final states are consid-
ered: 4`, 2`2q, and 2`2ν, with ` = e or µ. Previous searches for a new boson decaying to ZZ or
WW pairs have been reported by the CMS [18] and ATLAS [19, 20] Collaborations at the CERN
LHC, using proton-proton collisions recorded at center-of-mass energies of 7 and 8 TeV, where
no significant excess was observed. A data set of proton-proton collisions recorded at a center-
of-mass energy of 13 TeV by the CMS experiment in 2016 is used in this analysis, corresponding
to an integrated luminosity of 35.9 fb−1.

The approach adopted in this analysis treats a new X boson in a model-independent way. For
any given mass mX of the X boson, both its width ΓX and production mechanism are assumed
to be unknown. In this analysis, mX and ΓX refer to the mass and width of the scalar boson that
enter the propagator. No modification from the complex-pole scheme [21, 22] is considered.
The two dominant production mechanisms of a scalar boson are gluon fusion (ggF) and EW
production, the latter dominated by vector boson fusion (VBF) with a small contribution of
production in association with an EW boson ZH or WH (VH). We define the parameter fVBF as
the fraction of the EW production cross section with respect to the total cross section. The three
parameters mX, ΓX, and fVBF are scanned over a wide range of allowed phase space, and limits
are set on the pp→ X→ ZZ cross section.

The new state X can potentially have a large value ΓX: in this case, there is sizable interference
between the X → ZZ → 4f amplitude and that of the SM background process ZZ/Zγ∗ → 4f,
where f denotes any fermion. The interference distorts both the kinematic distributions and
overall yield of the BSM contribution. The SM background includes the contribution from the
H(125) → ZZ → 4f decays, which yields a nonnegligible off-shell contribution above the 2mZ
threshold [21]. The above interference effect is present in both ggF and EW processes and is
taken into account in this analysis. The reported cross-section limits correspond to the signal-
only contribution as it would be in the absence of interference. A novel feature in this analysis
is the inclusion of all of the above effects in a parametric way in a likelihood fit to the data. The
matrix element (ME) formalism is used both for the parameterization of the likelihood and for
the construction of the observables optimal for event categorization.

The paper is organized as follows. In Section 2, the CMS detector and event reconstruction tech-
niques are presented. Monte Carlo (MC) simulation of the signal and background processes is
described in Section 3. Matrix element methods are discussed in Section 4. Event selection and
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categorization in each channel are presented in Section 5. Modeling of the signal distributions
and background estimation techniques are described in Section 6. Systematic uncertainties are
summarized in Section 7. In Section 8 results are presented, and we conclude in Section 9.

2 The CMS detector and event reconstruction
The CMS detector comprises a silicon pixel and strip tracker, a lead tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each
composed of a barrel and two endcap sections, all within a superconducting solenoid of 6 m
internal diameter and providing a magnetic field of 3.8 T. Outside of the solenoid are the gas-
ionization detectors for muon measurements, which are embedded in the steel flux-return yoke
outside the solenoid. The detection layers are made using three technologies: drift tubes, cath-
ode strip chambers, and resistive-plate chambers. Extensive forward calorimetry complements
the coverage provided by the barrel and endcap detectors. A more detailed description of the
CMS detector, together with a definition of the coordinate system and the relevant kinematic
variables used, can be found in Ref. [23].

The particle-flow (PF) event algorithm [24] reconstructs and identifies each individual particle
with an optimized combination of information from the various elements of the CMS detec-
tor. The reconstructed vertex with the largest value of summed physics-object p2

T is taken to
be the primary pp interaction vertex. The physics objects are the jets, clustered using the jet
finding algorithm [25, 26] with the tracks assigned to the vertex as inputs, and the associated
missing transverse momentum, taken as the negative vector sum of the pT of those jets. The
energy of photons is obtained from the ECAL measurement, corrected for zero-suppression
effects. The energy of electrons is determined from a combination of the electron momentum
at the primary interaction vertex as determined by the tracker, the energy of the correspond-
ing ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The momentum of muons is obtained from the curvature
of the corresponding tracks in the tracker and the muon systems [27]. The energy of charged
hadrons is determined from a combination of their momentum measured in the tracker and
the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for
the response function of the calorimeters to hadronic showers. Finally, the energy of neutral
hadrons is obtained from the corresponding corrected ECAL and HCAL energy. The missing
transverse momentum vector ~pmiss

T is defined as the projection onto the plane perpendicular
to the beam axis of the negative vector sum of the momenta of all reconstructed particle-flow
objects in an event. Its magnitude is referred to as pmiss

T . The correction mentioned above also
applies to the determination of pmiss

T .

Collision events are selected by high-level trigger algorithms [28] that require the presence
of leptons passing loose identification and isolation requirements. The main triggers for this
analysis select a pair of electrons or muons. Triggers selecting an eµ pair are also used for the
4` channel and in control samples for 2`2q and 2`2ν. The minimal pT of the leading electron
(muon) is 23 (17) GeV, while that of the subleading lepton is 12 (8) GeV. Isolated single-electron
(muon) triggers with minimal pT of 27 (22) GeV are also employed to complement the double-
lepton triggers.

Electrons are measured in the ECAL in the pseudorapidity range |η| < 2.4. The momentum
resolution for electrons with pT ≈ 45 GeV from Z→ ee decays ranges from 1.7% for nonshow-
ering electrons in the barrel region to 4.5% for showering electrons in the endcaps [29]. Muons
are measured in the range |η| < 2.4. Muons are reconstructed by combining information from
the silicon tracker and the muon system [27]. The matching between the inner and outer tracks
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proceeds either outside-in, starting from a track in the muon system, or inside-out, starting
from a track in the silicon tracker. In the latter case, tracks that match track segments in one
or two (out of four) layers of the muon system are also considered in the analysis to collect
very low pT muons that may not have sufficient energy to penetrate the entire muon system.
Matching muons to tracks measured in the silicon tracker results in a relative pT resolution for
muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps.
The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [27].

Hadronic jets are clustered from the four-momenta of the particles in a jet reconstructed by
the PF algorithm, using the FASTJET software package [26]. Jets are clustered using the anti-kT
algorithm [25] with a distance parameter equal either to 0.4 (“AK4 jets”) or 0.8 (“AK8 jets”).
Charged PF constituents not associated with the primary vertex are not used in the jet cluster-
ing procedure.

Jet energy momentum is determined as the vectorial sum of all particle four-momenta in the
jet. Jets are reconstructed in the range |η| < 4.7. An offset correction is applied to jet energy
momenta to account for the contribution from additional proton proton interactions in the same
or neighboring bunch crossings (pileup). These corrections are derived from simulation, and
are confirmed with in situ measurements of the energy momentum balance in dijet, multijet,
γ + jet and leptonically decaying Z + jets events [30]. Additional selection criteria are applied
to each event to remove spurious jet like features originating from isolated noise patterns in
certain HCAL regions.

3 Monte Carlo simulation
Signal events with SM like couplings are generated at next to leading order (NLO) in quantum
chromodynamics (QCD) with POWHEG 2.0 [31–35] for the ggF and VBF production modes. The
decays X → ZZ → 4`, 2`2q, and 2`2ν are modeled with JHUGEN 7.0.2 [36–39], including cor-
rections for the ZZ branching fraction, and correct modeling of the angular correlation among
the fermions. A wide range of masses mX from 100 GeV to 3 TeV is generated with the width
ΓX set according to the SM Higgs boson expectation for mX up to 1 TeV. For higher masses,
we choose the width ΓX = 0.5mX, which approximately corresponds to the SM Higgs boson
prediction for mX = 1 TeV. The samples are used to derive a generic signal parameterization.

While NLO accuracy in QCD is used in production, no modeling of the interference with back-
ground is included at this stage of the simulation. The MELA matrix element package [36–39],
based on JHUGEN for both H(125) and X signal, and on MCFM 7.0 [40–42] for the continuum
background, allows modeling of interference of a broad X resonance with SM background in
either ggF or EW production, the latter including VBF and VH processes.

The loop induced production of two Z bosons, gg → ZZ/Zγ∗ → 4f background, including
the off shell tail of the H(125), is modeled at leading order (LO) in QCD with MCFM. The cor-
responding background from EW production, qq′ZZ/Zγ∗ → 4fqq′ is modeled at LO in QCD
with PHANTOM 1.2.8 [43]. For both ggF and VBF simulation, the factorization and renormal-
ization scales are chosen as mZZ/2, and NNPDF3.0 parton distribution functions (PDFs) [44]
are adopted. In order to include higher order QCD corrections to gluon fusion production, LO,
NLO, and next to next to leading order (NNLO) signal cross section calculations are performed
using the MCFM and HNNLO v2 programs [45–47] for a wide range of masses using the narrow
width approximation. The ratio between the NNLO and LO, or between the NLO and LO, is
used as a weight depending on the 4f invariant mass (K factor). While this procedure is directly
applicable for the signal, it is approximate for the background. However, an NLO calculation
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is available [48, 49] for the background in the mass range 2mZ < m4` < 2mt. There is a good
agreement between the NLO K factors calculated for signal and background and any differ-
ences set the scale of systematic uncertainties in this procedure, for which we assign a 10%
uncertainty. Event yields for the H(125) boson production are normalized to the cross section
at NNLO in QCD and NLO in EW for ggF [50] and others taken from Ref. [51].

The MELA package is also used to reweight the POWHEG/JHUGEN, MCFM, or PHANTOM

signal samples to model various values of mX and ΓX, as well as the interference with the
background component.

The background from the production of two Z bosons from quark antiquark annihilation,
qq → ZZ/Zγ∗ → 4f, is evaluated at NLO with POWHEG [52] and MADGRAPH5 aMC@NLO

2.3.2 [53]. The WZ production is generated at LO with PYTHIA 8.212 [54], normalized to NNLO
in QCD accuracy [55]. The Z+ jets (Z→ `+`−) simulation is made of a composite sample com-
prising a set of exclusive LO samples with various associated parton multiplicities, including
a dedicated sample with associated b quark production. These samples are produced at LO
with MADGRAPH5 aMC@NLO and corrected to NLO QCD accuracy with a K factor depend-
ing on the pT of the dilepton pair, derived from MADGRAPH5 aMC@NLO simulation at NLO
with FxFx merging scheme [56]. The simulation of top quark antiquark pair production, tt, is
performed with POWHEG at NLO in QCD [57].

All generated samples are interfaced with PYTHIA, configured with the CUETP8M1 tune [58]
for simulation of parton showers, hadronization, and underlying event effects. All simulated
events are further processed with a GEANT4 based description [59] of the CMS detector and re-
constructed with the same algorithms as used for data. Supplementary minimum bias (pileup)
interactions are added to the simulated events with a multiplicity determined such as to match
that observed in data.

4 Matrix element techniques
The ME method in this study is utilized in three ways. First, it is used to apply weights to gener-
ated events from various models to avoid having to fully simulate the samples, as discussed in
Section 3. Second, the ME method is used to create a model of a broad high mass resonance X,
including its interference with the SM background, to be used in the likelihood fit. Finally, this
method is used to create optimal discriminants for either categorization of events according to
likely production mechanism, or to separate signal from the dominant background.

The ME calculations are performed using the MELA package, which provides the full set of
processes studied in this paper and uses JHUGEN matrix elements for the signal and MCFM

matrix elements for the background. The signal includes both the four fermion kinematic prop-
erties for the decay X→ ZZ→ 4f, and the kinematical properties of associated particles in the
X + 2jets, VBF, ZH, WH production. The background includes gg or qq → ZZ / Zγ∗ / γ∗γ∗ /
Z→ 4f processes, VBF production of a Z boson pair, the associated production of a Z pair with
a third vector boson, and the production of a single Z boson in association with jets.

Two of the final states studied in this analysis, X→ ZZ→ 4` and 2`2q provide full information
about the kinematic properties of the process in both production and decay. This is illustrated
in Fig. 1, where a complete set of angles and invariant masses, denoted as ~Ω, fully defines the
four vectors of all involved particles in the center of mass frame [36, 38]. The overall boost
of the system depends on QCD effects beyond LO (in the transverse plane) or PDFs (in the
longitudinal direction). Therefore, in these two channels, matrix element calculations are used
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to create discriminants optimal either for categorization of the production mechanism or to
separate signal from background using production and decay information.

X

f f
_

Z
Z

X
V

V

Figure 1: Illustration of an X boson production from ggF, gg → X → ZZ → (`+`−)( f f ) (left),
and VBF, qq′ → qq′X→ qq′ZZ (right). The five angles shown in blue and the invariant masses
of the two vector bosons shown in green fully characterize either the production or the decay
chain. The angles are defined in either the X or V boson rest frames [36, 38].

The discriminant sensitive to the VBF signal topology with two energetic and forward associ-
ated jets is calculated as [18, 60]

DVBF
2jet =

[
1 +
PXJJ(~ΩX+JJ|mZZ)

PVBF(~ΩX+JJ|mZZ)

]−1

, (1)

where PVBF and PXJJ are probabilities obtained from the JHUGEN matrix elements for the VBF
and ggF production processes in association with two jets (X + 2 jets). This discriminant is
equally efficient in separating VBF from either gg→ X+ 2 jets signal or gg or qq→ 2`2q+ 2 jets
background because jet correlations in these processes are distinct from the VBF process. Being
independent of the type of fermions produced in the Z boson decay, it is used in both the
X→ ZZ→ 4` and X→ ZZ→ 2`2q analyses.

In addition, in the X → ZZ → 4` analysis, the dominant background originates from the
qq→ ZZ / Zγ∗ / γ∗γ∗ → 4` process. Therefore, the discriminant sensitive to the X→ ZZ→ 4`
kinematic properties and optimal for suppression of the dominant background is defined as

Dkin
bkg =

[
1 +
Pqq→4`(~ΩX→4`|mZZ)

PX→4`(~ΩX→4`|mZZ)

]−1

. (2)

In the X → ZZ → 2`2q analysis, the dominant background originates from the Z + 2 jets
process. Therefore, the discriminant sensitive to the X → ZZ → 2`2q kinematic properties is
calculated as

DZjj
bkg =

[
1 +

PZjj(~ΩX→2`2q|mZZ)

PX→2`2q(~ΩX→2`2q|mZZ)

]−1

. (3)

In Eqs. (2) and (3), PX→4` and PX→2`2q are the probabilities for the signal, while Pqq→4` and PZjj
are the probabilities for the dominant background processes.
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5 Event selection and categorization
The searches in the three final states cover different mass ranges. The 4` final state has the
smallest backgrounds, so the search is performed over the full range from 130 GeV to 3 TeV.
The 2`2ν final state suffers from large Z + jets background in the low mass region, and the
search range is thus restricted to be between 300 GeV and 3 TeV. For the same reason, the 2`2q
final state search is performed between 550 GeV and 3 TeV. Event selections are optimized for
the search ranges in each final state.

Leptons are reconstructed as described in Section 2. Electrons are also required to pass identi-
fication criteria based on observables sensitive to the bremsstrahlung along the electron trajec-
tory, the geometrical and momentum energy matching between the electron trajectory and the
associated energy cluster in the ECAL, the shape of the electromagnetic shower in the ECAL,
and variables that discriminate against electrons originating from photon conversions. Inde-
pendent selection criteria on such observables are applied in the 2`2ν channel, while a mul-
tivariate discriminant based on them is adopted in the 4` and 2`2q channel to retain high
efficiency for low pT leptons. Muons are selected among the reconstructed muon track can-
didates by applying minimal requirements on the track in both the muon and inner tracker
system, and requiring small associated energy deposits in the calorimeters. For muon pT above
200 GeV, the additional lever arm provided by the outer muon detectors becomes a significant
advantage; therefore the charge and momentum are extracted from the combined trajectory fit
for the outside in muons, while otherwise tracks found in the silicon tracker are used.

Electrons and muons with high pT are required in the 2`2q (>24 GeV) and 2`2ν (>25 GeV) final
states, while low pT (>7 GeV for electrons and >5 GeV for muons) leptons are also retained in
the 4` final state to ensure high efficiency for masses less than 2mZ. To suppress nonprompt lep-
tons, the impact parameter in three dimensions of the lepton track, with respect to the primary
vertex, is required to be less than 4 times its uncertainty (|SIP3D| < 4).

In addition, an isolation requirement of I ` < 0.35 is imposed to select prompt leptons, where
the isolation I ` is defined as

I ` ≡
(

∑ pcharged
T + max

[
0, ∑ pneutral

T + ∑ pγ
T − pPU

T (`)
] )

/p`T. (4)

The three involved sums run over the pT of charged hadrons originating from the primary
vertex, of neutral hadrons and of photons in a cone of angular radius ∆R = 0.3 around the
lepton direction.

Since the isolation variable is particularly sensitive to energy deposits from pileup interactions,
a pPU

T (`) contribution is subtracted, using two different techniques. For muons, we define
pPU

T (µ) ≡ 0.5 ∑i pPU,i
T , where i runs over the momenta of the charged hadron PF candidates not

originating from the primary vertex, and the factor of 0.5 accounts for the fraction of neutral
particles. For electrons, an area based subtraction technique [26, 61, 62], as implemented in
FASTJET, is used, in which pPU

T (e) ≡ ρAeff, where the effective area Aeff is the geometric area of
the isolation cone scaled by a factor that accounts for the residual dependence of the average
pileup as a function of η, and ρ is the median of the energy density distribution of neutral
particles within the area of any jet in the event.

In the 4` and 2`2q final states, an algorithm is used to recover the final state radiation (FSR)
from leptons. Photons reconstructed by the PF algorithm within |ηγ| < 2.4 are considered as
FSR candidates if they satisfy pγ

T > 2 GeV and I ` < 1.8 [63]. Associating every such photon to
the closest selected lepton in the event, photons that do not satisfy ∆R(γ, `)/(pγ

T)
2 < 0.012 and

∆R(γ, `) < 0.5 are discarded. The lowest ∆R(γ, `)/(pγ
T)

2 photon candidate for every lepton, if
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any, is retained. The photons identified as FSR are excluded from any isolation computations.

The momentum scale and resolution for electrons and muons are calibrated in bins of p`T and
η` using the decay products of known dilepton resonances. The electron momentum scale in
data is corrected with a Z → ee sample, by adjusting the peak of the reconstructed dielectron
mass spectrum to that expected from simulation. A Gaussian smearing is applied to electron
energies in simulation such that the Z → ee mass resolution agrees with the one observed in
data. Muon momenta are calibrated based on a Kalman filter approach [64], using J/ψ meson
and Z boson decays.

A “tag-and-probe” technique [65] based on inclusive samples of Z boson events in data is used
to correct the efficiency of the reconstruction and selection for prompt electrons and muons in
several bins of p`T and η`. The difference in the efficiencies measured in simulation and data is
used to correct the selection efficiency in the simulated samples.

The jets in the three analyses must satisfy pjet
T > 30 GeV and |ηjet| < 4.7 and be separated

from all selected leptons by ∆R(`/γ, jet) > 0.4. The analyses use b tagged jets of |ηjet| < 2.5 for
event categorization and selection, where a b jet is tagged using the combined secondary vertex
algorithm [66, 67] based on the impact parameter significance of the tracks associated with the
jet, with respect to the primary vertex. The loose working point is used, corresponding to an
efficiency of 80% and a mistag rate of 10% for light quark jets.

The main feature distinguishing the two dominant X boson production mechanisms (ggF and
VBF) is the presence of associated jets and the kinematic correlation between such jets and the
X boson. In order to gain sensitivity to the production process of the X boson, events are split
into categories based on such kinematic correlations. In the case of fully reconstructed final
states, X → 4` and 2`2q, a ME technique is used to categorize events based on the correlation
between the two forward jets and the X boson candidate, while in the 2`2ν final state a simpler
correlation between the two jets is used.

Subsequent event selections differ depending on the considered final state and are described
for each final state in the following.

5.1 X → ZZ → 4`

The X → ZZ → 4` analysis uses the same selection as in the measurements of the properties
of the H(125) boson in the H → ZZ → 4` decay channel [63]. The Z candidates are formed
from pairs of leptons of the same flavor and opposite charge (e+e−, µ+µ−) and are required
to pass the invariant mass selection 12 < m`+`− < 120 GeV. The flavors of involved leptons
define three mutually exclusive channels: 4e, 4µ, and 2e2µ. Z candidates are combined into
ZZ candidates, wherein we denote as Z1 the Z candidate with an invariant mass closest to the
nominal Z boson mass [68], and the other Z candidate Z2. To be considered for the analysis, ZZ
candidates have to pass a set of kinematic requirements. The Z1 invariant mass is required to
be larger than 40 GeV. All leptons are separated in angular space by at least ∆R(`i, `j) > 0.02.
At least two leptons are required to have pT > 10 GeV and at least one is required to have
pT > 20 GeV. In the 4µ and 4e channels, where an alternative ZaZb candidate can be built
out of the same four leptons, candidates with mZb < 12 GeV are removed if Za is closer to the
nominal Z boson mass than Z1 is.

In Ref. [63], six categories are defined based on the number and types of particles associated
with the H(125) boson. Here we follow the same approach with some optimization specific
for a high mass search. Two categories dedicated to the production mechanisms are used: VBF
jets and inclusive; to further improve the efficiency in the electron channels at high pT, a re-
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laxed selection electron (RSE) category is added. The |SIP3D| < 4 requirement in the standard
electron selection removes fake electrons from photon conversions, which are not dominant at
high masses. The requirement becomes the main cause of efficiency losses at high pT. The sec-
ond cause of the efficiency loss, particularly at high masses, is the opposite sign lepton charge
requirement, as the charge misidentification rate increases with lepton pT. Thus, a relaxed selec-
tion removing both requirements on at most one pair of electrons is applied for m4` > 300 GeV.
The detailed categorization is structured as follows:

• VBF-tagged requires exactly four leptons selected with regular criteria. In addition,
there must be either two or three jets among which at most one is b tagged, or at
least four jets and no b tagged jets, and DVBF

2jet following Eq. (1) is required to pass a
mass dependent selection;

• Untagged consists of the remaining events with regularly selected leptons;

• RSE contains events from the relaxed electron selection that are not in the regular
electron selection and for which m4` > 300 GeV.

When more than two jets pass the selection criteria, which happens in about half of the cases,
the two pT-leading jets are selected for matrix element calculations.

As a result of the above categorization, events are split into eight categories: 4e, 4µ, 2e2µ, in
either the VBF-tagged or the untagged category, or 4e and 2e2µ in the RSE category. Each event
is characterized by two observables (m4` andDkin

bkg) that are shown in Fig. 2 and Fig. 3, together
with several signal hypotheses.

5.2 X → ZZ → 2`2q

In the X→ ZZ→ 2`2q analysis, events are selected by combining leptonically and hadronically
decaying Z candidates. The lepton pair selection is similar to the four-lepton analysis: pairs of
opposite sign and same flavor electrons or muons with invariant mass between 60 and 120 GeV
are constructed. A pT > 40 GeV requirement is applied on at least one of the leptons in the
pair, and a minimum dilepton pT of 100 GeV is imposed to reject Drell–Yan events with small
hadronic recoil.

Hadronically decaying Z boson candidates (Zhad) are reconstructed using two distinct tech-
niques, which are referred to as “resolved” and “merged” in the following. In the resolved
case, the two quarks from the Z boson decay form two distinguishable AK4 jets, while in the
merged case a single AK8 jet with a large pT is taken as a Zhad.

In the merged jet case, a pruning algorithm is applied to the AK8 jet [69, 70]. The goal of
the algorithm is to recluster the jet constituents, while applying additional requirements that
eliminate soft, large angle QCD radiation that artificially increases the jet mass relative to the
nominal Z boson mass. We adopt the unified nomenclature m(Zhad) to refer to the hadroni-
cally decaying Z candidate mass, corresponding to the dijet invariant mass in the resolved case
and the jet pruned mass in the merged case. The reconstructed Zhad is required to have an
invariant mass around the Z boson mass: 40 < m(Zhad) < 180 GeV and pT > 100 (170)GeV
in the resolved (merged) case. Merged jets must also be separated from all selected leptons by
∆R(`, jet) > 0.8. In addition, in the merged jet selection we exploit substructure techniques
commonly used in searches including Lorentz boosted bosons in the final state [71]. The N-
subjettiness τN is defined as

τN =
1
d0

∑
k

pT,k min(∆R1,k, ∆R2,k, . . . , ∆RN,k), (5)
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where the index k runs over the jet constituents and the distances ∆RN,k are calculated with
respect to the axis of the nth subjet. The normalization factor d0 is calculated as d0 = ∑k pT,kR0,
setting R0 to the jet radius of the original jet. Jets with smaller τN are more compatible with
the N-subjets configuration. We use the ratio of 2-subjettiness over 1-subjettiness, τ21 = τ2/τ1,
as the discriminating variable for the jet substructure and impose a τ21 < 0.6 requirement on
merged Zhad candidates.

Events that pass the above selection and additionally have m(Zhad) in the range [70, 105] GeV
form the signal region, covering 1–2 standard deviations dijet mass resolution. On the other
hand, events that have m(Zhad) in the range [40, 70] GeV or [135, 180] GeV form the sideband
regions and are retained for background estimation.

An arbitration procedure is used to rank multiple Zhad candidates reconstructed in a single
event: merged candidates have precedence over resolved candidates if they have pT > 300 GeV
and the accompanying leptonically decaying Z candidate has pT(`

+`−) > 200 GeV; resolved
candidates have precedence otherwise. Within each selection category the candidate with the
largest pT has priority over the others.

The hadronically and leptonically decaying Z boson candidates are combined to form a reso-
nance candidate. In order to improve the ZZ invariant mass resolution in the resolved jet case,
a kinematic fit is performed using a mass constraint on the intermediate decay Z → qq. The
constraint improves the signal resolution by 7–10%. When a candidate belongs to the signal re-
gion, we reevaluate the kinematical distributions of final state particles (here the pT of the two
jets forming the Z boson of the resonance candidate) with a constraint on the reconstructed
Z boson mass to follow the Z boson line shape. For each event, the likelihood is maximized
and the pT of the jets is updated. After refit, the mass of the Z boson candidate and mZZ are
recalculated. This procedure is not applied to events in the sidebands, where m(Zhad) is very
different from the nominal Z boson mass.

The reconstructed ZZ candidate mass mZZ denotes the dilepton + dijet mass m``jj in the re-
solved case and the dilepton + merged jet invariant mass m``J in the merged case. A require-
ment of mZZ > 500 GeV is imposed to reduce the Z + jets background.

To increase the sensitivity to the different production modes, events are categorized into VBF
and inclusive types. Furthermore, since a large fraction of signal events is enriched with b
quark jets due to the presence of Z → bb decays, a dedicated category is defined. The defini-
tions are as follows:

• VBF-tagged requires two additional and forward jets besides those constituting the
hadronic Z boson candidate; a mass dependent selection criterion on DVBF

2jet is ap-
plied;

• b tagged consists of the remaining events with two b tagged jets (in the resolved
case) or two b tagged subjets from the hadronic Z boson candidate;

• Untagged consists of the remaining events.

As a result of this categorization, events are split into twelve categories: 2e2q or 2µ2q, either
VBF-tagged, b-tagged, or untagged, and each with either merged jets or resolved jets. Each
event is characterized by the two observables (mZZ,DZjj

bkg). Figure 4 shows the invariant mass
distribution for merged and resolved events in each category after the selection. Figure 5 shows
theDZjj

bkgandDVBF
2jet distributions for resolved events in each category together after the selection.
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Figure 4: Distributions of the invariant mass mZZ in the signal region for the merged (left) and
resolved (right) case for the different categories in the 2`2q channel. The points represent the
data, the stacked histograms the expected backgrounds from simulation, and the open his-
tograms the expected signal. The blue hatched bands refer to the sum of background estimates
derived from either simulation or control samples in data, as described in the text. Lower
panels show the ratio between data and background estimation in each case.
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5.3 X → ZZ → 2`2ν

In the X→ ZZ→ 2`2ν channel, events are selected by combining dilepton Z boson candidates
with relatively large pmiss

T . Events are selected requiring two leptons of the same flavor that
have an invariant mass within a 30 GeV window centered on the nominal Z boson mass. For
X boson masses considered in this analysis (>300 GeV), the Z bosons from the X boson decay
are typically produced with a large pT. To suppress the bulk of the Z + jets background, the
pT of the dilepton system is therefore required to be greater than 55 GeV, and a pmiss

T threshold
of 125 GeV is imposed. The region of large pmiss

T is contaminated by Z + jets events in which
the pmiss

T is largely due to mismeasurements of the jet energies. To suppress this contribution,
events are removed if the azimuthal angle between the pmiss

T and the closest jet with pT >
30 GeV is smaller than 0.5 radians. An additional selection requirement |∆φ(Z,~pmiss

T )| > 0.5 is
placed in order to remove events for which the instrumental pmiss

T is not well controlled.

Top quark decays are often associated with the production of leptons and missing transverse
momentum in the final state but are also characterized by the presence of jets originating from
b quarks (b jets). The top quark background is suppressed by applying a veto on events having
a b tagged jet with pT > 30 GeV. To reduce the WZ background in which both bosons decay
leptonically, any event with an additional e (µ) passing loose identification and isolation criteria
with pT > 10 (3)GeV is rejected.

We select events with pmiss
T ≥ 125 GeV and fit the transverse mass mT distribution for the se-

lected events. The pmiss
T requirement rejects background processes that could lead to high mT

because of the kinematic properties of the dilepton pair in the event. The pmiss
T criterion is op-

timized based on expected signal significance. The significance is found to be quite stable with
the chosen pmiss

T requirement for masses above 400 GeV.

The transverse mass is reconstructed from the dilepton and pmiss
T system via the following

definition :

m2
T =

(√
pT(``)

2 + m(``)2 +

√
pmiss

T
2
+ m2

Z

)2

− (~pT(``) + ~pmiss
T )2, (6)

where ~pT(``) and m(``) are the transverse momentum and invariant mass of the dilepton sys-
tem, respectively. In order to maximize the sensitivity, the search is carried out in different jet
multiplicity categories defined as follows:

• VBF-tagged: in this category we require two or more jets in the forward region
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with a pseudorapidity gap (|∆η|) between the two leading jets greater than 4, and a
minimal invariant mass of those two jets of 500 GeV. The two leptons forming the Z
boson candidate are required to lie between these two jets in η, while no other jets
(pT > 30 GeV) are allowed in this central region;

• ≥ 1-jet: events with at least one reconstructed jet with pT > 30 GeV, but failing the
VBF selection;

• 0-jet: events without any reconstructed jet with pT > 30 GeV.

The last two categories are the most sensitive to the signal produced via ggF but have different
expected signal to background ratios. As a result of the above selection, events are split into six
categories: 2e2ν or 2µ2ν, either 0-jet, ≥ 1-jet or VBF-tagged. Fig. 6 shows the mT distributions
for the signal and background processes superimposed, in the six event categories.

6 Signal and background parameterization
The goal of the analysis is to determine if a set of X boson parameters mX, ΓX, and σiBX→ZZ
is consistent with the data, where σiBX→ZZ is the product of the signal production cross sec-
tion and the X → ZZ branching fraction in each production channel i (gluon fusion or EW
production). In practice, the σiB for i = 1, 2 are expressed in terms of σtotBX→ZZ and fVBF,
where σtot is the sum of the cross sections in the two production channels. The confidence in-
tervals on σtotBX→ZZ are determined from profile likelihood scans for a given set of parameters
(mX, ΓX, fVBF). The extended likelihood function is defined for candidate events as

L = exp
(
−∑

i
ni

vv −∑
i

ni
bkg

)
∏

k
∏

j

(
∑

i
ni

vvP i,k
vv (~xj; mX, ΓX) + ∑

i
ni

bkgP
i,k
bkg(~xj)

)
, (7)

where ni
vv and ni

bkg are the numbers of signal and background events in channel i. The ob-
servables ~xj are defined for each event j in category k as discussed in Sections 5.1, 5.2, and 5.3.
There are several signal and background types i, defined for each production mechanism. The
background processes that do not interfere with the signal are described by the probability
density functions (pdfs) P i,k

bkg(~xj). The vv → 4f process is described by the pdf P i,k
vv (~xj; mX, ΓX)

for vv = gg (gluon fusion) and vv = VV (EW production). This pdf describes the production
and decay of the X boson signal, SM background, including H(125), and interference between
all these contributions and is parameterized as follows:

P i,k
vv (~xj; mX, ΓX) = µiP i,k

vv→X→4f(~xj; mX, ΓX) +
√

µiP i,k
int(~xj; mX, ΓX) + P i,k

vv→4f(~xj), (8)

where µi is the relative signal strength for production type i defined as the ratio of σiB with
respect to a reference value, for which normalization of the pdf is determined. The interference
contribution P i,k

int scales as
√

µi and the pure signal as µi, while both depend on the signal pa-
rameters mX and ΓX. The likelihood defined in Eq. (7) is maximized with respect to the nuisance
parameters, which include the constrained parameters describing the systematic uncertainties.

6.1 Signal model

The parameterization of P i,k
vv (~xj; mX, ΓX) is performed using the MC simulation discussed in

Section 3 with the ME method. In the case of the X → ZZ → 4` or 2`2q channels, a full
reconstruction of the final state is possible. Therefore, the ideal differential distribution prior
to detector effects P ideal

vv , equivalent to Eq. (8), is parameterized using ME techniques and is
further corrected for detector acceptance and resolution effects. In the case of X → ZZ →
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Figure 6: Distributions of the transverse mass mT in the signal region for the different analysis
categories for the 2`2ν channel, in the ee(left) and µµ final states (right). The points represent
the data and the stacked histograms the expected background. The open histograms show the
expected gluon fusion and VBF signals for the product of cross section and branching fraction
equal to σ(pp→ H→ ZZ) = 50 fb. Lower panels show the ratio of data to the expected back-
ground. The shaded areas show the systematic and total combined statistical and systematic
uncertainties in the background estimation.
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2`2ν, this approach is not possible because of missing neutrinos: MC simulation is reweighted
for each hypothesis of mX, ΓX, and σiBX→ZZ, leading to template parameterization of P i,k

vv for
each set of signal parameters. While ultimately the two approaches are equivalent, the former
approach is more flexible in implementation, and the latter avoids the intermediate step of
ideal pdf parameterization.

In the X→ ZZ→ 4` or 2`2q channels, we parameterize the signal mass shape as follows. A pdf
after detector effects Mreco

vv (mZZ) is implemented with the multiplicative efficiency function
E(mZZ) and convolved with a mass resolution function R(mZZ|mGen

ZZ ), both extracted from
simulation of the ggF and VBF processes:

Mreco
vv (mZZ) =

(
E(mGen

ZZ )Mvv(mGen
ZZ |mX, ΓX)

)
⊗R(mZZ|mGen

ZZ ). (9)

The parameterizations of R(mZZ|mGen
ZZ ) and E(mGen

ZZ ) cover the mass range from 100 GeV to
3.5 TeV. Figure 7 shows the efficiencies in the X → 4` and X → 2`2q channels in the various
categories. The resolution in the 4` final state is 1–2% and 3–5% in the 2`2q final state. With the
above ingredients, the mZZ parameterization is shown in Fig. 8, for a boson with mX = 450 GeV,
ΓX = 10 GeV decaying to four leptons. The interference contributions from H(125) and gg →
ZZ background are also shown.
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Figure 7: The product of efficiency and acceptance for signal events to pass the X → ZZ → 4`
(upper plots) and X → ZZ → 2`2q (lower plots) selection as a function of the generated mass
mGen

ZZ , from ggF (left) and VBF (right) production modes.

The 2D signal distributions in the 4` and 2`2q final states are built with the conditional template
T (Dbkg|mZZ), which describes the Dbkg discriminant distribution from Eq. (2) or (3) for each
value of mZZ:
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P i,k
vv (mZZ, Dbkg) =Mreco

vv (mZZ)T (Dbkg|mZZ). (10)

The template T (Dbkg|mZZ) parameterization includes all detector effects affecting the Dbkg
distribution. A closure of the full model described by Eq. (10) is achieved by comparing the
model to the simulation for a number of signal parameters.
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Figure 8: Parameterizations of the four lepton invariant mass for ggF (left) and VBF (right) pro-
duction modes, for mX = 450 GeV, ΓX = 10 GeV. The interference contributions from H(125)
and gg → ZZ or VV → ZZ background are also shown. The signal cross section used corre-
sponds to the limit obtained in the 4` final state.

6.2 Background model

Common backgrounds among the three final states include the gg(VV) → ZZ process, ZZ
produced via qq annihilation, as well as the WZ production process. The ggF and EW pro-
duction of the gg(VV) → ZZ background are treated together with the X boson signal and
background, including interference between the corresponding amplitudes, as discussed in
detail in Section 6.1. Higher order corrections are applied to these processes as discussed in
Section 3.

The production of ZZ via qq annihilation is estimated using simulation. The fully differential
cross section for the qq→ ZZ process is computed at NNLO [72], and the NNLO/NLO K factor
as a function of mZZ is applied to the POWHEG sample. This K factor varies from 1.0 to 1.2
and is 1.1 at mZZ = 125 GeV. Additional NLO EW corrections, which depend on the flavor of
the initial state quarks and on kinematic properties, are also applied in the region mZZ > 2mZ,
where the corrections are computed [73–75]. The WZ production is estimated using simulation,
where photon induced EW corrections are applied [76, 77].

The analysis specific background processes, or the ones whose contribution is derived from
control samples in data, are discussed in the following sections.

6.2.1 X → ZZ → 4`

The most important background to the X signal in the 4` channel, in addition to the irreducible
ZZ arises from processes in which decays of heavy flavor hadrons, in flight decays of light
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mesons within jets, or photon conversion or decay of charged hadrons overlapping with π0

decays are misidentified as leptons. The main processes producing these backgrounds are Z +
jets, tt + jets, Zγ + jets, WW + jets, and WZ + jets production. Collectively, we denote these
as “reducible” backgrounds. The contribution from the reducible background is estimated
using two independent methods based on data from dedicated control regions. The control
regions are defined by a dilepton pair satisfying all the requirements of a Z1 candidate and two
additional leptons, opposite sign (OS) or same sign (SS), satisfying more relaxed identification
criteria than the ones used for the selection and categorization for the signal events. These four
leptons are then required to pass the analysis ZZ candidate selection. The event yield in the
signal region is obtained by weighting the control region events by the lepton misidentification
probability, defined as the fraction of non signal leptons that are identified by the analysis
selection criteria.

The lepton misidentification probabilities are measured separately for electrons and muons
from a control sample that requires a Z1 candidate consisting of a pair of leptons, both passing
the selection requirements used in the analysis, and exactly one additional lepton passing the
relaxed selection.

The predicted yield in the signal region of the reducible background is the result of a combina-
tion of the two methods described above. The shape of the m4` distribution for the reducible
background is obtained by combining the prediction from the OS and SS methods and fitting
the distributions with empirical functional forms built from Landau [78] and exponential dis-
tributions.

6.2.2 X → ZZ → 2`2q

The majority of the background (>90%) is composed of events from Z+ jets production, where
jets associated to the Drell–Yan production are misidentified as coming from a hadronic Z de-
cay. Subdominant backgrounds comprise events from tt production and from diboson EW
production.

The tt background is an important source of contamination in the b tagged category. It is esti-
mated from data using e±µ∓ events passing the same selection as for the signal. This method
accounts for other small backgrounds (such as WW + jets, Z → τ+τ− + jets, and single top
quark production) where the lepton flavor symmetry can be used as well. Because of the lim-
ited number of events in the e±µ∓ control region, the mZZ shapes are taken from tt simulation,
and the statistical uncertainty in the control region is considered as the uncertainty in the back-
ground estimation.

In the Z+ jets background, the misidentified hadronic Z comes either from the combinatoric
background of Z + 2 jets events where the dijet system happens to have an invariant mass in
the range compatible with that of the Z boson (resolved category) or from an unusual parton
shower and hadronization development for a single jet, leading to a configuration similar to
that of the boosted Z → qq decay (merged category). In both cases, and in each analysis
category, a sideband region with a misidentified hadronic Z mass close to that of the signal
region can be used to estimate the contribution of this background. To address the correlation
between the hadronic Z mass and mZZ in these configurations, a correction factor is estimated
from simulation.

The alpha transfer factor α(mZZ), defined as

α(mZZ) =
NMC

SIG (mZZ)

NMC
SB (mZZ)

, (11)
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is calculated as the ratio of the mZZ distributions in the signal and sideband regions for Z+ jets
simulated events. The alpha function is multiplied by the sideband mZZ distribution to derive
the Z + jets contribution in the signal region. The Z + jets distribution from the sideband is
obtained by subtracting the subdominant backgrounds from MC prediction. Both the shape
and the yield for the Z + jets background are estimated using this method.

While a binned evaluation of the product of the alpha factor and the sideband yields would
be a complete estimate of the background, low event yields from data or simulation in specific
bins or event categories could induce large statistical fluctuations in the bins with smaller event
yields, occurring at large values of mZZ. We define a “transition” mass value m̃ZZ. For mZZ <
m̃ZZ, the binned evaluation is used as mentioned above. For mZZ > m̃ZZ, in order to smooth the
background estimation, the Z+ jets shape is then fit using a sum of two exponential functions (a
single exponential function) for the resolved jet untagged category (the remaining categories).
A binned estimation for mZZ > m̃ZZ is then obtained by integrating the smoothed estimation
in the corresponding intervals. The statistical uncertainty derived from the fit is propagated to
the final result using the full covariance matrix.

6.2.3 X → ZZ → 2`2ν

The Z + jets background is modeled from a control sample of events with a single photon
produced in association with jets (γ + jets). This choice has the advantage of making use of
a large sample, which captures the source of instrumental pmiss

T from the Z production in all
important aspects, i.e. production mechanism, underlying event conditions, pileup scenario,
and hadronic recoil. By using the γ + jets expectation we avoid the need to use the prediction
from simulation for the instrumental background arising from the mismeasurement of jets.
Each γ + jets event must fulfill similar requirements as the dilepton events: no b tagged jets, no
additional identified leptons, and a significant transverse momentum (pT ≥ 55 GeV).

The kinematic properties and overall normalization of γ+ jets events are matched to Z+ jets in
data through an event by event reweighting as a function of the boson pT in each of the event
categories separately, to account for the dependence of the pmiss

T on the associated hadronic
activity. Contamination of the photon data by processes that lead to a photon produced in
association with genuine pmiss

T , such as W(`ν) + γ and W(`ν) + jets where the jet is mismea-
sured as a photon, and Z(νν) + γ events, are subtracted using simulation. The simulation of
the pmiss

T in such events is more reliable than in Z + jets as the pmiss
T is induced by a neutrino

and not by detector features. After the pT reweighting and the pmiss
T requirement, these events

represent less than 25% of the photon sample. This procedure yields a good description of the
pmiss

T distribution in Z + jets events, as shown in Fig. 9, which compares the pmiss
T distribution

of the reweighted γ + jets events along with other backgrounds to the pmiss
T distribution of the

dilepton events in data.

To compute mT for each γ + jets event, ~pmiss
T (``) is defined as the photon ~pmiss

T and the value
of m(``) is chosen according to a probability density function constructed from the measured
dilepton invariant mass distribution in data (dominated by Z + jets events). The uncertainty
in this background estimate includes a statistical contribution from the photon control sample
and a contribution from the simulations used to subtract processes with photon and genuine
pmiss

T , and is found to be equal to 100% in the signal region. Another 10% contribution comes
from the degree of agreement between the γ + jets prediction and the pmiss

T distributions in
a simulated dilepton sample. Uncertainties in the production cross section of the subtracted
processes with genuine pmiss

T are also accounted for and are on the order of 25%.

The background processes that do not involve a Z resonance (nonresonant background) are
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Figure 9: Distribution of the missing transverse energy pmiss
T in the dilepton signal region. The

points represent the data and the stacked histograms the expected backgrounds. The lower
panel shows the ratio between data and background estimation.

estimated using a control sample of events with dileptons of different flavor (e±µ∓) that pass
the analysis selection. This background consists mainly of leptonic W decays from tt, tW, and
WW events. Small contributions from single top quark events produced in s- and t-channels,
W + jets events in which the W boson decays leptonically and a jet is mismeasured as a lepton,
and ZZ or Z events where a Z decays into τ leptons, which produce light leptons and pmiss

T ,
are also included in this estimate. This method cannot distinguish between the nonresonant
background and the contribution from H → WW → 2`2ν events, which is treated as a part of
the nonresonant background estimate. The numbers of nonresonant background events Nµµ

and Nee in the e+e− and µ+µ− final states are estimated by correcting the number of selected
events Neµ in the e±µ∓ final state. The correction factor accounts for the difference in branching
fractions, acceptance and efficiency between unlike flavor and same flavor dilepton events, and
is computed as:

Nµµ =
NSB

µµ

NSB
eµ

Neµ, Nee =
NSB

ee

NSB
eµ

Neµ, (12)

where NSB
ee , NSB

µµ , and NSB
eµ are the numbers of events in a sideband control sample of e+e−,

µ+µ−, and e±µ∓ final states, respectively. The sideband selection is defined by 40 < m(``) <
70 GeV or 110 < m(``) < 200 GeV, pmiss

T > 70 GeV, and at least one b tagged jet. The require-
ment of a b tagged jet is used to provide a sample enriched in top quark events and to suppress
possible contamination from Z + jet events where a jet is misidentified as a lepton. The cor-
rection factor measured in the sideband is 0.37± 0.01 (stat) and 0.68± 0.01 (stat) for the ee and
µµ channels, respectively. The uncertainty in the estimate of the nonresonant background is
determined via MC closure tests using simulated events as well as by comparing results calcu-
lated from sideband regions. The total error is within 13%, which is assigned as the systematic
uncertainty in this method.

7 Systematic uncertainties
The three final states share common systematic uncertainties arising from the theoretical pre-
diction, reconstructed objects, and common backgrounds. Theoretical uncertainties that affect
both the signal and background estimation include uncertainties from the renormalization and
factorization scales and the choice of the PDF set. The uncertainties from the renormalization
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and factorization scale are determined by varying these scales independently by factors of 0.5
and 2 with respect to their nominal values, while keeping their ratio between 0.5 and 2. The
uncertainties from the PDFs are obtained from the root mean squares of the variations, us-
ing different replicas of the default NNPDF set. An uncertainty of 10% in the K factor used
for the gg → ZZ prediction is applied, which is derived from renormalization and factoriza-
tion scale variations. The uncertainty in the NNLO-to-NLO K factor for the ZZ and WZ cross
sections is about 10%. The renormalization and factorization scale and PDF uncertainties are
evaluated from simulation, and are applied to the event categorization and overall signal and
background yields. A systematic uncertainty of 2% in the Z boson branching fraction value is
taken into account for the signal yields [51].

The uncertainty in the knowledge of the integrated luminosity of the data samples (2.5%) in-
troduces an uncertainty in the numbers of signal and background events passing the final se-
lection. Uncertainties in the lepton identification and reconstruction efficiencies lead to 2.5%
uncertainties in the 4µ and 9% in the 4e final states for the 4` selection, 4–8% (2e and 2µ) for
2`2q and 6–8% for 2`2ν in the normalizations of both signal and background. The uncertainties
in the lepton energy scales are 0.01–0.1% for muons and 0.3% for electrons. A 20% relative un-
certainty in the signal resolution is assigned due to per lepton energy resolution in the 4` and
2`2q final states. The jet energy scale (JES), jet energy resolution (JER) and jet reconstruction
efficiency uncertainties affect both signal and background yields and represent the most im-
portant uncertainties for the 2`2q signal shapes. The systematic uncertainties that are common
among the three final states are summarized in Table 1.

Table 1: Sources of uncertainties considered in each of the channels included in this analysis.
Uncertainties are given in percent. The numbers shown as ranges represent the uncertain-
ties in different final states or categories. Most uncertainties affect the normalizations of the
background estimations or simulated event yields, and those that affect the shape of kinematic
distributions as well are labeled with (*).

Source of uncertainty [%] X→ ZZ X→ ZZ X→ ZZ
→ 4` → 2`2q → 2`2ν

Experimental sources
Integrated luminosity 2.5 2.5 2.5
` trigger and selection efficiency 2.5–9 4–8 6–8
` momentum/energy scale (*) 0.04–0.3 0.1–0.3 0.01–0.3
` resolution (*) 20 20 —
JES, JER, pmiss

T (*) 1–30 1–10 1–30
b tagging/mistag — 5–7 2–4

Background estimates
Z + jets 36–43 10–50 20–50
top quark, WW — 15 10
Wγ∗, WZ — 3–10 15

Theoretical sources
Renorm./factor. scales 3–10 3–10 5–10
PDF set 3–4 3–5 1–4
EW corrections (qq→ ZZ) (*) 1 1 2
NNLO (gg→ ZZ) K factor 10 10 10

In addition, each final state has channel specific uncertainties, mainly from the background
estimations based on control samples in data, as well as from merged jet reconstruction.
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7.1 X → ZZ → 4`

Experimental uncertainties for this channel arise mainly from the reducible background esti-
mation. Impacts from the limited numbers of events in the control regions as well as in the
region region where the misidentification rates evaluated are taken into account. Additional
sources of systematic uncertainty arise from the difference in the composition of the sample
from which the misidentification rate is computed and the control regions of the two methods
where the lepton misidentification probability is applied. The systematic uncertainty in the
m4` shape is determined by taking the envelope of differences among the shapes from the OS
and SS methods in the three different final states. The combined systematic uncertainties are
estimated to be about 36% (4µ) to 43% (4e).

7.2 X → ZZ → 2`2q

The dominant uncertainties in the signal selection efficiency for this channel arise from uncer-
tainties in the efficiencies to tag the hadronic jet as a Z in the high mass boosted categories,
and from uncertainties in the b tagging efficiency. The efficiency of the boosted boson tagging
selection and its corresponding systematic uncertainty are measured from data using a sam-
ple enriched in tt events. Uncertainties in the signal efficiencies from the jet mass scale and
resolution are 1–9% and 7–13% depending on the mass. τ21 selection scale factor and extrap-
olation lead to 8% and 2–8% uncertainties. The b tagging efficiencies and their corresponding
systematic uncertainties are measured from data enriched in tt events. They account for 5–7%
uncertainties in the total signal efficiencies.

For the background estimated from data, the statistical uncertainty of the e± µ∓ control sam-
ple is propagated to an uncertainty in the tt+WW estimation. The alpha method for the Z +
jets background estimation depends on the uncertainty in the extrapolation factor and on the
amount of data of the dijet mass or pruned jet mass sideband region. Jet energy scale and reso-
lution affect the extrapolation factor α(mZZ) by 3–10% depending on the mass. In the low mass
region, the statistical uncertainties in the simulated samples and mass sidebands in data are
propagated to the binned alpha factor estimation. In the high mass region, they are obtained
by the covariance matrix of the fit parameters of the sideband data mZZ distributions. Ad-
ditional systematic uncertainties are derived from comparisons between the nominal Z + jets
MC descriptions (exclusive LO samples with different associated parton multiplicities, and en-
riched in b quark production, all produced with MADGRAPH5 aMC@NLO) and the merged
MADGRAPH5 aMC@NLO simulations at NLO. The same background estimation methods are
used to derive an alternative binned description of the Z + jets background, and appropriate
nuisance parameters, symmetrized around zero, describe the variation between the nominal
and alternative estimation.

For the two dimensionalDZjj
bkg template shapes, two systematic uncertainties are considered for

the signal samples: JES and JER variations, as well as comparison with identical MC samples
where HERWIG++ [79] with EE5C tune [58] is used for parton showering and hadronization
instead of PYTHIA. For background templates, a conservative systematic uncertainty from the
limited size of the MC samples and the consequent smoothing procedure is derived by using
alternative templates where the content of each two dimensional interval is replaced by the
content of the preceding or following interval in mZZ. Background systematic uncertainties
are validated in an “extended sideband region”, which includes the sideband region used in
the analysis, as well as events failing the τ21 selection. At masses above 1 TeV, 1σ differences
between data and simulation in this region are assigned as additional systematic uncertainties.
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7.3 X → ZZ → 2`2ν

Various factors contribute to the experimental uncertainties that apply to processes derived
from MC simulation. These include uncertainties in the trigger efficiency and lepton selection
efficiencies. The effects of lepton momentum scale and JES are also taken into account and
are propagated to the evaluation of pmiss

T . The uncertainties in the b jet veto are estimated
by measuring the b tagging efficiency in data enriched in tt and are evaluated to be 2–4% for
processes estimated from simulation, namely signal and WW, WZ events. Uncertainties due to
the modeling of pileup are evaluated by varying the total inelastic cross section by±5% around
the nominal value.

Uncertainties in the background estimates based on control regions in data are estimated as
described in Section 6.2.3. For the Drell–Yan background a systematic uncertainty of 25% is
combined with a statistical uncertainty from the size of the photon + jet control sample of 10%
for the 0-jet and≥1-jet categories, and of 50% for the VBF-tagged category. For the nonresonant
background a 15% uncertainty is applied.

8 Results
The search for a scalar resonance X decaying to ZZ is performed over the mass range 130 GeV <
mX < 3 TeV, where three final states are combined, X → ZZ → 4`, 2`2q, and 2`2ν. Because of
the different resolutions, efficiencies, and branching fractions, each final state contributes dif-
ferently depending on the tested mass. The most sensitive final state between 130 and 500 GeV
is 4` due to its best mass resolution, whereas in the intermediate region 500–700 GeV 2`2ν is
most sensitive, and for masses above 700 GeV 2`2q is best.

In X → ZZ → 4` and 2`2q, comparisons between the two dimensional (mZZ, DZjj
bkg) distribu-

tions observed in data and expected from the sum of background predictions are made. We
set upper limits on the production cross section of the resonance by combining all the event
categories in each analysis.

In X → ZZ → 2`2ν, using the resulting mT distributions, a shape based analysis is performed
to extract the limits. The shapes of the signal and WZ, ZZ backgrounds are taken from MC
simulation, those of Z + jets are taken from data, and for nonresonant backgrounds, the eµ
control region is used to predict both shapes and normalizations of the mT distributions in the
signal region, as described in Section 6.2.

We follow the modified frequentist prescription described in Refs. [80–82] (CLs method), and
an asymptotic approach with the profile likelihood ratio as the test statistic is used for upper
limits. Systematic uncertainties are treated as nuisance parameters and profiled using lognor-
mal priors.

The width of the resonance ΓX is allowed to vary, starting from the narrow width approxima-
tion (denoted as ΓX = 0) up to a large width. Production of the X resonance is considered to
be either in ggF or VBF, where VX production is included according to the relative expectation
of the VX and VBF cross sections. No significant excess of events over the SM expectation is
observed. Figure 10 shows upper limits at the 95% confidence level (CL) on the pp→ X→ ZZ
cross section σXBX→ZZ as a function of mX for ΓX = 0, 10, and 100 GeV.

The expected and observed limits on the pure VBF production cross section are better than the
inclusive ones, because the background is smaller in the dedicated VBF categories. In general,
limits are better when assuming a narrow width signal, since the signal over background ratio
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is higher. However, in the mass region below 300 GeV, interference effects with background
are more complicated and play a role in the evolution of the limit as a function of ΓX.

For mX < 2mZ, while the signal events are produced on shell around mX for ΓX ∼ 0, the majority
of the events are produced off shell in the case of ΓX/mX > 1%. Thus the relevant background
is quite different when ΓX varies. In the ggF dominant category, for 130 < mX < 140 GeV,
the signal over background ratio is better in the relevant off shell region than in the on shell
region, where signal events partly overlap with the H(125) peak. This makes the sensitivity
better for a wide resonance. For 150 < mX < 180 GeV, there is no overlap between the two
on shell resonance peaks, so for a narrow resonance the signal over background ratio is larger
and the limit is better. In the VBF category, the signal over background ratio is always smaller
in the relevant off shell region compared to the on shell region, yielding a better sensitivity for
a wide resonance. The downward fluctuation in the VBF limit for ΓX = 10 and 100 GeV, and
mX < 180 GeV, reflects an overall deficit of events in the VBF category in the off shell region of
m4` > 200 GeV.

Above the 2mZ threshold, for 180 < mX < 250 GeV, the net interference of the ggF signal is
positive around the peak, making the wide resonance sensitivity better. For the VBF signal, the
enhancement from interference occurs at its right hand tail, where barely any background ex-
ists. This makes the limit for the wide VBF Higgs better in the range mX < 300 GeV. Above that,
the background drops rapidly and the limits for narrow and wide resonances are compatible.

Figure 11 shows the scan of the observed upper limits at the 95% CL, as a function of mX and
ΓX/mX. The mass is scanned from 130 GeV to 3 TeV and the relative width from 0 to 30%. The
results are provided with fVBF profiled and fixed to unity. The excluded product of the cross
section and branching fraction ranges from 1.2 fb at 3 TeV to 402.6 fb at 182 GeV in the case of
fVBF profiled, and from 1.0 fb at 3 TeV to 221.1 fb at 134 GeV in the VBF production mode.

9 Summary
A search for a new scalar resonance decaying to a pair of Z bosons is performed for a range
of masses between 130 GeV and 3 TeV with the full data set recorded by the CMS experiment
at 13 TeV during 2016 and corresponding to an integrated luminosity of 35.9 fb−1. Three final
states ZZ → 4`, 2`2q, and 2`2ν are combined in the analysis, where ` = e or µ. Both gluon
fusion and electroweak production of the scalar resonance are considered with a free parame-
ter describing their relative cross sections. A dedicated categorization of events based on the
kinematic properties of the associated jets is used to improve the sensitivity of the search. A
description of the interference between signal and background amplitudes for a resonance of
an arbitrary width is included. No significant excess of events over the SM expectation is ob-
served and limits are set on the product of the cross section and the branching fraction for its
decay to ZZ for a wide range of masses and widths, and for different production mechanisms.
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Figure 10: Expected and observed upper limits at the 95% CL on the pp → X → ZZ cross
section as a function of mX and for several ΓX values with fVBF as a free parameter (left) and
fixed to 1 (right). The results are shown for 4`, 2`2q, and 2`2ν channels separately and com-
bined. The reported cross section corresponds to the signal only contribution in the absence of
interference.
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Figure 11: Observed upper limits at the 95% CL on the pp → X → ZZ cross section as a
function of mX and ΓX/mX values with fVBF as a free parameter (left) and fixed to 1 (right). The
results are shown for the 4`, 2`2q, and 2`2ν channels combined. The reported cross section
corresponds to the signal only contribution in the absence of interference.
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dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Tech-
nologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science
- EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the
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[54] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1”, Comput.
Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036,
arXiv:hep-ph/0710.3820.

[55] M. Grazzini, S. Kallweit, D. Rathlev, and M. Wiesemann, “W±Z production at hadron
colliders in NNLO QCD”, Phys. Lett. B 761 (2016) 179,
doi:10.1016/j.physletb.2016.08.017, arXiv:1604.08576.

[56] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012)
061, doi:10.1007/JHEP12(2012)061, arXiv:1209.6215.

[57] S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte
Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126,
doi:10.1088/1126-6708/2007/09/126, arXiv:0707.3088.

[58] CMS Collaboration, “Event generator tunes obtained from underlying event and
multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155,
doi:10.1140/epjc/s10052-016-3988-x, arXiv:hep-ph/1512.00815.

[59] S. Agostinelli et al., “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003)
250, doi:10.1016/S0168-9002(03)01368-8.

[60] CMS Collaboration, “Limits on the Higgs boson lifetime and width from its decay to four
charged leptons”, Phys. Rev. D 92 (2015) 072010,
doi:10.1103/PhysRevD.92.072010, arXiv:1507.06656.

[61] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008)
119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[62] M. Cacciari, G. P. Salam, and G. Soyez, “The catchment area of jets”, JHEP 04 (2008) 005,
doi:10.1088/1126-6708/2008/04/005, arXiv:0802.1188.

[63] CMS Collaboration, “Measurements of properties of the Higgs boson decaying into the
four-lepton final state in pp collisions at

√
s = 13 TeV”, JHEP 11 (2017) 047,

doi:10.1007/JHEP11(2017)047, arXiv:1706.09936.
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2: Also at IRFU; CEA; Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
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