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1 Introduction

A few years ago, in the course of investigating perturbations of conformal field
theories, Zamolodchikov considered a class of integrable perturbations that lead
to theories with massive excitations whose natural description is in terms of their
S-matrices [1]. This resulted in a renewal of interest in S-matrices for integrable
two-dimensional systems and, because of connections of the original work to the Lie
algebra E8 on one hand, and to Toda theories on the other hand, a flurry of activity
developed around the construction of S-matrices for affine Toda theories based on
various Lie algebras. This construction was successfully carried out for the case
of affine Toda theories based on the simply-laced algebras a(1)

n , d(1)
n and e

(1)
6,7,8, but,

except for a
(2)
2n , failed utterly for the families of nonsimply-laced algebras a

(2)
2n−1, b

(1)
n ,

c(1)n , d
(2)
n+1 as well as for d

(3)
4 , e

(2)
6 , f

(1)
4 and g

(1)
2 [2, 3, 4]. Furthermore, extending the

construction to the case of affine Toda theories based on those Lie superalgebras
which have massive excitations only, we were able to construct S-matrices for the
Lie superalgebras A(2)(0, 2n− 1) and C(2)(n+ 1) (whose bosonic root subsystem is
simply-laced), but not for B(1)(0, n) and A(4)(0, 2n) [5]. In this paper we remedy
this situation.

Affine Toda theories based on Lie algebras are massive two-dimensional bosonic
field theories represented by lagrangians of the form

L = − 1

2β2
~φ✷~φ− µ2

β2

∑

i

qie
~αi·~φ (1.1)

where the ~αi are the simple roots of a rank n Lie algebra augmented by (the negative

of) a maximal root and ~φ = (φ1, φ2, ...φn) are bosonic fields describing n massive
particles. For the simply-laced theories all the roots have the same length. (For
the case of Lie superalgebras the set of roots is divided into bosonic and fermionic
ones, and the lagrangians contain in general fermions as well.) The Kač labels qi
are such that

∑
qi~αi = 0 and the Kač label corresponding to the maximal root is

normalized to unity. We define h =
∑
i qi and refer to it, somewhat imprecisely, as

the Coxeter number. The coupling constant is denoted by β and µ sets the mass
scale. For notational convenience we will often omit these two constants.

The Toda field equations may be viewed as integrability conditions for a Lax
pair. From this follows the existence of an infinite set of currents J

(s)
± of increasing

spin s (the first of which is the stress tensor) which are conserved by virtue of the
field equations. Thus, these theories are classically integrable: the lagrangian above
admits an infinite number of symmetries described by the corresponding conserved
charges. At the quantum level, the existence of such symmetries has a profound
effect on the structure of the scattering amplitudes of these theories: the n-particle
S-matrices factorize into a product of elastic two-particle S-matrices satisfying Yang-
Baxter relations. In principle, some additional assumptions of analyticity, unitarity
and bootstrap principle [6] should allow them to be determined exactly.

Elastic, unitary S-matrices for a process a+b → a+b can be written as products
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of ratios of hyperbolic sines

Sab(θ) =
∏(

x
)

,
(
x
)
≡

sh
(
θ
2

+ iπ
2h
x
)

sh
(
θ
2
− iπ

2h
x
) (1.2)

where θ = θa − θb is the relative rapidity and h can be identified with the Coxeter
number of the Lie algebra. For x < h mod 2h these S-matrices have physical sheet
simple poles at θ = iπx

h
and these can be interpreted as elementary particle poles

from s-channel or u-channel exchange, with masses related to the values of x. These
values are constrained by the bootstrap principle: any physical sheet simple pole
must be interpretable in this manner and the corresponding particle must appear
in the set {a, b, ...} which labels the S-matrix. Values of x outside the above range
are not restricted. Coupling constant dependence (with S(β = 0) = 1) may be
introduced by means of additional blocks (x±B)−1. Here B(β) (with B(0) = 0) is

a priori arbitrary, but there is good evidence that B = β2

2π
(1+ β2

4π
)−1. Thus, typically

Sab(θ) =
∏

x∈Aab

(x)

(x±B)
(1.3)

for some set Aab. If the particles are self-conjugate, crossing symmetry S(θ) =
S(iπ − θ) implies that along with the blocks (x)(x − B)−1 the above product also
contains the blocks (h − x)(h − x + B)−1 The blocks in the numerator determine
pole positions, while the blocks in the denominator determine coupling constant
dependence.

Additional restrictions come from the assumption of the S-matrix bootstrap
which says that if Sab has a pole at θ = θcab corresponding to the s-channel exchange
of a particle c, then

Scd(θ) = Sad(θ + θ̄bac)Sbd(θ − θ̄abc) (1.4)

where θ̄ = iπ − θ. The bootstrap principle and the S-matrix bootstrap severely
restrict the choice of s-channel exchanges. In the usual construction one requires
eq.(1.4) to be satisfied by the numerator of eq.(1.3) independently of the denominator
and this reduces the set Aab to integers, fixing the mass ratios of the elementary
particles to values independent of the coupling constant.

For simply-laced Toda theories, the S-matrices are constructed by first requir-
ing tree-level consistency with the classical mass spectra and with the three-point
couplings (as extracted from the Toda lagrangians) which determine possible one-
particle exchanges. For example, for the a(1)

n affine Toda theory, with Coxeter num-
ber h = n+ 1 and classical mass spectrum

ma = 2µ sin
aπ

h
, a = 1, 2, ..., n (1.5)

the proposed S-matrix is given by [2]

Sab = {a+ b− 1}{a+ b− 3}...{|a− b| + 1} (1.6)

in terms of the convenient notation [3]

{x} =
(x+ 1)(x− 1)

(x+ 1 −B)(x− 1 +B)
(1.7)
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At the quantum level one checks that (one-loop) corrections do not affect the mass
spectrum (aside from an overall rescaling that can be absorbed into the mass scale).
Other important checks consist in correctly locating and identifying various higher-
order poles as anomalous threshold singularities [3]. Similar constructions exist for
the other simply-laced cases and for two theories based on Lie superalgebras.

However, such construction has failed for affine Toda theories based on nonsimply-
laced algebras on several counts: a) As mentioned above, the bootstrap principle
leads to restrictions on the masses of the particles. These restrictions are consistent
with the classical masses, for both simply-laced and nonsimply-laced theories, but
for the nonsimply-laced theories radiative corrections distort the mass spectrum in
a manner that at first sight seems incompatible with bootstrap restrictions [3, 4, 7].
b) For the nonsimply-laced Toda theories an explanation of higher-order poles as
anomalous thresholds has failed to account for all the singularities of proposed S-
matrices. c) As discussed in Refs. [8, 9] certain anomalous threshold singularities
lead to a breakdown of the charge conservation rules used in, and implied by, the
bootstrap procedure. These facts have led to speculations that factorizable, elas-
tic S-matrices do not exist for these Toda theories, perhaps because the classical
integrability breaks down at the quantum level due to anomalies.

In Ref. [9] we have demonstrated that at the quantum level, Toda theories for
both simply-laced and nonsimply-laced algebras do have higher spin conserved cur-
rents, albeit modified by quantum corrections. Therefore, the difficulties encoun-
tered in attempts to construct elastic, factorizable S-matrices for the nonsimply-
laced cases cannot be blamed on a failure of the charge conservation laws. What is
required is some modification of the usual construction which takes into account the
distortion of the mass spectrum, the anomalous threshold structure, and, where it
occurs, the breakdown of the bootstrap. As we shall demonstrate, one only has to
give up the idea that the blocks (x) which determine particle pole positions satisfy
the bootstrap independently of the blocks (x ± B). This allows (x) to be coupling
constant dependent and makes possible the construction of satisfactory S-matrices.

Coupling constant dependence in the numerator blocks of eq.(1.3) should not
come as a surprise since quantum corrections do change the mass spectrum. What
is remarkable is the fact that the procedure we will describe can be implemented
consistently in just a few ways, and that the various nonsimply-laced Toda theories
take advantage of this. Thus we are able to construct exact factorized S-matrices
for all the families of nonsimply-laced Toda theories a

(2)
2n−1, b

(1)
n , c(1)n , d(2)

n , and the

g
(1)
2 theory, as well as the superalgebra cases A(4)(0, 2n) and B(1)(0, n). We leave the

theories based on d
(3)
4 , e

(2)
6 and f

(1)
4 as an exercise for the reader. As we will see, when

the dust settles, these S-matrices differ from previous ones in only one respect: the
Coxeter number which appears in the mass formulas and in the S-matrix blocks has
to be replaced by a “renormalized”, coupling constant dependent Coxeter number.

In the next sections we present the construction and the perturbative verifica-
tions. For general information about the techniques used the reader should consult
some of the literature in the references, in particular [3, 5, 10]. We will proceed in

alphabetical order, from a
(2)
2n−1, to b(1)n , to c(1)n , etc., giving full details for the first

3



nonsimply-laced Toda theory and less for the others, leaving some of the checks of
the later theories for the enterprising reader. A brief account of the procedure was
presented in Ref. [11].

2 The S-matrix of the a
(2)
2n−1 theory

The Toda theory based on the nonsimply-laced twisted affine Lie algebras a
(2)
2n−1 is

described by the classical lagrangian

β2L = −1

2

n−1∑

1

φa✷φa −
1

2
φn✷φn (2.1)

− 2
n−1∑

k=2

exp


−

√
2

h

n−1∑

1

ma cos
(2k − 1)aπ

h
φa


− exp


−

√
2

h

n−1∑

1

(−1)amaφa




− exp


−

√
2

h

n−1∑

1

ma cos
aπ

h
φa + φn


− exp


−

√
2

h

n−1∑

1

ma cos
aπ

h
φa − φn




with masses and three-point couplings given by

m2
n = 2, m2

a = 4m2
n sin2 (

aπ

h
) a = 1, ..., n− 1, (2.2)

cabc = − β√
2h
mambmc = − 4β√

h
∆abc if a+ b+ c = h

cabc =
β√
2h
mambmc =

4β√
h

∆abc if a± b± c = 0

cann = β

√
2

h
m2
nma cos

aπ

h
=

4β√
h

∆ann (2.3)

All other three-point couplings are zero. Here ∆abc represents the area of a triangle
with sides ma, mb, mc. We have introduced the Coxeter number h = 2n− 1 and set
the overall mass-scale µ = 1.

In perturbation theory the only divergences one encounters in these bosonic
systems come from tadpoles. A finite quantum theory can be defined by absorbing
such divergences into a renormalization of the mass scale and, for these nonsimply-
laced cases, a shift in the vacuum expectation values of the fields which leads to
a renormalization of the Kač labels. The bare Kač labels and the bare mass-scale
are chosen such that the quantum lagrangian is identical in form to the classical
lagrangian in eq.(2.1), but with normal-ordered exponentials. As we will mention
later on, a slightly different prescription is required when fermions are present.

At the one-loop level radiative corrections lead to mass shifts that have been
computed in Ref. [7]. They give

δ
m2
a

m2
n

= −aβ
2

h2
sin

2aπ

h
. (2.4)
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(In contrast, for a simply-laced theory and also, exceptionally, for the a
(2)
2n theory

the mass ratios do not receive corrections.) Without loss of generality we will write
the radiatively-corrected masses, with reference to eq.(2.2), as

m̃2
a = 4m̃2

n sin2
(
π

h
(a + ǫa(β))

)
(2.5)

At this stage, the ǫa(β) are in principle computable to any order of perturbation
theory. The S-matrix will be defined with respect to these masses.

In Ref. [9] we have demonstrated the existence of a quantum-conserved spin 3
current for the n = 2 case,

J
(3)
+ = (1 +

α

2
)(∂+φ1)

2(∂+φ2)
2 − α

12
(1 + 3α + α2)(∂2

+φ1)
2 − α

12
(∂+φ1)

4 − α

12
(∂+φ2)

4

+(1 +
23

12
α + α2 +

1

6
α3)(∂2

+φ2)
2 + (2 + 3α + α2)∂+φ1∂+φ2∂

2
+φ2 (2.6)

(with a suitable expression for J
(3)
− ). Here α = β2

2π
. We expect that a similar con-

served current exists for all the a
(2)
2n−1 Toda theories. Together with the renormalized

stress tensor this defines corresponding spin 1 and spin 3 charges

Q(1) =
∫
dx+T++ , Q(3) =

∫
dx+J

(3)
+ (2.7)

whose presence guarantees the existence of factorizable elastic S-matrices. The boot-
strap procedure should then determine them. However, as described in the above
reference, the presence of certain anomalous threshold singularities implies a break-
down of the usual bootstrap results when the 〈φa φb φh−a−b〉 vertex is involved. We
will see later on precisely where and how this occurs.

2.1 The S-matrix

We construct the S-matrix by following procedures similar to those used in the
simply-laced case, but with two important differences: we admit that the S-matrix
has simple particle poles at positions shifted away from the classical mass values by
radiative corrections, and we relax the bootstrap principle since some simple poles
are shifted away from their single-particle positions due to anomalous threshold
effects. (We will prove that all the shifted poles we find can be accounted for in this
fashion.)

Assuming that higher-spin quantum-conserved currents similar to those in eq.(2.6)

exist for all the a
(2)
2n−1 theories, we postulate the existence of purely elastic two-body

amplitudes. We start by determining the element Snn. Since the three-point cou-
plings in eq.(2.3) suggest that all the particles φ1 · · ·φn−1 appear as intermediate
particles in this process the S-matrix bootstrap will allow the determination of all
the other amplitudes. The intermediate particles lead to both s- and u-channel poles
in Snn. In the rapidity plane these poles are located at:

s− m̃2
a = 2m̃2

n(1 + chθ) − m̃2
a = 0 ⇒ θ =

iπ

h
(h− 2a− 2ǫa)

u− m̃2
a = 2m̃2

n(1 − chθ) − m̃2
a = 0 ⇒ θ =

iπ

h
(2a+ 2ǫa) (2.8)
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We must reproduce these poles with the building blocks in eq.(1.2). The choice

S(min)
nn =

n−1∏

a=1

(
2a+ 2ǫa

) (
h− 2a− 2ǫa

)
(2.9)

has the right pole structure. In order for the S-matrix to reduce to the identity
matrix when the coupling constant β is zero we make the crossing symmetric Ansatz

Snn =
n−1∏

a=0

(
2a+ 2ǫa

) (
h− 2a− 2ǫa

)

(
2a+ 2ηa

) (
h− 2a− 2ηa

) (2.10)

where ǫa and ηa are both zero when β = 0. We let the product start at a = 0. This
is required for agreement with the tree level amplitudes. None of the extra blocks
which we introduced in eq.(2.10) should produce additional poles on the physical
sheet (i.e., for 0 < θ < iπ) and this requires

h

2
− a ≥ ηa ≥ −a , ǫ0 ≤ 0. (2.11)

The bootstrap principle allows the determination of the S-matrix elements San,
a = 1 · · ·n− 1, through

San(θ) = Snn(θ +
1

2
θann)Snn(θ −

1

2
θann) (2.12)

Here θann is the relative rapidity at which Snn has the s-channel pole corresponding
to particle a, i.e., θann = iπ

h
(h− 2a− 2ǫa), cf. eq.(2.8). Using

(
x
)

(θ+ iπ
h
ρ)
·
(
x
)

(θ− iπ
h
ρ)

=
(
x+ ρ

)
(θ)

·
(
x− ρ

)
(θ)

(2.13)

we find

San =
n−1∏

p=0

(
2p+ 2ǫp − h

2
+ a + ǫa

)(
h− 2p− 2ǫp − h

2
+ a+ ǫa

)

(
2p+ 2ηp − h

2
+ a + ǫa

)(
h− 2p− 2ηp − h

2
+ a + ǫa

)

×
(
2p+ 2ǫp + h

2
− a− ǫa

)(
h− 2p− 2ǫp + h

2
− a− ǫa

)

(
2p+ 2ηp + h

2
− a− ǫa

)(
h− 2p− 2ηp + h

2
− a− ǫa

) (2.14)

This expression has a large number of poles, many more than perturbation theory
can be expected to explain. However for special values of ǫa and ηa many of the
blocks cancel each other, as we now show. We rewrite the expression in eq.(2.14) by
using the relations (x ± 2h) = (x) and (−x) = (x)−1 and bring some of the blocks
involving η to the numerator. We write

San(θ) =
N(ǫ, η)

D(ǫ, η)
(2.15)
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where

N(ǫ, η) =
n−1∏

p=0

(
h

2
+ 2p− a+ 2ǫp − ǫa)(

h

2
− 2p+ a− 2ǫp + ǫa)

· (
h

2
− 2p− a− 2ηp − ǫa)(

h

2
+ 2p+ a+ 2ηp + ǫa)

=
n−1∏

p=n−a
(
h

2
− a− 2p− 2ηp − ǫa)

n−1∏

p=n−a
(
h

2
+ a+ 2p+ 2ηp + ǫa)

n−a−1∏

p=0

(
h

2
− a− 2p− 2ηp − ǫa)

n−1∏

p=a

(
h

2
+ a− 2p− 2ǫp + ǫa)

a∏

p=1

(
h

2
− a+ 2p+ 2ǫp − ǫa)

a−1∏

p=0

(
h

2
+ a− 2p− 2ǫp + ǫa)

n−1∏

p=a+1

(
h

2
− a + 2p+ 2ǫp − ǫa)

n−a−1∏

p=1

(
h

2
+ a + 2p+ 2ηp + ǫa)

·(h
2
− a+ 2ǫ0 − ǫa)(

h

2
+ a+ 2η0 + ǫa) (2.16)

and D(ǫ, η) is obtained by the interchange 2ǫp ↔ 2ηp in the above expression. After
making suitable changes of the variable p in each of the above products we can
rewrite

N(ǫ, η) =
n−1∏

p=n−a
(
h

2
− a− 2p− 2ηp − ǫa)(

h

2
− a− 2p+ 2ηh−a−p + ǫa)

a−1∏

p=1

(
h

2
− a− 2p− 2ηp − ǫa)(

h

2
− a− 2p− 2ǫa+p + ǫa)

a−1∏

p=1

(
h

2
− a + 2p+ 2ǫp − ǫa)(

h

2
− a+ 2p− 2ǫa−p + ǫa)

n−1∏

p=a+1

(
h

2
− a+ 2p+ 2ǫp − ǫa)(

h

2
− a + 2p+ 2ηp−a + ǫa)

·(h
2
− a + 2ǫ0 − ǫa)(

h

2
+ a + 2η0 + ǫa)(

h

2
− a− 2η0 − ǫa)

·(h
2
− a− ǫa)(

h

2
+ a+ ǫa)(

h

2
+ a− 2ǫ0 + ǫa) (2.17)
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with a corresponding expression for D(ǫ, η):

D(ǫ, η) =
n−1∏

p=n−a
(
h

2
− a− 2p− 2ǫp − ǫa)(

h

2
− a− 2p+ 2ǫh−a−p + ǫa)

a−1∏

p=1

(
h

2
− a− 2p− 2ǫp − ǫa)(

h

2
− a− 2p− 2ηa+p + ǫa)

a−1∏

p=1

(
h

2
− a+ 2p+ 2ηp − ǫa)(

h

2
− a+ 2p− 2ηa−p + ǫa)

n−1∏

p=a+1

(
h

2
− a + 2p+ 2ηp − ǫa)(

h

2
− a + 2p+ 2ǫp−a + ǫa)

·(h
2
− a+ 2η0 − ǫa)(

h

2
+ a + 2ǫ0 + ǫa)(

h

2
− a− 2ǫ0 − ǫa)

·(h
2
− a− 2ηa + ǫa)(

h

2
+ a+ 2ηa − ǫa)(

h

2
+ a− 2η0 + ǫa) (2.18)

We observe that one choice which cancels many poles is ǫa = 0 and ηa = B
2

for
all a and some B = B(β). Then we are left with

S(unren)
an =

2a−1∏

p=1

(
h
2
− a + p

)2

(
h
2
− a+ p+B

) (
h
2
− a + p−B

)

(
h
2
− a

)

(
h
2
− a+B

)

(
h
2

+ a
)

(
h
2

+ a−B
)

(2.19)
This choice corresponds to unrenormalized mass ratios and is not relevant here.

However there is a choice which has even fewer poles: we require

− 2ηp − ǫa = 2ǫh−a−p + ǫa → ǫh−a−p = −ǫa − ηp

2ηh−a−p + ǫa = −2ǫp − ǫa → ηh−a−p = −ǫa − ǫp (2.20)

for p = n − a, ..., n − 1, which entirely cancels the first line in N(ǫ, η) against that
in D(ǫ, η). Similarly, requiring

− 2ηp − ǫa = −2ηa+p + ǫa → ηa+p = ǫa + ηp

−2ǫa+p + ǫa = −2ǫp − ǫa → ǫa+p = ǫa + ǫp

2ǫp − ǫa = 2ǫp−a + ǫa → ǫp−a = ǫp − ǫa

2ηp − ǫa = 2ηp−a + ǫa → ηp−a = ηp − ǫa (2.21)

cancels the second and fourth lines. The above equations have the general solution

ǫa = aǫ , ηa = (a− h)ǫ a = 1, 2, · · · , n− 1 (2.22)

for some arbitrary ǫ(β) with ǫ(0) = 0. Additional poles from the last two lines in
eq.(2.17) may be cancelled by choosing

ǫ0 = 0 (2.23)
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and
η0 = −hǫ or η0 = 0 (2.24)

However, the second choice for η0 would completely cancel the a = 0 block in
eq.(2.10) and we would fail to account at the tree level for the part of Snn which is
independent of θ (cf. B(θ) in eq.(2.5) of Ref. [5]. The theory considered there has
the same bosonic tree level amplitude as the present theory). The first choice for
η0 gives the description of the S-matrix for the theory at hand. As we discuss later,
the second choice leads eventually to the S-matrix for the Toda theory based on the
Lie superalgebra A(4)(0, 2n), where a part independent of θ is indeed absent. We
note that ǫ(β) satisfies − 1

2n
≤ ǫ ≤ 0 in order to fulfill eq.(2.11).

The S-matrix element San becomes

San =
a−1∏

p=1

(
h
2

+ (−a + 2p)(1 + ǫ)
)2

(
h
2

+ (−a + 2p)(1 + ǫ) − 2hǫ
) (

h
2

+ (−a + 2p)(1 + ǫ) + 2hǫ
)

×
(
h
2
− a(1 + ǫ)

)

(
h
2
− a(1 + ǫ) − 2hǫ

)

(
h
2

+ a(1 + ǫ)
)

(
h
2

+ a(1 + ǫ) + 2hǫ
) (2.25)

This expression still has two simple poles at θ = iπ
h

(
h
2

+ a(1 + ǫ)
)

and at θ =
iπ
h

(
h
2
− a(1 + ǫ)

)
as well as several double poles. We discuss the double poles later

on and note here that the simple poles correspond to particle φn in the intermediate
s- and u-channels. Indeed

s− m̃2
n = m̃2

n + m̃2
a + 2m̃nm̃achθ − m̃2

n = 0 at θ =
iπ

h

(
h

2
+ a(1 + ǫ)

)
(2.26)

and similarly for the u-channel.

It is convenient to introduce some simplifying notation:

B = −2h
ǫ

1 + ǫ
, H =

h

1 + ǫ
= h +

B

2
(2.27)

(
x
)
H

=
sh
(
θ
2

+ iπ
2H
x
)

sh
(
θ
2
− iπ

2H
x
) ,

{
x
}
H

=

(
x− 1

)
H

(
x+ 1

)
H(

x− 1 +B
)
H

(
x+ 1 − B

)
H

(2.28)

Therefore eq.(2.10) and eq.(2.25) become

Snn =
n−1∏

a=0

(
2a
)
H

(
H − 2a

)
H(

2a+B
)
H

(
H − 2a− B

)
H

(2.29)

San =
a∏

p=1

{H
2

+ 2p− a− 1
}
H

= Sna. (2.30)

In terms of this notation eq.(2.5) implies that the renormalized masses have the
same form as the classical masses, but with h replaced by H .
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The remaining S-matrix elements Sab, a, b = 1 · · ·n− 1 are obtained by another
application of the bootstrap

Sab(θ) = Snb

(
θ +

1

2
θann

)
Snb

(
θ − 1

2
θann

)

=
b∏

p=1

{
2p− b− 1 + a

}
H

{
H + 2p− b− 1 − a

}
H

(2.31)

This expression is symmetric in a, b as one can verify by using relations such as∏x
p=0

{
2p − x

}
H

= 1. Crossing symmetry can be easily checked by a change of

variable p→ −p + b+ 1 in one of the terms.

Sab has four simple poles. For a > b, these are located at H
iπ
θ = (a− b), (H − a+

b), (H − a− b), (a+ b). From the couplings in the lagrangian one expects that they
could be identified with s-channel and u-channel exchanges of the particles φ(a−b)
and φ(a+b) for a + b < h

2
or φ(h−a−b) for a + b > h

2
. If the pole at θ = iπ

H
(a − b)

corresponds to a particle in the u-channel then this particle has mass

m̃2 = m̃2
a + m̃2

b − 2m̃am̃b cos
π

H
(a− b) = 4m̃2

n sin2 (a− b)π

H
(2.32)

and this identifies it as particle φ(a−b). Similarly the pole at θ = iπ
H

(H − a + b) is
identified as the s-channel pole of the same particle.

The same calculation for the pole at θ = iπ
H

(a+ b) leads to a mass

m̃2 = m̃2
a + m̃2

b + 2m̃am̃b cos
π

H
(a+ b) = 4m̃2

n sin2 (a+ b)π

H
(2.33)

If a + b < h
2

this is the mass of particle φ(a+b). But if a + b > h
2

the pole does not
appear at the expected position which should correspond, according to the couplings
in eq.(2.3), to the particle φ(h−a−b). This particle has a mass

m̃2
(h−a−b) = 4m̃2

n sin2 (h− a− b)π

H
(2.34)

which is not equal to that in eq.(2.33) due to the fact that h 6= H . As we will explain
in subsection 2.4, this displacement of the pole and the attendant breakdown of the
bootstrap principle is due to the presence of an anomalous threshold singularity.

Aside from some information about the particle content and the existence of
particular three-point couplings, as well as the fact that the masses renormalize in
a nontrivial manner, we have used very little information about the specific Toda
lagrangian. Some choices were made in the course of the construction of the S-
matrix: no extra CDD poles and zeroes in Snn, and a minimal number of poles in
San. After that, the solution of the bootstrap was essentially unique. However, it is
necessary to check the self-consistency of the result, and to show that the S-matrix
indeed describes scattering in the particular Toda theory. Consistency amounts to
showing that the bootstrap closes on the set of particles we have introduced (or
explaining where and why it fails), and in identifying all the higher-order poles as
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anomalous threshold singularities. Contact with the Toda lagrangian consists in
checking tree-level agreement, and agreement at the loop-level for masses, coupling
constant dependence, and coefficients of the various poles. In particular we must
determine the relation between the only free parameter which the S-matrix contains,
namely B, and the coupling constant β of the Toda lagrangian. We expect, from the

experience with the simply-laced cases, that B = β2

2π

(
1 + β2

4π

)−1
and we will verify

that this is indeed consistent with our results.

In carrying out the checks, we have a choice between using the classical masses
or the physical masses. In fact it is more convenient to make the second choice, since
our S-matrix is already expressed in terms of (we believe) the correct masses. In this
spirit, we would rewrite the lagrangian in terms of these masses and counterterms,
and choose the counterterms to appropriately cancel part of the loop corrections to
the self-energy. In principle we could do the same for the coupling constants, but to
the order to which we are working this will not be necessary.

To conclude this subsection we note that our S-matrix, as well as the predicted
renormalized mass spectrum, have the conventional forms encountered in the simply-
laced theories, with the only difference that the Coxeter number h must be replaced
everywhere with the renormalized Coxeter number H .

2.2 Consistency of the bootstrap

We have used the single particle poles in Snn to determine all the other matrix
elements by bootstrap. We have also identified some single particle poles in these
matrix elements and these too could be used in the bootstrap leading to the following
consistency conditions:

Snn(θ) = San(θ + θ̄nan)Snn(θ − θ̄ann)

Snb(θ) = Sab(θ + θ̄nan)Snb(θ − θ̄ann)

S(a−b)n(θ) = San(θ + θ̄ba(a−b))Sbn(θ − θ̄ab(a−b)) (2.35)

S(a−b)c(θ) = Sac(θ + θ̄ba(a−b))Sbc(θ − θ̄ab(a−b))

S(a+b)n(θ) = San(θ + θ̄ba(a+b))Sbn(θ − θ̄ab(a+b)) a + b <
h

2

S(a+b)c(θ) = Sac(θ + θ̄ba(a+b))Sbc(θ − θ̄ab(a+b)) a + b <
h

2

where θ̄cab = iπ − θcab and θcab is the location of the single particle s-channel pole due
to particle c in Sab:

θ̄nan =
iπ

H
(
H

2
− a), θ̄ann =

iπ

H
2a, θ̄ba(a−b) = θ̄ba(a+b) =

iπ

H
b. (2.36)

In writing the bootstrap equations eq.(2.35) we have used the fact that

θcab + θbca + θabc = 2πi for a, b, c = 1 · · ·n. (2.37)

The first equality in eq.(2.35) is a simple consequence of eq.(2.12) and the fact
that S(θ+πi)S(θ) = 1. Similarly the second equation is a consequence of eq.(2.31),

11



the 3rd of the 5th and the 4th of the 6th. The last two equations are real consistency
conditions on the bootstrap. They can be checked to be satisfied.

Notice the restriction to a+ b < h
2
. No bootstrap equations arise from the poles

in Sab at θ = iπ
H

(a + b) and θ = iπ
H

(h − a − b) if a + b > h
2

because these cannot be
identified as single particle poles.

2.3 Perturbative checks and coupling constant dependence

We observe that the a
(2)
2n−1 lagrangian has the same form, classical mass spectrum

and couplings as the bosonic part of the Toda lagrangian for the Lie superalgebra
A(2)(0, 2n − 1) and therefore the bosonic tree-level S-matrices are the same. Fur-
thermore, in both theories the exact expressions for San(θ) and Sab(θ) are identical,
except for the replacement of h by H . Therefore, since H = h+O(β2), and having
checked in our previous work [5] that one obtains the correct result at the tree-level,
no further checks are needed for these S-matrix elements. On the other hand Snn
is different in the two theories, and a separate check is necessary to show that the
expression in eq.(2.29) has the correct tree level value. This is straightforward, and

indeed we find agreement provided B = β2

2π
+ O(β4). In this respect, extending the

product in eq.(2.10) to include the a = 0 term was crucial.

One-loop checks allow us to determine the coupling constant dependence to order
β4. This is achieved by computing at the one-loop level from the Toda lagrangian
the residue of a suitable S-matrix element at a single particle pole and comparing it
to the corresponding residue extracted from the exact S-matrix. We find agreement
provided B = β2

2π
− β4

8π2 , i.e. to this order

B =
1

2π

β2

1 + β2

4π

(2.38)

which is the standard dependence on the coupling constant that one has found in
simply-laced theories [12]. We give details of the calculation in Appendix B.

We observe that our S-matrix predicts a very specific manner in which radiative
effects shift the masses of the theory:

m̃2
a = 4m̃2

nsin
2
(
πa

H

)
(2.39)

Using H = h + B
2

= h + β2

4π
+ O(β4) this is consistent with the one-loop mass

corrections in eq.(2.4), and already provides a nontrivial check of our S-matrix and
of the restrictions that follow from the bootstrap. It will be interesting to perform
a direct two-loop calculation of the mass shifts and compare with those predicted
here.

As a further perturbative check, we have computed for the a
(2)
3 case, up to one-

loop order, the spin 3 charges of the two particles of the theory [8, 9], and found
agreement with those predicted by the exact S-matrix, see eq.(9.3). Additional
checks are obtained when we calculate the coefficients of the anomalous threshold
singularities in the next subsection.
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2.4 Anomalous threshold singularities and the shifted poles

As we have mentioned, in comparing the exact S-matrix to perturbation theory
we have a choice between using radiatively corrected physical masses (and coun-
terterms which would just remove the corresponding contributions from self-energy
diagrams), or classical masses. In a strict perturbation theory context the latter
choice might be more logical, and we would expand everything in powers of the
coupling constant. However, it is more economical to make the former choice, since
it avoids having to expand denominators such as (s − m̃2)−1. Furthermore, in a
pure S-matrix context questions about the consistency of the bootstrap and iden-
tification of higher order poles should be possible in terms of the masses of the
asymptotic fields. In any event, choosing to work with physical, quantum-corrected
masses reveals further miraculous ways in which these Toda theories solve their own
problems.

In perturbation theory, using physical masses, (or in a pure analyticity-unitarity
S-matrix approach) the amplitude Sab for a + b > n would have not only a simple
pole corresponding to the particle φh−a−b as shown in Fig. 1.a, but also neighboring
poles produced as anomalous threshold singularities from the various diagrams in
Fig. 1.b,c,d,e,f. Indeed, using the value of the physical masses it is straightforward
to check by means of a dual diagram analysis that the triangle diagrams produce
pole singularities located at θ = iπ

H
(a + b) and the crossed box in Fig. 1.d has a

double pole at the same position. Specifically, denoting by δ the shift of the S-matrix
pole from its expected position, i.e.

δ = 4m̃2
n

(
sin2 π

H
(a+ b) − sin2 π

H
(h− a− b)

)
(2.40)

and σ = s− m̃2
h−a−b we have the contributions from the six diagrams

(a) :
1

σ
c2ab(h−a−b)

(b) :
Tab
σ − δ

canncbnncabnn

(c) :
Tab

σ(σ − δ)
canncbnncab(h−a−b)cnn(h−a−b)

(d) :
Rab

(σ − δ)2
c2annc

2
bnn

(e) :
T 2
ab

(σ − δ)2
c2annc

2
bnncnnnn

(f) :
T 2
ab

σ(σ − δ)2
c2annc

2
bnnc

2
nn(h−a−b) (2.41)

Here Tab and Rab are the simple and double pole coefficients, and the coupling
constants, in a lowest order computation, can be obtained from the lagrangian.
For a complete comparison higher-order corrections should be included, as well as
contributions from the subleading parts of the triangle and crossed box diagrams.

The exact S-matrix has a simple pole at σ = δ. As we describe in Appendix A
it is straightforward to check, using standard values of Tab and Rab and the above
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Figure 1: Contributions to the Sab amplitude of the a
(2)
2n−1 theory which are respon-

sible for the shift in the particle pole position.

14



value for δ as well as the values of the coupling constants, that in the sum of the
contributions (a), 2×(c), (d) and (f) the pole at σ = 0 cancels. Furthermore, to
O(β4) the double pole cancels as well, leaving a simple pole at σ = δ with the
correct O(β2) residue and indeed reproducing the result obtained from the exact
S-matrix. The diagrams in Fig. 1.b,e contribute only at higher order. Thus, due
to a subtle interplay between the location of the anomalous threshold poles and
their residues, together with the value of the mass corrections, the simple particle
pole in the S-matrix located at the (renormalized) particle mass has been cancelled,
and replaced by simple pole at the location of the anomalous threshold singularity.
Clearly, ordinary bootstrap ideas should not be applied in such a case and indeed, as
we discussed in Refs. [8, 9], the charge conservation conditions for the corresponding
vertex function 〈φaφbφh−a−b〉 which would follow from the ordinary bootstrap do not
hold.

It is interesting to contrast the above discussion of the anomalous poles with
that in the A(2)(0, 2n−1) theory [5] which differs from our theory by the addition of
one fermion: there, the bosonic field φn gives rise to the same anomalous threshold
structure, but this is precisely cancelled by an identical structure from the fermion,
so that the simple particle pole ends up in the position predicted by the mass formula
(of the classical theory) and the usual bootstrap applies.

We turn now to the other anomalous threshold singularities and their identifica-
tion with higher order poles in the S-matrix. As an aid to further discussion we note
that many of the results and expressions derived in Ref. [5] for some of the ampli-
tudes and the dual diagram constructions in the A(2)(0, 2n− 1) theory can be taken
over to our theory. Also, as mentioned above, the exact S-matrix elements San and
Sab have the same form in the two theories, provided the blocks are reinterpreted
according to our definitions above i.e. with h→ H .

We consider first the double poles in the amplitude San which occur at

θ =
iπ

H

(
H

2
+ 2p− a

)
p = 1, 2, ...a− 1 (2.42)

In Ref. [5] we encountered similar double poles in the corresponding San amplitudes,
and they were accounted for by both uncrossed and crossed box diagrams with dual
diagrams such as those of Fig. 12 of that reference. Similar dual diagrams can be
constructed in the present theory. Remarkably, although the construction is done
with the renormalized masses, so that the lengths of the lines are different from
what they were in the above reference, nonetheless the dual diagrams exist for both
the crossed and the uncrossed boxes. The only change is in the location of the
double poles, and this agrees with their location in the exact S-matrix. Indeed,
let us consider the dual diagram in Fig. 2. We observe that in a triangle with
sides p, n, n (i.e. with lengths given by m̃p, m̃n, m̃n,)the angle opposite the side p
is θp = 2πp

H
. This, and some elementary Euclidean geometry is sufficient to show

that the dual diagram is planar, and that it predicts a double pole at the desired
location. Additional contributions at the same location come from a crossed-box
diagram. To one-loop order the coefficients of these double poles are the same as
for the superalgebra case (where these contributions are also from bosons only), and
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Figure 2: Dual diagram for the double poles in San at θ = iπ
H

(
H
2

+ 2p− a
)
.

since our San has the same structure there is no need for any further checks at the
one-loop level.

A new feature appears when we examine the double poles of the Sab amplitudes.
For example, in the superalgebra case one obtained double poles from both an
uncrossed and a crossed box, cf. Fig. 13 of reference [5] for the case of the Sn−1,n−1

amplitude. Now however, using the renormalized masses, the dual diagram for the
uncrossed box can no longer be drawn in the plane and it would seem that although
a double pole is still produced by the crossed box its coefficient would not match
that of the exact S-matrix; the contribution from the uncrossed box is needed. The
explanation is provided by realizing that in addition to the box diagram there are
seemingly higher-order diagrams where one of the internal lines is replaced by the
set of diagrams appearing in Fig. 1 which are responsible for the displacement of
the single particle pole. In going through the Landau-Cutkoski analysis for the
location and nature of singularities, one realizes then that a double pole is indeed
produced, with the correct residue. Equivalently one can perform the dual diagram
analysis using not the actual particle mass m̃2

h−a−b but that corresponding to the
pole of the S-matrix, namely m̃2

h−a−b + δ. In this manner all the double poles of the
exact S-matrix can be accounted for, and aside from verifying that the higher-order
coefficients are correctly given we claim to have checked the self-consistency of the
S-matrix we have constructed.
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3 The A(4)(0, 2n) theory

The classical lagrangian for the Toda theory based on the Lie superalgebra A(4)(0, 2n)

is obtained from the lagrangian of the a
(2)
2n−1 theory by dropping the field φn and

adding a fermion:

β2L = −1

2

n−1∑

1

φa✷φa +
i

2
ψ̄γ · ∂ψ (3.1)

− 2
n−1∑

k=2

exp


−

√
2

h

n−1∑

1

ma cos
(2k − 1)aπ

h
φa


− exp


−

√
2

h

n−1∑

1

(−1)amaφa




− 2 exp


−

√
2

h

n−1∑

1

ma cos
aπ

h
φa


− 1√

2
ψ̄ψ exp

(
− 1√

2h

n−1∑

1

(−1)ama φa

)

with bosonic masses and three-point couplings as in eq.(2.2,2.3), m2
ψ = 2 and

h = 2n− 1.

In the quantum theory normal-ordering is not sufficient to remove all infinities
since, e.g., one-loop fermionic diagrams also lead to divergences. It appears that
the correct prescription (which can be understood also by observing that such the-
ories can be thought of as theories with explicitly broken supersymmetry [13]) is to
normal-order the first and third exponentials, normal-order the exponential multi-
plying the fermions, and write the second exponential (which in the supersymmetric
theory comes from eliminating an auxiliary field and is the partner of the last term)
as the square of a normal-ordered exponential.

We recall that in the theory for the Lie superalgebra A(2)(0, 2n − 1) which is
obtained from the bosonic theory by adding the fermion but without dropping the
φn boson, the one-loop mass corrections vanish. Here, having dropped the boson
and introduced the fermion, the mass ratios (ma/mψ)2 receive one-loop corrections

which have the same magnitude as those of the a
(2)
2n−1 theory in eq.(2.4), but opposite

sign.

One starts the S-matrix bootstrap by postulating an expression for the fermion-
fermion amplitude. Based on the previous case, and using the fact that the fermions
couple to all the other particles in a manner similar to the couplings of φn we are
led to

Sψψ = −
n−1∏

a=1

(2a)H(H − 2a)H
(2a− B)H(H − 2a+B)H

(3.2)

with

H = h− B

2
, B =

β2

2π

1

1 + β2

4π

(3.3)

Some comments are in order. The above expression is very similar to the one
for Snn in the a

(2)
2n−1 theory and in fact one goes through exactly the same bootstrap

procedure as before, with the following changes: we have put a minus sign in front
of the product, to account for the fermionic nature of the particles, and we have
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dropped the block corresponding to a = 0. In the bosonic theory that block was
necessary essentially to account for a contribution to the S-matrix independent of
θ and led us to choosing η0 = −hǫ in eq.(2.24). Here we make instead the choice
η0 = 0 so that the S-matrix vanishes at θ = 0 (cf. the expression for the fermion
amplitude F (θ) in eq.(2.5) of Ref. [5]). This choice leads to H = h − B

2
rather

than H = h + B
2

which also agrees with the perturbation theory result that the
mass corrections have an opposite sign. Beyond O(β2) the above expression for B
is conjectural.

The rest of the S-matrix elements are obtained again by standard bootstrap.
We find that Saψ is identical in form to the San of the a

(2)
2n−1theory and so is Sab

(with the different value of H however). As in the bosonic theory, for a + b > n,
Sab has a simple pole shifted from the single-particle position to an anomalous
threshold position. This time the relevant anomalous threshold singularity comes
from a fermion loop (instead of the loop containing φn) and the diagram in Fig. 1e
is absent. The pole shift is somewhat different because of the change in sign implied
by the new value of H . However, using the fact (which follows from cancellations
between φn and ψ contributions in the A(2)(0, 2n−1) theory) that now ψ contributes
−Tab and −Rab in eq.(2.40) while to lowest order the sign of δ changes, it is obvious
that to O(β4) at least matters work in the same manner as for the bosonic theory.
The various double poles can again be accounted for as before.

4 The b(1)
n theory

The Toda theory based on the nonsimply-laced affine Lie algebras b(1)n is described
by the lagrangian

β2L = −1

2

n−1∑

1

φa✷φa −
1

2
φn✷φn (4.1)

− 2
n∑

k=2

exp


−

√
2

h

n−1∑

1

ma cos
(2k − 1)aπ

h
φa




− exp


−

√
2

h

n−1∑

1

ma cos
aπ

h
φa + φn


− exp


−

√
2

h

n−1∑

1

ma cos
aπ

h
φa − φn




The Coxeter number is h = 2n. The masses and three-point couplings are given by
the same formulas as in the a

(2)
2n−1 theory, eqs.(2.2,2.3), but the fact that the Coxeter

number is even leads to some significant differences. One-loop mass corrections turn
out to have the same form as for the a

(2)
2n−1 eq.(2.4), but opposite signs.

The S-matrix bootstrap starts as in the a
(2)
2n−1 theory with the general Ansatz

eq.(2.10) for Snn. One goes through the bootstrap to obtain San and requires that
it has a minimal number of poles. There are some changes in the procedure because
the Coxeter number is even rather than odd. Again one is left with two possibilities.
The one which leads to tree-level agreement with the amplitude obtained from the
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lagrangian gives

Snn =
n−1∏

a=1

(2a)H(H − 2a)H
(2a−B)H(H − 2a+B)H

−1

(B
2
)H(H − B

2
)H

(4.2)

with H = h − B
2
. The minus sign in this relation between H and B is consistent

with the sign of the one-loop mass shifts.

As compared with the previous situation, we observe that the product starts at
a = 1 and the two extra blocks have a slightly different form. An Ansatz which
would start at a = 0 leads to inconsistencies in the bootstrap, by introducing an
additional pole. The other S-matrix elements San and Sab have the same form as
before.

However there are important differences: as in the a
(2)
2n−1 one must identify in Sab

the poles corresponding to the exchanges of particles φ(a−b) and φ(a+b) or φ(h−a−b).
We are interested in particular in this last possibility, which occurs for a + b > h

2

and, for the a
(2)
2n−1 theory, led to the displaced pole situation. The S-matrix element

is

Sab =
b∏

p=1

{2p− b+ a− 1}H{H − 2p+ b− a+ 1}H

=
(a− b)H(a− b+ 2) 2

H · · · (a+ b− 2) 2
H (a+ b)H

(a− b+B)H · · · · · · · · · · · · (a + b− B)H
(4.3)

× (H − a− b)H(H − a− b+ 2) 2
H · · · (H − a+ b− 2) 2

H (H − a + b)H
(H − a− b+B)H · · · · · · · · · · · · · · · (H − a+ b−B)H

It has a simple pole from a block (a + b) which for a + b > h
2

is displaced with
respect to the pole corresponding to the s-channel exchange of particle φ(h−a−b).

This is similar to the situation in the a
(2)
2n−1 theory but here, since h is even, there is

a nearby double pole from the block (H − 2p+ b− a) 2
H for p = h

2
− a. In Appendix

A we describe how the nature and positions of these singularities can be explained.
Other singularities can be accounted for in standard fashion. We note that were it
not for the fact that H 6= h, one would encounter quadruple poles, but these are
avoided because of the renormalization of the Coxeter number.
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5 The B(1)(0, n) theory

This Lie superalgebra Toda theory may be considered as a truncation of the two
fermion C(2)(n + 1) theory which was discussed in Ref. [5], obtained by dropping
one of the fermions. The lagrangian, masses, and bosonic three-point couplings are
given by

β2L = −1

2

n∑

1

φa✷φa +
i

2
ψ̄γ · ∂ψ

− 2
n−1∑

k=1

exp



√

2

h

n−1∑

1

ma cos
akπ

n
φa −

√
8

h
(−1)kφn




− exp



√

2

h

n−1∑

1

maφa −
√

8

h
φn


− exp



√

2

h

n−1∑

1

(−1)amaφa −
√

8

h
(−1)nφn




− 1√
2
ψ̄ψ exp


 1√

2h

n−1∑

1

maφa −
√

2

h
φn


 (5.1)

with

m2
ψ = 2 , m2

a = 8 sin2 (
aπ

h
) a = 1, ..., n

cabc = − β√
2h
mambmc = − 4β√

h
∆abc if a± b± c = 0 mod h

cabn =
β√
h
mambmn =

√
2

4β√
h

∆abn if a + b = n (5.2)

and all other bosonic three–point couplings are zero. The Coxeter number is h = 2n.
The bosonic part of the lagrangian describes the nonsimply–laced c(1)n affine Toda
theory which we discuss below.

We begin the bootstrap with the Ansatz

Sψψ =
n−1∏

a=0

(2a)H(H − 2a)H
(2a +B)H(H − 2a− B)H

(
B

2
)H(H − B

2
)H (5.3)

This expression is the alternative choice one can make when constructing the S-
matrix that led to Snn in the b(1)n theory, with H = h + B

2
this time. It is not

too difficult to check that it reproduces the correct tree-level result which can be
extracted from that given in eq. (3.4) of Ref. [5] for the C(2)(n + 1) theory,

The S-matrix element Saψ has the same form as San in the previous cases and
Sab also has the same form as before. Just as in the b(1)n theory the analysis of pole
and double pole singularities is affected by the fact that the Coxeter number is even.

As mentioned above, this theory is obtained from the C(2)(n + 1) theory by
dropping one of the fermions. In Ref. [7], we listed separate contributions to the
mass corrections from the bosons and the fermions of that theory. Therefore, we
can read off the one-loop mass corrections for the present theory:

δ
m2
a

m2
n

= −aβ
2

4h2
sin

2aπ

h
, δ

m2
ψ

m2
n

= 0 (5.4)
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They are indeed in agreement with the corrections one can read from our S-matrix at
O(β2). However, begining at O(β4) a new feature enters: the S-matrix predicts that
the mass shifts of φn and ψ are no longer equal, but in fact m̃n < 2m̃ψ. Therefore
radiative corrections stabilize the particle φn, the one-loop threshold effects discussed
in Ref. [14] are absent at higher order, and the S-matrix bootstrap determines all

the amplitudes, which was not the case in the C(2)(n + 1) theory.

6 The c(1)
n theory

The lagrangian for this theory is obtained by dropping the fermion of the previous
case. The Coxeter number is h = 2n and the one loop mass corrections, from Ref. [7]
are

δ
m2
a

m2
n

= −aβ
2

2h2
sin

2aπ

h
(6.1)

Here one can start the bootstrap with the Ansatz

S11 =
(2)H(H − 2)H

(2 −B)H(H − 2 +B)H
· 1

(B)H(H −B)H
(6.2)

The first fraction accounts for the fact that c11a 6= 0 only if a = 2 while the second
fraction is required for the consistency of the bootstrap. Stepping up through the
bootstrap one derives then

Sab =
b∏

p=1

{2p+ a− b− 1}H{H − 2p− a+ b+ 1}H (6.3)

This expression has too many higher order poles unless H = h ± B. Comparison
with the mass corrections gives H = h+B.

Our S-matrix is given by the same expression as the bosonic S-matrix for the
C(2)(n+ 1) theory of Ref. [5], except for the replacement h→ H . This replacement
has the effect of splitting the fourth-order poles in eq. (4.26) of that reference into
pairs of double poles. These separated double poles can be accounted for as in
Ref. [5], by the dual diagrams in Fig. 9a,b , and Fig. 9c,d respectively, of that
reference. In addition, if a + b > n one has again a displaced pole situation. We
discuss this in Appendix A.

7 The d(2)
n theory

The lagrangian of this theory is obtained from the one for the b(1)n theory by dropping
particle n. The masses and 3-point couplings of the remaining particles are as in
the b(1)n theory. The Coxeter number is h = 2n. The S-matrix is constructed by the
same bootstrap procedure as for the c(1)n theory and has the form given in eq.(6.3)
but now H = h−B. We note that compared to the previous case, the change in H
eliminates the pole which corresponded to the particle φn of that theory.
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8 The g
(1)
2 theory

Finally we give the S-matrix for the g
(1)
2 theory. Its lagrangian is

β2L = −1

2
φ1✷φ1 −

1

2
φ2✷φ2 − 2 exp(

√
2φ2)

−3 exp

(
1√
6
φ1 −

1√
2
φ2

)
− exp

(
−
√

3√
2
φ1 −

1√
2
φ2

)
(8.1)

and the masses and three point couplings are

m2
1 = 2 , m2

2 = 6, (8.2)

c111 =

√
8

3
β , c112 =

√
2β , c222 = 3

√
2β. (8.3)

The Coxeter number is h = 6.

In the S11 amplitude both φ1 and φ2 appear as intermediate states. Because of
the particular classical mass ratio, at the tree level the s-channel pole of one particle
coincides with the u-channel pole of the other particle. At the one-loop level the
masses receive corrections given by

δ
m2

2

m2
1

= β2 1

12
√

3
(8.4)

which split the above poles. Therefore, starting the bootstrap with S11 presents no
problems if the physical masses are used in the S-matrix.

We begin with a general Ansatz for S11 which implements this pole structure.
Because of the φ1 self-coupling, S11 has to satisfy the bootstrap consistency condition

S11(θ) = S11(θ +
1

2
θ1
11)S11(θ −

1

2
θ1
11) (8.5)

with θ1
11 = 2π

3
. From S11 we obtain S12 by bootstrapping on the φ2 pole. The

requirement that S12 have the minimal number of blocks fixes the expression for S11

uniquely and leads to

S11(θ) = −
(
2
)
H

(
4 + 2B

3

)
H

(
H − 2

)
H

(
H − 4 − 2B

3

)
H(

B
3

)
H

(
2 +B

)
H

(
4 + 4B

3

)
H

(
H − B

3

)
H

(
H − 2 − B

)
H

(
H − 4 − 4B

3

)
H

S12(θ) =

(
1
)
H

(
3 + 2B

3

)
H

(
H − 1

)
H

(
H − 3 − 2B

3

)
H(

1 +B
)
H

(
3 − B

3

)
H

(
H − 1 −B

)
H

(
H − 3 + B

3

)
H

(8.6)

S22(θ) = −

(
2
)
H

(
2 + B

3

)
H

(
2 + 2B

3

)
H(

B
)
H

(
2 − B

3

)
H

(
2 +B

)
H

(
2 + 4B

3

)
H

×
(
H − 2

)
H

(
H − 2 − B

3

)
H

(
H − 2 − 2B

3

)
H(

H −B
)
H

(
H − 2 + B

3

)
H

(
H − 2 − B

)
H

(
H − 2 − 4B

3

)
H

(8.7)
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with H = 6 +B. We have checked tree-level agreement of these amplitudes. Again
B = β2

2π
+ O(β4). The corrected masses are again given by the usual formula m2

a =
8 sin2 πa

H
, in agreement with eq.(8.4).

In the absence of mass corrections S12 would have an anomalous threshold double
pole at θ = iπ

2
from a box diagram with internal φ1 lines. This double pole is split

into the two simple poles from the blocks
(
3 + 2B

3

)
H

(
H − 3− 2B

3

)
H

of the exact S-

matrix. We have checked consistency to O(β4). In the S22 amplitude, there is again
an interplay between the simple pole due to φ2 exchange and nearby anomalous
threshold singularities.

9 Discussion

We have constructed in this paper elastic S-matrices for all the families of nonsimply-
laced affine Toda theories. We summarize our results in Table 1. We have also
constructed the S-matrix for g

(1)
2 . We expect that the remaining three cases, namely

d
(3)
4 , e

(2)
6 , and f

(1)
4 can be constructed in a similar manner.

The construction was carried out by paralleling that for the simply-laced theo-
ries, with one important difference: recognizing that radiative corrections shift the
classical masses in a nontrivial manner, we allowed coupling-constant dependence
in the numerator blocks

(
x
)

of the usual construction. This led to the possibility
of cancellations between numerator and denominator blocks and eliminated many
unwanted poles that were produced in the course of the S-matrix bootstrap. In the
end, by insisting on a minimal number of poles, we were left with very few possibili-
ties, but enough to account for the S-matrices of all the families of nonsimply-laced
Lie algebras a

(2)
2n−1, A

(4)(0, 2n), b(1)n , B(1)(0, n), c(1)n and d(2)
n . There are also a few

isolated possibilities, which look slightly different, one of which we have shown to
describe the Toda theory g

(1)
2 .

These S-matrices do not satisfy all the usual bootstrap equations. In the simply-
laced theories these equations are a simple consequence of the identification of all
simple poles with elementary particle exchanges. In the nonsimply-laced theories
however, the simple poles of Sab at θ = iπ

H
(a + b) for a + b > h

2
are not produced

just by the single particle exchange of φh−a−b but involve additional multiparticle
processes which give rise to anomalous threshold singularities. As a consequence,
the usual bootstrap equations for these poles have to be replaced by modified ones
which take into account these addtional singularities.

It is remarkable that our S-matrices have a fairly conventional form in terms
of standard blocks, except for the replacement of the (integer) Coxeter number
h by a renormalized, coupling constant dependent H . In particular, this implies
that quantum corrections lead to renormalized masses which are given by the usual
classical formulas, but again with h replaced by H .

The same feature persists for the higher spin conserved charges. We recall [3]
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a
(2)
2n−1

A
(4)(0,2n) b

(1)
n B

(1)(0,n) c
(1)
n d

(2)
n

h 2n− 1 2n − 1 2n 2n 2n 2n

H h + B
2 h − B

2 h − B
2 h + B

2 h + B h − B

m2
a 8 sin2

(
aπ
h

)
8 sin2

(
aπ
h

)
8 sin2

(
aπ
h

)
8 sin2

(
aπ
h

)
8 sin2

(
aπ
h

)
8 sin2

(
aπ
h

)

m2
n 2 — 2 8 sin2

(
nπ
h

)
8 sin2

(
nπ
h

)
—

m2
ψ — 2 — 2 — —

ǫab(a+b) 1 1 1 −1 −1 1

ǫab(h−a−b) −1 −1 −1 −1 −1 −1

ǫna(n−a) 0 0 0
√

2
√

2 0

ǫnna 1 0 1 0 0 0

Sab Pab Pab Pab Pab Pab Pab

San Qa — Qa Pan Pan —

Snn
R+{

B

}
H

{
H−B

}
H

— R
−{

B

2

}
H

{
H−

B

2

}
H

Pnn Pnn —

Saψ — Qa — Qa — —

Snψ — — — Qn — —

Sψψ — R− — R+

(
B

2

)
H

(
H−

B

2

)
H(

B

)
H

(
H−B

)
H

— —

cijk = ǫijk
4β√
h
∆ijk

Pij =
∏j
p=1

{
i− j − 1 + 2p

}
H

{
H − i+ j + 1 − 2p

}
H

Qi =
∏i
p=1

{
H
2
− i− 1 + 2p

}
H

R± = −∏n−1
p=1

(2p)H (H−2p)H

(2p±B)H (H−2p∓B)H

Table 1: The classical masses, 3-point couplings, and S-matrices of the nonsimply-
laced affine Toda theories.
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that they are obtained in terms of the Fourier coefficients of the matrix

ϕab(θ) ≡ i
d

dθ
lnSab(θ)

=
∞∑

s=0

ϕ
(s)
ab e

−s|θ| (9.1)

Each row and column of this matrix satisfies the charge conservation equation, as
can be seen by inserting the Fourier expansion into the logarithmic derivative of the
S-matrix bootstrap equation:

ϕ
(s)
cd = ϕ

(s)
ad e

−sθ̄b
ac + ϕ

(s)
bd e

sθ̄a
bc (9.2)

(Note however that this relation will be modified in those situations where the usual
S-matrix bootstrap equation is not valid due to anomalous threshold effects, as
discussed in [8, 9].)

For the a
(2)
2n−1 and b(1)n theories we find that the even s charges vanish, while for

odd s we obtain for the charges γ(s)

γ(s)
a

γ
(s)
n

=
ϕ

(s)
ab

ϕ
(s)
nb

= (−1)
s−1

2 2 sin
πsa

H
(9.3)

At the one-loop level this agrees with the explicit values calculated for the spin 3
charges of the a

(2)
3 theory in Refs. [8, 9]. For the c(1)n and d(2)

n theories we obtain

γ(s)
a

γ
(s)
n

=
sin πsa

H

sin πsn
H

(9.4)

and for the A(4)(0, 2n)and B(1)(0, n)theories

γ(s)
a

γ
(s)
ψ

=
ϕ

(s)
ab

ϕ
(s)
ψb

= (−1)
s−1

2 2 sin
πsa

H
(9.5)

For s = 1 these formulas do of course reproduce the formulas for the renormalized
masses. Because of the replacement of h by H , the usual fact that the charges are
eigenvalues of the incidence matrix [15] no longer holds.

We have checked by comparing the exact S-matrices to one-loop perturbative
calculations that to O(β4) B = β2

2π
(1 + β2

4π
)−1. For the simply-laced theories, it

is well known that this particular coupling-constant dependence implies invariance
under the weak-coupling strong-coupling exchange β → 4π

β
. This exchange implies

B → 2−B and leaves invariant the product (x− 1 +B)(x+ 1−B) which appears
in {x}. Here the situation is somewhat different because of the additional coupling-
constant dependence in H .

Let us consider the a
(2)
2n−1 theory, with the renormalized Coxeter number H(a) =

2n− 1 + B
2
. Under the above substitution

H(a) → 2n− B

2
= H(b) (9.6)
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where H(b) is the renormalized Coxeter number for the b(1)n theory. Furthermore,

under the above substitution we have, starting from the a
(2)
2n−1 theory

S(a)
nn =

n−1∏

a=0

(2a)H(H − 2a)H
(2a+B)H(H − 2a−B)H

→
n−1∏

a=0

(2a)H(H − 2a)H
(2(a+ 1) − B)H(H − 2(a+ 1) +B)H

= −
n−1∏

a=1

(2a)H(H − 2a)H
(2a− B)H(H − 2a+B)H

· 1

(B
2
)H(H − B

2
)H

= S(b)
nn (9.7)

where for notational simplicity we have omitted the subscripts on the H . Since all
other S-matrix elements are determined by the bootstrap, this shows that under
the substitution β → 4π

β
the S-matrices for the a

(2)
2n−1 and b(1)n theories go into each

other. In the same manner one can check that the S-matrices for c(1)n and d
(2)
n+1 go

into each other, as do the S-matrices for the A(4)(0, 2n) and B(1)(0, n− 1) theories.
In particular, at the symmetric point, β2 = 4π these theories are pairwise equivalent.

We comment on two other features: first, application of the thermodynamic
Bethe Ansatz [15] leads to the prediction of the central charge in the conformal limit,
c = cfree, as one might expect. Second, it does not appear that a “minimal” S-matrix
exists for these theories. One cannot drop the blocks involving the dependence on
the coupling constant through the parameter B since these are required for the
consistency of the bootstrap.

A The displaced poles

In the main text we have drawn the reader’s attention to the presence of simple
poles in the exact S-matrix which are not located precisely at the expected position
corresponding to certain particle masses. As outlined for the case of the a

(2)
2n−1 the-

ory, the shift in pole positions is due to the presence of nearby anomalous threshold
singularities. Because these shifted poles are a novel feature and because we have
claimed that they lead to breakdown of the usual bootstrap procedure, it is impor-
tant to verify that all such poles can be explained by a diagram analysis. In this
Appendix we present details of this perturbative verification.

In all the theories that we have considered, the amplitude Sab has the universal
form (choosing a > b)

Sab =
∏

p

{2p− b+ a− 1}H{H − 2p+ b− a+ 1}H

= {a− b+ 1}H{a− b+ 3}H · · · {a+ b− 1}H (A.1)

×{H − a− b+ 1}H · · · {H − a + b− 1}H

It has simple poles from blocks
(
a − b

)
H

and
(
H − a − b

)
H

corresponding to the

exchange of particle φa−b and from blocks
(
a+b

)
H

and
(
H−a−b

)
H

which in the case
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a+b ≤ h
2

correspond to the exchange of particle φa+b. In the case a+b > h
2

however,
where the couplings of the Toda theories show that particle φh−a−b is exchanged,
these poles are not at the expected position.

We study the poles of Sab in the neighborhood of the point where the s-channel
pole of particle φ(h−a−b) should appear. Such poles come from the block {a+b−1}H .
If h is even, the above product also contains the blocks {H− (h−a− b)−1}H {H−
(h − a − b) + 1}H and these too contribute nearby poles. We will write formulas
for this case, with the understanding that corresponding contributions should be
omitted for those theories where h is odd. Thus we will consider singularities arising
from

Sab ∼
(a + b)H

(a+ b− B)H
· [(a + b+H − h)H ]2

(a+ b+H − h− B)H(a+ b+H − h +B)H
(A.2)

To the order of our calculation the remaining blocks in Sab reduce to unity at the
poles.

The pole from the block (a+ b)H corresponds to a position in the s-plane

m̃2
a + m̃2

b + 2m̃am̃b cos
π

H
(a+ b) = 8 sin2 π

H
(a+ b)

= m̃2
(h−a−b) + δ (A.3)

where, to lowest order in β2 (cf. eq.(2.40))

δ = 8
π

H
(H − h)∆c , ∆c = − sin

2π

H
(a+ b) (A.4)

The pole from (a+ b+H − h)H corresponds to a position

m̃2
a + m̃2

b + 2m̃am̃b cos
π

H
(a+ b+H − h) = m̃2

(h−a−b) + δ̂ (A.5)

where

δ̂ = −4
π

H
(H − h)∆̂c , ∆̂c = 4 sin

π

H
(a+ b) cos

πa

H
cos

πb

H
(A.6)

Defining also
σ = s− m̃2

(h−a−b) (A.7)

so that the actual particle pole is at σ = 0, the poles are located at σ = δ and σ = δ̂
respectively.

The coefficients of the poles are obtained from the general expansions

(x)

(x+ γ)
=

1

sh( θ
2
− θ0

2
)

(
− iπ

2h
γ +O(γ2)

)
+ regular terms

(x)2

(x+ γ1)(x+ γ2)
=

1

sh( θ
2
− θ0

2
)

(
− iπ

2h
(γ1 + γ2) +O(γ2)

)
(A.8)

+
1

sh2( θ
2
− θ0

2
)

(
(
iπ

2h
)2γ1γ2 +O(γ3)

)
+ regular terms
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We will also use sh( θ
2
− θ0

2
) ∼ 1

2
(θ − θ0) ∼ − i

8∆
(s− s0) where

∆ = 4 sin
πa

H
sin

πb

H
sin

π(a+ b)

H
(A.9)

For comparison with perturbation theory it is also convenient to remove the Jacobian
and external particle normalization by multiplying with the factor 4imambshθ ∼
8i∆. Finally, to the order that we are working with, B ∼ β2

2π
.

We display next the S-matrix poles theory by theory:

a
(2)
2n−1

: here H−h = B
2

and h = 2n−1 is odd so that the S-matrix has only a simple
pole

Sab ∼
F

σ − δ
(A.10)

with

F = −16i
β2

h
∆2 , δ = 2

β2

h
∆c (A.11)

A(4)(0, 2n): here H − h = −B
2

and δ = −2β
2

h
∆c. Otherwise the situation is the

same as in the previous case.

b(1)
n

: here H − h = −B
2

and h = 2n is even. We obtain

Sab ∼
F

σ − δ
+

G

(σ − δ̂)2
+

K

(σ − δ)(σ − δ̂)2
(A.12)

where

F = −16i
β2

h
∆2 , G = −32i

β4

h2
∆3 , K = 64i

β6

h3
∆4 ,

δ = −2
β2

h
∆c , δ̂ =

β2

h
∆̂c. (A.13)

B(1)(0,n): this is similar to the b(1)n case, but with H − h = B
2
, δ = 2β

2

h
∆c and

δ̂ = −β2

h
∆̂c.

c(1)
n

: here H − h = B and h = 2n is even. We observe that in eq.(A.2) the
pole from the block (a + b)H cancels against a zero from the denominator block
(a + b+H − h− B)H so that we have now

Sab ∼
F

σ − δ̂
+

G

(σ − δ̂)2
(A.14)

with

F = −16i
β2

h
∆2 , G = −64i

β4

h2
∆3 , δ̂ = −2

β2

h
∆̂c. (A.15)

d(2)
n

: here H − h = −B so that again the simple pole from (a + b)H gets canceled,
but also the double pole from [(a+ b+H −h)H ]2 gets reduced to a simple pole. We
have

Sab ∼
F

σ − δ̂
(A.16)
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Figure 3: Dual diagrams for anomalous threshold poles in Sab.

with

F = −16i
β2

h
∆2 , δ̂ = 2

β2

h
∆̂c. (A.17)

The pole structure for each theory will be accounted for by an interplay between
single particle poles and anomalous threshold poles, as we verify case by case. For
the analysis the two dual diagrams in Fig. 3 associated with anomalous threshold
singularities of triangle and box diagrams that we encounter below are relevant.
The interested reader should consult Ref. [5] for an explanation of the notation and
procedure. We list first the geometrical quantities of interest:

for Fig. 3.a

∆a = sin
2π

H
a , ∆b = sin

2π

H
b

∆ = 4 sin
π

H
a sin

π

H
b sin

π

H
(a+ b)

∆c = ∆ − ∆a − ∆b = − sin
2π

H
(a+ b) (A.18)

for Fig. 3.b

∆̂a = −4 sin
π

H
a cos

π

H
b cos

π

H
(a + b)

∆̂b = −4 sin
π

H
b cos

π

H
a cos

π

H
(a + b)

∆ = 4 sin
π

H
a sin

π

H
b sin

π

H
(a+ b)

∆̂c = ∆ − ∆̂a − ∆̂b = 4 sin
2π

H
(a + b) cos

2π

H
a cos

2π

H
b (A.19)

All the couplings, pole residues and pole shifts are expressible in terms of the areas
of the various triangles.
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Figure 4: Feynman diagrams leading to the shift of the φh−a−b-pole. Diagrams b),c)

and d) contribute only in a
(2)
2n−1 and b(1)n .

We consider now the Feynman diagrams which lead to poles at the relevant
locations.

Fig. 4.a:
T1

σ
, T1 = −ic2ab(h−a−b) = −16i

β2

h
∆2 (A.20)

This diagram, which corresponds to the actual s-channel exchange of particle φh−a−b,
gives the same contribution in all the theories.

The diagrams in Fig. 4.b,c,d exist only in those theories with cann couplings, i.e.
in a

(2)
2n−1 and b(1)n and give the following contributions:

Fig. 4.b:
T2

σ(σ − δ)
, T2 = −64i

β4

h2
∆2∆c (A.21)

Here T2 has been computed by including coupling constant factors and the residue of
the anomalous threshold pole of the triangle diagram derived in eq.(4.23) of Ref. [5].
We have also included a factor of two for the interchange of the two vertices.

Fig. 4.c:
T3

(σ − δ)2
, T3 = 32i

β4

h2
∆2∆c (A.22)

Here T3 includes coupling constant factors and the coefficient R2 of the crossed box
diagram anomalous threshold double pole, as given in eq.(4.18) of Ref. [5].

Fig. 4.d:
T4

σ(σ − δ)2
, T4 = −64i

β6

h3
∆2∆2

c (A.23)

with T4 including coupling constant factors and the square of the residue of the
triangle anomalous threshold pole.

The diagrams in Fig. 5 exist only if h = 2n, i.e. for the b, B, c and d theories.
We have

Fig. 5.a:
T̂2

σ(σ − δ̂)
, T̂2 = ∓64i

β4

h2
∆2∆c (A.24)

30



Figure 5: Feynman diagrams leading to the shift of the φh−a−b-pole in theories where
h = 2n.

Figure 6: Feynman diagrams leading to the shift of the φh−a−b-pole. Diagrams a)
exists in c(1)n and diagram b) in b(1)n .

with the plus sign for the c(1)n theory only;

Fig. 5.b:
T̂3

(σ − δ̂)2
, T̂3 = 32i

β4

h2
∆2∆̂c (A.25)

Fig. 5.c:
T̂4

σ(σ − δ̂)2
, T̂4 = −64i

β6

h3
∆2∆̂2

c (A.26)

The diagrams in Fig. 6.a exists only if h = 2n and if in addition the coupling
can(n−a) exists, i.e. only for the c(1)n theories. They give

Fig.6a:
T̃3

(σ − δ̂)2
, T̃3 = −64i(∆3 + ∆2∆̂c) (A.27)

The diagram in Fig.6b exists only if h = 2n and cann exists, i.e. only for b(1)n .
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Including a factor of two for the interchange of the two triangles, we have

Fig.6b:
T̃4

σ(σ − δ)(σ − δ̂)
, T̃4 = −128i

β6

h3
∆2∆c∆̂c (A.28)

We consider now each theory, and compare the pole contributions from the S-
matrix with the corresponding poles of Feynman diagrams.

a
(2)
2n−1

: we want to show that

F

σ − δ
=
T1

σ
+

T2

σ(σ − δ)
+

T3

(σ − δ)2
+

T4

σ(σ − δ)2
(A.29)

This requires

T1 = F

2δT1 − T2 − T3 = δF

δ2T1 − δT2 + T4 = 0 (A.30)

Using the expressions in eqs.(A.11,A.20,A.21,A.22 and A.23) one can check that
these conditions are indeed satisfied.

b(1)
n

: we have to show that

F

σ − δ
+

G

(σ − δ̂)2
+

K

(σ − δ)(σ − δ̂)2
=
T1

σ
+

T2

σ(σ − δ)
+

T3

(σ − δ)2

+
T4

σ(σ − δ)2
+

T̂2

σ(σ − δ̂)
+

T̂3

(σ − δ̂)2
+

T̂4

σ(σ − δ̂)2
+

T̃4

σ(σ − δ)(σ − δ̂)
(A.31)

from which we derive the following conditions:

a) T1 = F

b) δT1 − T2 − T̂2 − T3 − T̂3 = −G
c) (−δ2 + 2δδ̂)T1 + (δ − 2δ̂)T2 − δ̂T̂2 + (−2δ̂ + 2δ)T3

+ T4 + T̂4 + T̃4 = K

d) (−δδ̂2 − 2δ2δ̂ + δ3)T1 + (δ̂2 + 2δδ̂ − δ2)T2 + 2δδ̂T̂2

+ (δ̂2 − δ2)T3 − 2δ̂T4 − 2δT̂4 − (δ + δ̂)T̃4 = −δK
e) δ2δ̃2T1 − δδ̂2T2 − δ2δ̂T̂2 + δ̂2T4 + δ2T̂4 + δδ̂T̃4 = 0 (A.32)

With the expressions given earlier, it is not too difficult to check that the conditions
a), b) and e) are indeed satisfied, as a result of the interplay between ”hatted” and
”unhatted” diagrams using also the identity 2∆c + ∆̂c = ∆, but that the conditions
c) and d) are not. However, there are additional two-loop diagrams that must be
considered in this case: the one in Fig. 7.a and the one obtained by interchanging
top and bottom rungs. The corresponding dual diagram in Fig. 7.b would be planar
and therefore lead to a triple pole if the classical masses were used. If one uses the
actual masses the diagram is not quite planar, but those dual diagrams associated
with reduced diagrams are, leading to a splitting of the triple pole into a simple and
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Figure 7: An additional diagram contributing in the b(1)n theory. a) Feynman dia-
gram, b) Dual diagram.

a double pole. Although we have not checked the details, it is plausible that one
obtains a contribution

T5

(σ − δ)2(σ − δ̂)
+

T̂5

(σ − δ)(σ − δ̂)2
(A.33)

with

T5 = 64i
β6

h3
∆3∆c , T̂5 = 64i

β6

h3
∆3(∆c + ∆̂c). (A.34)

Including this contribution does not affect the three conditions that were satisfied
previously, but leads now to satisfaction of the other two, and therefore an expla-
nation of the pole structure for the b(1)n theory.

c(1)
n

: we must show that

F

(σ − δ̂)
+

G

(σ − δ̂)2
=
T1

σ
+

T̂2

σ(σ − δ̂)
+

T̂3

(σ − δ̂)2
+

T̂4

σ(σ − δ̂)2
+

T̃3

(σ − δ̂)2
(A.35)

leading to the conditions

T1 = F

2δ̂T1 − T̂2 − T̂3 − T̃3 = δ̂F −G

δ̂2T1 − δ̂T̂2 + T̂4 = 0 (A.36)

which are indeed satisfied.

d(2)
n

: we must show

F

σ − δ̂
=
T1

σ
+

T̂2

σ(σ − δ̂)
+

T̂3

(σ − δ̂)2
+

T̂4

σ(σ − δ̂)2
(A.37)
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leading to

T1 = F

δ̂T1 − T̂2 − T̂3 = 0

δ̂2T1 − δ̂T̂2 + T̂4 = 0 (A.38)

which are again satisfied.

This completes the perturbative verification of the position and residues of the
displaced poles in these bosonic exact S-matrices. We have not examined in detail
the corresponding situation for the theories with fermions or for g

(1)
2 .

B The coupling constant dependence

For the simply-laced theories it has been checked in perturbation theory [12] that
the coupling constant dependence of the S-matrix arises through the combination
B = 1

2π
β2

1+ β2

4π

. In this appendix we carry out a similar perturbative verification, at

the one-loop level, for two nonsimply-laced cases. We compute from the lagrangian,
to O(β4), the residue of a suitable S-matrix element at a single-particle pole, and
compare to the same expression obtained from the exact S-matrix. To make the
calculations manageable, we restrict ourselves to cases with only two fields.

We consider first the a
(2)
3 theory, with fields φ1 and φ2, classical masses m2

1 = 6,
m2

2 = 2, and relevant couplings

Lint = −φ3
1 + φ1φ

2
2 −

3

4
φ4

1 −
1

2
φ2

1φ
2
2 −

1

12
φ4

2 +O(φ5) (B.1)

We will compute the residue of the S-matrix element S22 at the pole corresponding to
exchange of the particle φ1. We find it convenient to work with renormalized masses,
changing however the overall mass scale so as to keep the mass of particle φ2 at its
classical value m2

2 = 2. This leads to an overall rescaling of the coupling constants
since the mass scale enters in their definition. Additional O(β4) contributions arise
from one-loop vertex corrections and wave-function renormalization.

The one-loop corrections to the 〈1, 2, 2〉 vertex are represented by the diagrams
in Fig. 8.a,b and give, respectively from the bubbles and the triangles,

(a) : − iβ3

2
√

3
, (b) : iβ3

(
− 1

36
√

3
+

1

6π

)
(B.2)

to be compared with the classical contribution 〈1|iL|2, 2〉 = 2iβ.

Additionally, there are contributions from wave-function renormalization, repre-
sented in Fig. 8.c, which give

Z
1

2

1 Z2 = 1 +
β2

2

(
5

36
√

3
− 1

2π

)
(B.3)
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Figure 8: Feynman diagrams giving the one-loop correction to the 〈1, 2, 2〉 vertex in

the a
(2)
3 theory
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Figure 9: Feynman diagrams giving the one-loop correction to the 〈1, 1, 2〉 vertex in

the c
(1)
2 theory

to be multiplied into the classical coupling. Finally, there is an additional contribu-
tion to the coupling constant from the mass rescaling we performed in order to keep
the mass of the particle φ2 at its classical value. This amounts to multiplying the
classical coupling constant by

1 − δm2
2

m2
2

= 1 +
β2

12
√

3
(B.4)

obtained from Ref. [7]. The total O(β3) value of the coupling is thus

〈1, 2, 2〉 = 2iβ − 2iβ3

(
1

9
√

3
+

1

6π

)
(B.5)

and it leads to a contribution to the S22 amplitude, in the vicinity of the φ1 particle
pole

1

4m̃2
2shθ

(
2iβ − 2iβ3

(
1

9
√

3
+

1

6π

))2
1

s− m̃2
1

(B.6)

to be compared to order β4 with the corresponding pole from the exact S-matrix

S22 =
(2)H(H − 2)H

(B)H(2 +B)H(H − 2 − B)H(H −B)H
(B.7)

We find

B =
β2

2π
− β4

8π2
(B.8)

which is indeed consistent with the expected form of B.

We have carried out the same calculation for the c
(1)
2 theory by studying the

behavior of the S12 amplitude in the vicinity of the φ1 pole. Here the classical
masses are m2

1 = 4 and m2
2 = 8, and the relevant part of the interaction lagrangian

is

Lint = 2
√

2φ2
1φ2 −

1

3
φ4

1 − 2φ2
1φ

2
2 −

2

3
φ4

2 +O(φ5). (B.9)

The one loop vertex corrections from Fig. 9.a,b are
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(a) : −3iβ3

√
2

, (b) : iβ3

(
1

2
√

2
+

1√
2π

)
(B.10)

as compared to the tree level value 〈1, 1|iL|2〉 = 4
√

2iβ. The wave-function renor-
malization factors represented in Fig. 9 give

Z1Z
1

2

2 = 1 + β2
(

1

16
− 5

16π

)
(B.11)

and from the shift in the mass scale one obtains an additional correction to the
vertex

1 − δm2
2

m2
2

= 1 +
β2

16
(B.12)

leading to a total value of the coupling

〈1, 1, 2〉 = 4
√

2iβ − iβ3 3
√

2

4

(
1 +

1

π

)
(B.13)

Comparison to the exact S-matrix S12 = {2}H{H − 2}H again checks the correct
identification of B.
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