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1Dipartimento di Fisica dell’Università di Pisa and INFN, Sezione di Pisa, 56127 Pisa, Italy

2Dipartimento di Fisica e INFN, Sapienza Università di Roma, I-00185, Roma, Italy
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We critically reexamine two possible dark matter candidates within the Standard Model. First, we
consider the uuddss hexaquark. Its QCD binding energy could be large enough to make it (quasi)stable.
We show that the cosmological dark matter abundance is reproduced thermally if its mass is 1.2 GeV.
However, we also find that such a mass is excluded by the stability of oxygen nuclei. Second, we consider
the possibility that the instability in the Higgs potential leads to the formation of primordial black holes
while avoiding vacuum decay during inflation. We show that the nonminimal Higgs coupling to gravity
must be as small as allowed by quantum corrections, jξHj < 0.01. Even so, one must assume that the
Universe survived in e120 independent regions to fluctuations that lead to vacuum decay with probability
1=2 each.
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I. INTRODUCTION

In this work we critically reexamine two different
intriguing possibilities that challenge the belief that the
existence of dark matter (DM) implies new physics beyond
the standard model (SM).

A. DM as the uuddss hexaquark

The binding energy of the hexaquark dibaryon uuddss is
expected to be large, given that the presence of the strange
quark s allows it to be a scalar, isospin singlet [1], called H
or S, and sometimes named sexaquark. A large binding
energy might make S light enough that it is stable or long
lived. All possible decay modes of a free S are kinemat-
ically forbidden if S is lighter than about 1.87 GeV. Then S
could be a dark matter candidate within the standard model
[2–4].
In Sec. II A we use the recent theoretical and exper-

imental progress about tetra- and pentaquarks to infer the
mass of the S hexaquark. In Sec. II B we present the first
cosmological computation of the relic S abundance, find-
ing that the desired value is reproduced forMS ≈ 1.2 GeV.
In Sec. II C we revisit the bound from nuclear stability
(NN → SX production within nuclei) at the light of recent

numerical computations of one key ingredient: the nuclear
wave function [5], finding that S seems excluded.

B. DM as primordial black holes

Primordial black holes (PBH) are hypothetical relics that
can originate from gravitational collapse of sufficiently
large density fluctuations. The formation of PBH is not
predicted by standard inflationary cosmology: the primor-
dial inhomogeneities observed on large cosmological
scales are too small. PBH can arise in models with large
inhomogeneities on small scales, k ≫ Mpc−1. PBH as DM
candidates are subject to various constraints. BH lighter
than 6 × 10−17 M⊙ are excluded because of Hawking
radiation. BH heavier than 105 M⊙ are safely excluded.
In the intermediate region, a variety of bounds makes the
possibility that ΩPBH ¼ ΩDM problematic but maybe not
excluded—the issue is presently subject to an intense
debate. According to [6] DM as PBH with mass M ∼
10−15 M⊙ is not excluded, as previously believed. And the
HSC/Subaru microlensing constraint on PBH [7] is parti-
ally in the wave optics region. This can invalidate its bound
below ∼10−11 M⊙.
Many ad hoc models that can produce PBH as DM have

been proposed. Recently the authors of [8] claimed that a
mechanism of this type is present within the StandardModel
given that, for present best-fit values of the measured
SM parameters, the SM Higgs potential is unstable at
h > hmax ∼ 1010 GeV [9]. We here critically reexamine
the viability of the proposed mechanism, which assumes
that the Higgs, at some point during inflation, has a
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homogeneous vacuum expectation value mildly above the
top of the barrier and starts rolling down. When inflation
ends, reheating adds a large thermal mass to the effective
Higgs potential, which, under certain conditions, brings the
Higgs back to the origin, h ¼ 0 [10]. If falling stops very
close to the disaster, this process generates inhomogeneities
that lead to the formation of primordial black holes. In
Sec. III we extend the computations of [8] adding a non-
vanishing nonminimal coupling ξH of the Higgs to gravity,
which is unavoidably generated by quantumeffects [11].We
find that ξH must be as small as allowed by quantum effects.
Under the assumptions made in [8] we reproduce their
results; however, in Sec. III F we also find that such
assumptions imply an extreme fine-tuning.
The first mechanism is affected by the observed baryon

asymmetry, but does not depend on the unknown physics
that generates the baryon asymmetry. The second possibil-
ity depends on inflation, but the mechanism only depends
on the (unknown) value of the Hubble constant during
inflation. In both cases the DM candidate is part of the SM.
Conclusions are given in Sec. IV.

II. DM AS THE uuddss HEXAQUARK

The hexaquark S ¼ uuddss is stable if all its possible
decay modes are kinematically closed:

S →

8>>><
>>>:

deν̄e MS <Md þMe ¼ 1.8761 GeV;

ppeeν̄eν̄e MS < 2ðMp þMeÞ ¼ 1.8775 GeV;

peν̄en MS <Mp þMe þMn ¼ 1.8783 GeV;

nn MS < 2Mn ¼ 1.8791 GeV:

ð1Þ

A stable S is a possible DM candidate. A too light S can
make nuclei unstable. Scanning over all stable nuclei, we
find that none of them gets destabilized by single S
emission if MS > 1.874 GeV, with 6Li giving the poten-
tially highest sensitivity to MS.

A. Mass of the hexaquark from a diquark model

We estimate the mass of the hexaquark S viewing it as a
neutral scalar dibaryon constituted by three spin zero
diquarks

S ¼ ϵαβγ½ud�α;s¼0½us�β;s¼0½ds�γ;s¼0; ð2Þ

where α, β, γ are color indices. This is possible thanks to the
strange s quark, while spin zero diquarks of the kind
½uu�; ½dd�; ½ss� are forbidden by Fermi statistics because of
antisymmetry in color and spin. We assume the effective
Hamiltonian for the hexaquark [12]

H ¼
X

i≠j¼fu;d;sg
ðmij þ 2κij Si · SjÞ; ð3Þ

where the κij are effective couplings determined by the
strong interactions at low energies, color factors, quark
masses, and wave functions at the origin. The mij are the
masses of the diquarks in S made of i and j constituent
quarks [13]. Si is the spin of the ith quark. Another
important assumption, which is well motivated by studies
on tetraquarks [12], is that spin-spin interactions are
essentially within diquarks and zero outside, as if they
were sufficiently separated in space.
Considering diquark masses to be additive in the

constituent quark masses, and taking q and s constituent
quark masses from the baryons, one finds

m½qq� ≃ 0.72 GeV; m½qs� ∼ 0.90 GeV; q ¼ fu; dg:
ð4Þ

The chromomagnetic couplings κij could be derived as well
in the constituent quark model using data on baryons

κqq ≃ 0.10 GeV; κqs ≃ 0.06 GeV: ð5Þ

However, it is known that to reproduce the masses of light
scalar mesons, interpreted as tetraquarks, σð500Þ; f0ð980Þ;
a0ð980Þ; κ [14], we need

κqq ≃ 0.33 GeV; κqs ≃ 0.27 GeV: ð6Þ

Spin-spin couplings in tetraquarks are found to be about a
factor of 4 larger compared to the spin-spin couplings
among the same pairs of quarks in the baryons, which also
make diquarks. It is difficult to assess if this would change
within a hexaquark. At any rate we can attempt a simple
mass formula for S,

MS ¼ ðm½qq� − 3=2κqqÞ þ 2ðm½qs� − 3=2κqsÞ; ð7Þ

which in terms of light tetraquark masses means
MS ¼ Mσ=2þMf0 . Using the determination of chromo-
magnetic couplings from baryons we would obtain

MS ≈ 2.17 GeV; ð8Þ

whereas keeping the chromomagnetic couplings needed to
fit light tetraquarks gives

MS ≈ 1.2 GeV ð9Þ

if the same values for the chromomagnetic couplings to fit
light tetraquark masses are taken [or 1.4 GeV using (6)].
There is quite a lot of experimental information on
tetraquarks [12], whereas hexaquarks, for the moment,
are purely hypothetical objects. On purely qualitative
grounds we might expect that the mass of S could be
closer to the heavier value being a dibaryon and not a
dimeson (tetraquark) like light scalar mesons.
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In the absence of any other experimental information it is
impossible to provide an estimate of the theoretical
uncertainty on MS.
Lattice computations performed at unphysical values of

quark masses find small values for the S binding energy,
about 13, 75, 20 MeV [15–17]. Extrapolations to physical
quark masses suggest that S does not have a sizable binding
energy; see, e.g., [18]. Furthermore, the binding energy of
the deuteron is small, indirectly disfavoring a very large
binding energy for the (somehow similar) S, which might
too be a moleculelike state.1 Despite this, we overoptimisti-
cally treat MS as a free parameter in the following.
We also notice that the S particle could be much larger

than what is envisaged in [2–4] and that its coupling to
photons, in the case of 2–3 fm size (see the considerations
on diquark-diquark repulsion at small distances in [19]),
could be relevant for momentum transfers k as small as
k ∼ 60 MeV, compared to k ≈ 0.5 GeV considered by
Farrar.

B. Cosmological relic density of the hexaquark

We here compute the relic density of S dark matter,
studying if it can match the measured value ΩDMh2 ¼
0.1186, i.e., ΩDM ≈ 5.3 Ωb [20]. A key ingredient of the
computation is the baryon asymmetry. Its value measured in
cosmic microwave background (CMB) and Big Bang
nucleosynthesis (BBN) is YB ¼ nB=s ¼ 0.8 × 10−10. The
DM abundance is reproduced (using MS ¼ 1.2 GeV for
definiteness) for

YS

YB
¼ ΩDM

ΩB

Mp

MS
≈ 4.2: ð10Þ

Thereby the baryon asymmetry beforeS decouplingmust be

YBS ¼ YB þ 2YS ≈ 9.3YB: ð11Þ

One needs to evolve a network ofBoltzmann equations for
themain hadrons:p,n,Λ,Σ0,Σþ,Σ−,Ξ0,Ξ−, andS. Strange
baryons undergo weak decays with lifetimes τ ∼ 10−10 s, a
few orders of magnitude faster than the Hubble time. This
means that such baryons stay in thermal equilibrium. We
thereby first compute the thermal equilibrium values taking
into account the baryon asymmetry. Thermal equilibrium
implies that the chemical potentials μðTÞ satisfy

μb ¼ μS=2; b ¼ fp; n;Λ;…g: ð12Þ

Their overall values are determined imposing that the total
baryon asymmetry equals

X
b

neqb − neq
b̄

s
þ 2

neqS − neq
S̄

s
¼ YBS: ð13Þ

The equilibrium values can be analytically computed in
Boltzmann approximation (which becomes exact in the
nonrelativistic limit)

neqi ¼ gi
M2

i T
2π2

K2

�
Mi

T

�
e�μi=T; ð14Þ

where the þ (−) holds for (anti)particles. We then obtain
the abundances in thermal equilibrium plotted in Fig. 1,

(a) (b)

FIG. 1. Left: Thermal equilibrium values of hadron abundances assuming YBS ¼ 7.6 × 10−10 and MS ¼ 1.2 GeV: the desired
abundances are obtained if decoupling of S interactions occurs at T ∼ 25 MeV. We see that in this phase antiparticles are negligible.
Right: Thermal equilibrium values of ΓS=H.

1We thank M. Karliner, A. Francis, and J. Green for
discussions.
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assuming MS ¼ 1.2 GeV. We see that the desired
S abundance is reproduced if the interactions that
form/destroy S decouple at Tdec ≈ 25 MeV. This tem-
perature is so low that baryon antiparticles have
negligible abundances, and computations can more
simply be done neglecting antiparticles.2 Then, the
desired decoupling temperature is simply estimated
imposing neqS =neqp ∼ YBSeð2Mp−MSÞ=T ∼ 1, and it decreases
if MS is heavier:

Tdecjdesired ≈
2Mp −MS

j lnYBSj
≈ 89 MeV − 0.048MS: ð17Þ

To compute the decoupling temperature, we consider the
three different kinds of processes that can lead to the
formation of S:
(1) Strong interactions of two heavier QCD hadrons that

contain the needed two s quarks. One example is
ΛΛ ↔ SX, where X denotes pions. These are
doubly Boltzmann suppressed by e−2ms=T at temper-
atures T < ms.

(2) Strong interactions of one heavier strange hadron
and weak ΔS ¼ 1 interactions that form the other s
(as dū → sū) from lighter hadrons. One example is
pΛ ↔ SX. These are singly Boltzmann suppressed
by e−ms=T and by G2

FΛ4
QCD ∼ 10−10.

(3) Double-weak interactions that form two s quarks
starting from lighter hadrons. One example is
pp → SX. These are doubly suppressed by
ðG2

FΛ4
QCDÞ2.

At T ∼ 25 MeV the abundance of strange hadrons is
still large enough that QCD processes dominate over
EW processes: interactions that form and destroy S
proceed dominantly through QCD collisions of strange
hadrons,

ΛΛ; nΞ0; pΞ−;ΣþΣ− ↔ SX; ð18Þ

where X can be a π0 or a γ, as preferred by approximate
isospin conservation. The Λ can be substituted by the Σ0.
Defining z ¼ MS=T and Yp ¼ np=s, the Boltzmann

equation for the S abundance is

sHz
dYS

dz
¼ γeqbS

�
Y2
B

Yeqb2
B

−
YS

Yeqb
S

�
; ð19Þ

where the superscript “eqb” denotes thermal equilibrium
at fixed baryon asymmetry and YB is summed over all
baryons but the dibaryon S. A second equation for YB is not
needed, given that the baryon number is conserved:
ðYB − YB̄Þ þ 2ðYS − Y S̄Þ ¼ YBS. Furthermore, YS̄ is neg-
ligible, and YB̄ is negligible around decoupling. The S
production rate is obtained after summing over all bb0 ↔
SX processes of Eq. (18). In the nonrelativistic limit the
interaction rate gets approximated as

2γeqbS ≃
T≪MS

X
b;b0

neqbb neqbb0 hσbb0vrelieqb: ð20Þ

The opposite process is more conveniently written in terms
of the S breaking width defined by γeqbS ðTÞ ¼ neqbS Γeqb

S and
given by

Γeqb
S ¼

X
b;b0

neqbb neqbb0

2neqS
hσbb0vrelieqb: ð21Þ

This gets Boltzmann suppressed at T ≲MΛ −Mp ∼ms,
when hyperons disappear from the thermal plasma.
Assuming YS ≲ YB, the Boltzmann equation is approxima-
tively solved byYS ∼ Yeqb

S evaluated at the decoupling epoch

where Γeqb
S ∼H, which corresponds to Tdec ∼ms= lnYB.

This leads to the estimated final abundance

YS

YB
∼ YBðMPlTdecσSÞ

2Mp−MS
2MΛ−MS : ð22Þ

The fact thatS is in thermal equilibriumdown to a few tens of
MeV means that whatever happens at higher temperatures
gets washed out. Notice the unusual dependence on the cross
section for S formation: increasing it delays the decoupling,
increasing the S abundance.
Figure 2 shows the numerical result for the relic S

abundance, computed by inserting in the Boltzmann
equation a s-wave σbb0vrel ¼ σ0, varied around 1=GeV2.
The cosmological DM abundance is reproduced for
MS ≈ 1.2 GeV, while a large MS gives a smaller relic
abundance. Bound-state effects at BBN negligibly affect
the result and, in particular, do not allow one to reproduce
the DM abundance with a heavier MS ≈ 1.8 GeV.
We conclude this section with some sparse comments.

Possible troubles with bounds from direct detection have

2Let us consider, e.g., the process Λþ Λ ↔ S þ X where X
denotes other SM particles that do not carry the baryon
asymmetry, such as pions. Thermal equilibrium of the above
process implies

nS
n2Λ

¼ neqS
neq2Λ

¼ gS
g2Λ

�
2πMS

M2
ΛT

�
3=2

eð2MΛ−MSÞ=T : ð15Þ

Inserting nΛ ∼ npeðMp−MΛÞ=T with np ≈ YBSs gives

nS
np

∼
n2Λ
np

eð2MΛ−MSÞ=T ∼ YBSeð2Mp−MSÞ=T : ð16Þ

Namely, nS ≪ np at large T; nS ≫ np at low T. A DM
abundance comparable to the baryon abundance is obtained only
if reactions that form S decouple at the T in Eq. (17).
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been pointed out in [4,21,22]: a DM velocity somehow
smaller than the expected one can avoid such bounds
reducing the kinetic energy available for direct detection.
Using a target made of antimatter (possibly in the upper
atmosphere) would give a sharp annihilation signal,
although with small rates. The magnetic dipole interaction
of S does not allow one to explain the recent 21 cm
anomaly along the lines of [23] (an electric dipole would be
needed). The interactions of DM with the baryon/photon
fluid may alter the evolution of cosmological perturbations
leaving an imprint on the matter power spectrum and the
CMB. However, they are not strong enough to produce
significant effects. The S particle is electrically neutral and
has spin zero, such that its coupling to photons is therefore
suppressed by powers of the QCD scale [3]. So elastic
scattering of S with photons is not cosmologically relevant.
A light S would affect neutron stars, as they are expected

to contain Λ particles, made stable by the large Fermi
surface energy of neutrons. Then, ΛΛ → S would give a
loss of pressure, possibly incompatible with the observed
existence of neutron stars with mass 2.0Msun [1]. However,
we cannot exclude S on this basis, because production of Λ
hyperons poses a similar puzzle. S as DM could interact
with cosmic ray p giving and photon and other signals [24]
and would be geometrically captured in the Sun, possibly
affecting helioseismology.3

In the next section we discuss the main problem, which
seems to exclude S as DM.

C. Super-Kamiokande bound on nuclear stability

Two nucleons N ¼ fn; pg inside a nucleus N can
make a double weak decay into S, emitting π, γ, or e
[2]. This is best probed by Super-Kamiokande (SK), which
contains ∼8 × 1032 oxygen nuclei. No dedicated search for

16O8 → N 0SX (where X can be one or two π, γ, e and N 0

can be 14O8, 14N7, 14C6, depending on the charge of X)
has been performed,4 but a very conservative limit

τð16O8 → N 0SXÞ≳ 1026 yr ð23Þ

is obtained by requiring the rate of such transitions to be
smaller than the rate of triggered background events in SK,
which is about 10 Hz [27]. A more careful analysis would
likely improve this bound by 3 orders of magnitude [2].
The amplitude for the formation of S is reasonably

dominated by the sample diagram in Fig. 3: doubly weak
production of two virtual strange Λ� baryons (e.g., through
p → πþΛ� and n → π0Λ�; at quark level u → sd̄u and
d → sūu), followed by the strong process Λ�Λ� → S,

MNN→SX ≈MNN→Λ�Λ�X ×MΛ�Λ�→S: ð24Þ

The predicted lifetime is then obtained as [2]5

τðN →N 0SXÞ

≃
yr

jMj2Λ�Λ�→S

×

�
3 if MS ≲ 1.74 GeV;

105 if 1.74 GeV≲MS ≲ 1.85 GeV;

ð25Þ

where the smaller value holds if S is so light that the decay
can proceed through real π or ππ emission, while the longer
lifetime is obtained if instead only lighter eþν or γ can be
emitted.
The key factor is the dimensionless matrix element

MΛ�Λ�→S for the transition Λ�Λ� → S inside a nucleus,

FIG. 2. Thermal hexaquark abundance within the SM with the
baryon asymmetry in Eq. (11).

FIG. 3. Sample diagram that dominates nucleon decay into S
inside nuclei. The initial state can also be nn or pp.

3We thank M. Pospelov for suggesting these ideas.

4SK searched for dinucleon decays into pions [25] and leptons
[26] and obtained bounds on the lifetime around ∼1032 years.
However, these bounds are not directly applicable to 16O8 →
N 0SX where the invisible S takes away most of the energy
reducing the energy of the visible pions and charged leptons, in
contrast to what is assumed in [25,26].

5A numerical factor of 1440 due to spin and flavor effects
has already been factored out from jMj2Λ�Λ�→S here and in the
following. Note also that the threshold 2MN −Mπ ¼ 1.74 GeV
neglects the small difference in binding energy betweenN andN 0.
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which we now discuss. Following [2], we assume that the
initial state wave function can be factorized into wave
functions of the two Λ� baryons and a relative wave

function ψnucða⃗Þ for the separation a⃗ between the center
of mass of the Λ�’s. The matrix element is given by the
wave-function overlap

MΛ�Λ�→S ¼
Z

ψ�
Sðρ⃗a; λ⃗a; ρ⃗b; λ⃗b; a⃗ÞψΛ� ðρ⃗a; λ⃗aÞψΛ� ðρ⃗b; λ⃗bÞψnucða⃗Þd3ad3ρad3ρbd3λad3λb: ð26Þ

Here, ρ⃗a;b, λ⃗a;b are center-of-mass coordinates that parametrize the relative positions of the quarks within eachΛ�. Using the
Isgur-Karl (IK) model [28] the wave functions for the quarks inside the Λ� and inside the S are approximated by

ψΛ� ðρ⃗; λ⃗Þ ¼
�

1

rN
ffiffiffi
π

p
�

3

exp

�
−
ρ⃗2 þ λ⃗2

2r2N

�
; ð27Þ

ψSðρ⃗a; λ⃗a; ρ⃗b; λ⃗b; a⃗Þ ¼
�
3

2

�
3=4

�
1

rS
ffiffiffi
π

p
�

15=2
exp

�
−
ρ⃗a2 þ λ⃗a2 þ ρ⃗b2 þ λ⃗b2 þ 3

2
a⃗2

2r2S

�
; ð28Þ

where rN and rS are the radii of the nucleons, respectively, of S.6 Performing all integrals except the final integral over
a≡ ja⃗j gives

jMjΛ�Λ�→S ¼ 1

2

�
3

2

�
3=4

�
2rNrS
r2N þ r2S

�
6
�

1

rS
ffiffiffi
π

p
�

3=2
Z

da4πa2e−3a
2=4r2SψnucðaÞ: ð29Þ

As shown in Fig. 5 below (and as discussed in [2]), if rS is not
much smaller than rN , the overlap integral is not very much
suppressed and τð16O8 → N 0SXÞ is tens of orders of
magnitude below the experimental limit and is clearly
excluded. This conclusion is independent of the formofψnuc.
However, if rS were a few times smaller than rN—a

possibility that seems unlikely due to diquark repulsions
(see, e.g., [19]) but cannot firmly be excluded—then
τð16O8 → N 0SXÞ is extremely sensitive to the probability
of the overlap of two nucleons inside the oxygen core at
very small distances (less than, say, 0.5 fm). The wave
function of nucleon pairs ψnuc at such small distances has
not been probed experimentally. In fact, at such small
distances nucleons are not the appropriate degrees of
freedom.7 Thus, for a very small S one can only make
an educated guess of τð16O8 → N 0SXÞ, since the form of
ψnuc is uncertain. Nevertheless, we will show in the

following that for a reasonable form of ψnuc a stable S
is excluded even if it were very small.
Numerical computations of the ground-state wave func-

tions of nuclei, including 16O8, have been performed, e.g.,
in [5]. The quantity that determines ψnuc is the two-nucleon
point density ρNN, defined in Eq. (58) of [5]. We obtain
ρNNðaÞ by interpolating the data given in [5] and adding the
constraint ρNNð0Þ ¼ 0, which is a conservative assumption
for our purposes since ρNNð0Þ ≠ 0 would lead to a larger
matrix element. There are 28 neutron-neutron pairs and 64
proton-neutron pairs in 16O8 so one has

R
da4πa2ρnnðaÞ ¼

28 and
R
da4πa2ρpnðaÞ ¼ 64. We therefore define the

wave functions

ψnn
nucðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρnnðaÞ=28

p
; ψpn

nucðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρpnðaÞ=64

q
: ð30Þ

These wave functions are plotted in Fig. 4, together with the
Miller-Spencer (MS) and the Brueckner-Bethe-Goldstone
(BBG) wave function used in [2]. The BBG wave functions
assume a hard repulsive core between nucleons such that
ψnuc vanishes at a < rcore. We take rcore ¼ 0.5 fm for
illustration. This is not realistic but allows one to see what
kind of nuclear wave function would sufficiently suppress
the rate of S formation in nuclei, if S is small enough. The
resulting jMj2Λ�Λ�→S is plotted in Fig. 5, again compared to
that obtained using the Miller-Spencer and BBG wave
functions.

6One should be aware that the IK model has serious short-
comings. One issue is that it is a nonrelativistic model—an
assumption that is problematic in particular for small S. Another
problem is that the value of rN that gives a good fit to the lowest
lying 1

2
þ and 3

2
þ baryons—rN ¼ 0.49 fm—is smaller than the

charge radius of the proton: rN ¼ 0.87 fm. Therefore we consider
both rN ¼ 0.49 fm and rN ¼ 0.87 fm, as done in [2].

7Data indicate that about 20% of the nucleons form pn pairs so
close (about 1 fm) that the local density reaches the nucleon
density (about 2.5 times larger than the nuclear density) and thus
that the quark structure of nucleons starts becoming relevant
already at a ∼ 1 fm [29].
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The resulting matrix elements from the MS wave
function qualitatively agree to what is obtained using the
wave functions extracted from [5]. By contrast, the matrix
element using the BBGwave function with hard core radius
rcore ¼ 0.5 fm is very much suppressed, especially if S is
small. The reason is that, according to the assumption of a
hard core repulsive potential, the nucleons cannot get close
enough to form the small state S. Since we do not consider
a ψnucðaÞ that vanishes for a≲ 0.5 fm realistic, we con-
clude that a stable S is excluded.
Weaker bounds on S production are obtained consider-

ing baryons containing Λ’s.

III. DM AS BLACK HOLES TRIGGERED
BY HIGGS FLUCTUATIONS

We here present the technical computations relative to the
mechanism anticipated in the Introduction. The SMpotential
is summarized in Sec. III A. In Sec. III B we outline the
mechanism that generates black holes. Section III C studies
the generation of Higgs inhomogeneities. Postinflationary
dynamics is studied in Sec. III D. The formation of black
holes is considered in Sec. III E. The viability of a critical
assumption is discussed in Sec. III F.

A. The Higgs effective potential

The effective potential of the canonically normalized
Higgs field during inflation with Hubble constant H0 is

VeffðhÞ ≈
λeffðhÞ

4
h4 − 6ξHH2

0h
2 þ V0; ð31Þ

at h ≫ 174 GeV. Here λeff is the effective quartic coupling
computed including quantum corrections. The second mass
term in VeffðhÞ can be generated by various different sources
[8]. We consider the minimal source: a Higgs coupling to
gravity, Lξ ¼ −ξHRh2=2, with Ricci scalar R ¼ −12H2

0

during inflation. Finally, during inflation the effective poten-
tial inEq. (31) is augmented by thevacuumenergy associated
with the inflaton sector, V0 ¼ 3M̄2

PlH
2
0, where M̄Pl ≃

2.435 × 1018 GeV is the reduced Planck mass.
We implement the renormalization group (RG) improve-

ment of the effective potential at next-to-next-to-leading
order (NNLO) precision: running the SM parameters
at three loops and including two-loop quantum corrections
to the effective potential. We consider fixed values of
α3ðMZÞ ¼ 0.1184 andMh ¼ 125.09 GeV, and we vary the
main uncertain parameter, the top mass, in the interval
Mt ¼ 172.5� 0.5 GeV [30]. In Fig. 6(a) we show the
resulting λeffðhÞ as a function of h.

FIG. 5. The dimensionless squared matrix element for nuclear
decay into S, jMj2Λ�Λ�→S , as a function of the S radius rS in units
of the nucleon radius rN , using different nuclear wave functions.
The color coding, defined in Fig. 4, refers to the nuclear wave
functions used. The thinner (thicker) curves assume rN ¼
0.87 fm (rN ¼ 0.49 fm). The Super-Kamiokande bound would
be evaded for jMj2Λ�Λ�→S ≲ 10−20ð10−25Þ for MS > 1.74 GeV
(for MS < 1.74 GeV).

(a) (b)

FIG. 4. Wave functions ψnucðaÞ as a function of the relative distance a between two nucleons in 16O8. The darker (lighter) green curve
shows ψnn

nuc, obtained from [5], using the AV18 (AV18+UIX) potential; the darker (lighter) red curve shows ψnp
nuc using the AV18 (AV18

+UIX) potential; the blue curve is the MS wave function used in [2] and the dashed black curve is the BBG wave function with hard core
radius rcore ¼ 0.5 fm. Left: Wave functions over the entire range. Right: Zoom-in plot of the region relevant for our calculation.

DARK MATTER IN THE STANDARD MODEL? PHYS. REV. D 98, 063005 (2018)

063005-7



The nonminimal coupling to gravity ξH receives SM
quantum corrections encoded in its renormalization group
equation (RGE), which induce ξH ≠ 0 even starting from
ξH ¼ 0 at some energy scale. The RGE running of small
values of ξHðμ̄Þ is shown in Fig. 6(b). As mentioned before,
a nonzero ξH can be considered as a proxy for an effective
mass term during inflation. The latter, for instance, can be
generated by a quartic interaction λhϕjHj2ϕ2 between the
Higgs and the inflaton field or by the inflaton decay into
SM particles during inflation. For these reasons, it makes
sense to include ξH as a free parameter in the analysis of the
Higgs dynamics during inflation, at most with the theo-
retical bias that its size could be loop suppressed.

1. Analytic approximation

We will show precise numerical results for the SM case.
However, the discussion is clarified by introducing a simple

approximation that encodes the main features of the SM
effective potential in Eq. (31),

VeffðhÞ ≈ −b log
�

h2

h2cr
ffiffiffi
e

p
�
h4

4
− 6ξHH2

0h
2; ð32Þ

where hcr is the position of the maximum of the potential
with no extra mass term, ξH ¼ 0. The parameters b and hcr
depend on the low-energy SM parameters such as the top
mass: they can be computed by matching the numerical
value of the Higgs effective potential at the gauge-invariant
position of the maximum, VeffðhcrÞ ¼ bh4cr=8. The result is
shown in the right panel of Fig. 7.
Results will be better understood when presented in

terms of the dimensionless parameters b, ξH, hcr=H0, and
T=H0, where T is the temperature, as they directly control

(a) (b)

FIG. 6. Left: RGE running of λeff (solid red lines) obtained by changing the top mass in its 3σ interval defined by
Mt ¼ 172.5� 0.5 GeV. For comparison, we show the running of λ at three loops (dashed blue lines) without including the
Coleman-Weinberg corrections. Right: RGE running of a small ξH .

(a) (b)

FIG. 7. Left: Number of e-foldsNin at the beginning of the Higgs fall that gives the maximal hend rescued by the reheating temperature.
This is computed as a function of the Hubble constant during inflation, for three different values of the uncertain parameter b that
approximates the Higgs potential. Continuous (dashed) curves correspond to ξH ¼ 0 (−10−3). Right: SM values of b and of the position
hcr of the top of the SM potential as a function of the top mass.
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the dynamics that we are going to study. The parameter b
controls the flatness of the potential beyond the potential
barrier at hcr, with smaller b corresponding to a flatter
potential. The nonminimal coupling ξH controls the effec-
tive Higgs mass during inflation. Finally, M̄Pl=H0 will set
the reheating temperature in Eq. (35) and thus the position
and size of the thermal barrier.
The position of the potential barrier—defined by the

field value where the effective potential has its maximum—
strongly depends on the value of the top mass, on the
nonminimal coupling to gravity, and, after inflation, on the
temperature of the thermal bath that provides an extra mass
term. For ξH ≠ 0, the maximum of the Higgs potential gets
shifted from hcr to

hmax ¼ H0

�
−

b
12ξH

W
�
−12ξHH2

0

bh2cr

��−1=2
; ð33Þ

where WðzÞ is the product-log function defined by
z ¼ WeW . The condition

−12ξHH2
0 > −

bh2cr
e

ð34Þ

must be satisfied; otherwise, the effective mass is too
negative, and it erases the potential barrier, thus leading
to a classical instability.

2. The thermal potential

After the end of inflation, the Higgs effective potential
receives large thermal corrections from the SM bath at
generic temperature T. The initial temperature of the
thermal bath is fixed by the dynamics of reheating after
inflation. We assume instantaneous reheating, as this is
most efficient for rescuing the falling Higgs field. The
reheating temperature is then given by

TRH ¼
�

45

4π3g�

�
1=4

M1=2
Pl H

1=2
0 ; ð35Þ

where g� ¼ 106.75 is the number of SM degrees of
freedom. After reheating, the Universe becomes radiation
dominated, the Ricci scalar vanishes, and so does the
contribution to the effective potential from the nonminimal
Higgs coupling to gravity.
The effective Higgs potential at finite temperature is

obtained adding an extra thermal contribution VT, which
can be approximated as an effective thermal mass for the
Higgs field, M2

T ≃ 0.12T2 (see, e.g., [10])

VT
effðhÞ ≈ −b log

�
h2

h2cr
ffiffiffi
e

p
�
h4

4
þ VTðhÞ;

VTðhÞ ≈
1

2
M2

Th
2e−h=2πT: ð36Þ

At h≲ T we can neglect the exponential suppression in the
thermal mass, and the maximum of the effective potential in
Eq. (36) is given by

hTmax ¼ MT

�
bW

�
M2

T

bh2cr

��−1=2
: ð37Þ

B. Outline of the mechanism

During inflation, the Higgs field is subject to quantum
fluctuations. Depending on the value of H0, these quantum
fluctuations could lead the Higgs beyond the barrier and
make it roll toward Planckian values. If TRH is high enough
and h is not too far, thermal corrections can “rescue” the
Higgs, bringing it back to the origin [10]. The mechanism
relies on a tuning such that the following situation occurs [8]:

(i) At Nin ∼ 20 e-folds before the end of inflation, the
Higgs background value h is brought by quantum
fluctuation to some hin ≠ 0. This configuration must
be spatially homogeneous on an inflating local patch
large enough to encompass our observable Universe
today. We consider the de Sitter metric in flat slicing
coordinates, ds2 ¼ −dt2 þ a2ðtÞdx⃗2. We will dis-
cuss later how precisely this assumption must be
satisfied, as well as its plausibility.

(ii) When the classical evolution prevails over the
quantum corrections, the Higgs field, starting from
the initial position hin, begins to slow roll down the
negative potential. This condition reads

����V
0
effðhinÞ
3H2

0

����|fflfflfflfflfflffl{zfflfflfflfflfflffl}
classical

>
cH0

2π|{z}
quantum

; ð38Þ

where c is a constant of order 1, fixed to c ¼ 1 in [8].
We will explore what happens choosing c ¼ 0.9
or c ¼ 1.1. From this starting point tin on, the
classical evolution of the background Higgs value
is described by

ḧcl þ 3H0
_hcl þ V 0

effðhclÞ ¼ 0; ð39Þ

where the subscript cl indicates that this is a classical
motion. Dots indicate derivatives with respect to
time t.

(iii) At the end of inflation, Nend ¼ 0, the Higgs is
rescued by thermal effects. This happens if the value
of the Higgs field hend at the end of inflation is
smaller than the position of the thermal potential
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barrier at reheating, hTRH
max. A significant amount of

PBH arises only if this condition is barely satisfied in
all the Universe. This is why the homogeneity
assumption in (i) is needed.

To compute condition (iii) we fix the initial value of the
classical motion hin such that Eq. (38) is satisfiedwith c ¼ 1;
next, we maximize the hend obtained solving Eq. (39) by
tuning the amount of inflation where the fall happens, as
parametrized byNin. The left panel of Fig. 7 shows the initial
value Nin obtained following this procedure as a function of
hcr in units ofH0. Smaller values of b (i.e., smaller values of
Mt) imply a flattening of the potential, and the classical
dynamics during inflation is slower. The right side of the
curves is limited by the classicality condition in Eq. (38). A
ξH < 0 shifts the position of the potential barrier toward the
limiting value hTmax in Eq. (37)—which does not depend on
ξH—above which the rescue mechanism due to thermal
effects is no longer effective: its net effect is to reduce the
number of e-folds during which classical motion can happen
(for fixed b).
We anticipate here the feature of PBH formation, which

implies the restriction on the parameter space mentioned at
point (i): the Higgs fall must start at least Nin ∼ 20 e-folds
before the end of inflation. The collapse of the mass inside
the horizon N e-folds before the inflation end forms a PBH
with mass (see also Sec. III E),

MPBH ≈
M̄2

Pl

H0

e2N: ð40Þ

PBH must be heavy enough to avoid Hawking evaporation.
The lifetime of a PBH with mass MPBH due to Hawking
radiation at Bekenstein-Hawking temperature TBH ¼
1=ð8πGNMPBHÞ is

Γ−1
PBH ≈ 4 × 1011

�
F ðMPBHÞ
15.35

�
−1
�
MPBH

1013 g

�
3

s; ð41Þ

where F → 1 atMPBH > 1017 g. BH heavier thanMPBH >
1015 g are cosmologically stable, and BH heavier than
MPBH > 1016.5 g are allowed by bounds on Hawking
radiation as a (significant fraction of) DM. Since
N < Nin, imposingMPBH > 1016.5 g implies a conservative
lower limit on Nin,

Nin >
1

2
ln

�
7.2 × 1021

H0

M̄Pl

�
¼ 18.3 for H0 ¼ 10−6M̄Pl:

ð42Þ

C. Higgs fluctuations during inflation

We now consider the evolution of Higgs perturbations
during inflation. Expanding h in Fourier space with

comoving wave number k,8 the equation for the mode
δhk takes the form

δ̈hk þ 3H0
_δhk þ

k2

a2
δhk þ V00

effðhclÞδh ¼ 0; ð43Þ

where we neglected metric fluctuations. In terms of the
number of e-folds N and of the Mukhanov-Sasaki variable
uk ≡ aδhk, it becomes

d2uk
dN2

þ duk
dN

þ
�

k2

a2H2
0

− 2

�
uk þ

V 00
effðhclÞ
H2

0

uk ¼ 0: ð44Þ

It is convenient to consider the evolution of the perturbation
making reference to a specific moment before the end of
inflation: at the initial value Nin defined in Sec. III B. We
recall that in our convention Nend ¼ 0 at the end of
inflation. Equation (44) becomes

d2uk
dN2

−
duk
dN

þ
��

k
ainH0

�
2

e2ðN−NinÞ − 2

�
uk

þ V 00
effðhclÞ
H2

0

uk ¼ 0: ð45Þ

In this form, the Mukhanov-Sasaki equation is particularly
illustrative. Consider the evolution of the perturbation for a
mode of interest k that we fix compared to the reference
value ainH0 at t ¼ tin. In particular, we consider the case of
a mode k that is subhorizon at the beginning of the classical
evolution, that is, k ≫ ainH0. From Eq. (45), we see that
in the subsequent evolution with N < Nin the exponential
suppression will turn the mode from subhorizon to
superhorizon.
We are now in the position to solve Eq. (45). To this end,

we need boundary conditions for uk and its time derivative.
We use the Bunch-Davies conditions at N ¼ Nin for modes
that are subhorizon at the beginning of the classical
evolution, k=ainH0 ≥ 1, and we treat the real and imaginary
parts of uk separately since they behave as two independent
harmonic oscillators for each comoving wave number k. At
generic e-fold time N, the perturbation δhk is related to the
Mukhanov-Sasaki variable uk by

k3=2
δhk
H0

����
N
¼

�
k

ainH0

�
eN−Ninð

ffiffiffi
k

p
ukÞ

����
N
: ð46Þ

We show in the left panel of Fig. 8 our results for the time
evolution of the classical background hcl and the perturba-
tion δhk (both real and imaginary parts) during the last 20
e-folds of inflation. As a benchmark value, we consider an
initial subhorizon mode with k=ainH0 ¼ 100. After a few

8The comoving wave number k ¼ jk⃗j is time independent, and
it is related to the physical momentum via kphys ¼ k=aðtÞ, which
decreases as the space expands.

GROSS, POLOSA, STRUMIA, URBANO, and XUE PHYS. REV. D 98, 063005 (2018)

063005-10



e-folds of inflation, such a mode exits the horizon:
oscillations stop, and from this point on, further evolution
is driven by the time derivative of the classical background.
This is a trivial consequence of the equations of motion on
superhorizon scales. Differentiating Eq. (39) with respect to
the cosmic time shows that _hcl and δhk satisfy the same
equation on superhorizon scales, and, therefore, they must
be proportional, δhk ¼ CðkÞ _hcl for k ≪ aH0 [8]. The
proportionality function CðkÞ can be obtained by a match-
ing procedure. Deep inside the horizon, in the limit
k ≫ aH0, the Mukhanov-Sasaki variable uk ≡ aδhk repro-
duces the preferred vacuum of a harmonic oscillator in flat
Minkowski space, and we have, after introducing the
conformal time τ as dt ¼ adτ, uk ¼ e−ikτ=

ffiffiffiffiffi
2k

p
. Roughly

matching the absolute value of the solutions at horizon
crossing, we determine the absolute value of CðkÞ as

jδhkj ¼
H0ffiffiffiffiffiffiffi

2k3
p

_hclðtkÞ
_hclðtÞ; ð47Þ

where we indicate with tk the time of the horizon exit for the
mode k—the time at which k ¼ aðtkÞH0 ≡ akH0 (equiv-
alently, −kτk ¼ 1). The number of e-folds at the horizon
exit is given by

k
ainH0

¼ eNin−Nk: ð48Þ

1. Primordial curvature perturbations

The primordial curvature perturbation ζðx⃗; tÞ on uniform
energy density slices ρ is defined (at the linear order) by the
perturbed line element [31,32]

ds2 ¼ a2ðtÞ½1þ 2ζðx⃗; tÞ�δijdxidxj; ð49Þ

and it is related to the (total) energy density perturbation δρ
and to the curvature perturbation on a generic slicing Ψ by
the gauge invariant formula

ζ ¼ ΨþH
δρ

ρ0
¼ ΨþH

δρ

_ρ
; ð50Þ

where we introduced the conformal time by means of dt ¼
adτ and H ¼ aH where H ¼ a0=a and prime 0 indicates
the derivative with respect to τ. The virtue of this definition
is that, on superhorizon scales, ζ is practically identical to
the comoving curvature perturbation R defined on hyper-
surfaces of constant comoving time. Furthermore, on
superhorizon scales ζ is conserved provided that the
pressure perturbation is adiabatic. In conventional single-
field inflation models, purely adiabatic perturbations are
generated due to quantum fluctuations of the single field
driving inflation. The considered setup differs from a
conventional scenario because of the presence, in addition
to the inflaton, of the Higgs field [8]. During inflation, the
curvature perturbation on uniform energy density slices is
given, in a spatially flat gauge, by

ζ ¼ H0

δρ

_ρ
¼ _ρϕ

_ρ
ζϕ þ

_ρh
_ρ
ζh; ð51Þ

where we separated the inflaton component ζϕ and the
Higgs component ζh ≡H0δρh=_ρh [8]. We assume that
there is no energy transfer between the Higgs and the
inflaton sectors, and that the latter generates, on large
scales, the perturbations responsible for the CMB anisot-
ropies and large scale structures. Given these assumptions,

(a) (b)

FIG. 8. Left: Sample evolution of the classical Higgs background (hcl, red solid line) and of a perturbation with k=ainH0 ¼ 102

(dashed lines). Right: Higgs curvature perturbation ζðkÞh during inflation. We compare the full numerical result with the analytical
approximation [last term in Eq. (52), solid horizontal black line]. The vertical dashed gray line marks the instant of horizon exit. We use
the analytical approximation in Eq. (32) with hcr ¼ 41012 GeV, b ¼ 0.09=ð4πÞ2 (which corresponds to Mt ¼ 172 GeV), and
H0 ¼ 1012 GeV.
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ζϕ and ζh are separately conserved on superhorizon scales
[33]. As customary, we can decompose ζh in Fourier
modes. For a given comoving wave number k we have,
in a spatially flat gauge,

ζðkÞh ¼ H0

δρðkÞh

_ρh
¼ −

½ _hcl _δhk þ V 0
effðhclÞδhk�

3_h2cl

≃
H2

0ffiffiffiffiffiffiffi
2k3

p
_hclðtkÞ

����
k≪aH0

; ð52Þ

where the last analytical approximation is valid for the

absolute value of ζðkÞh in the superhorizon limit, and where
we used ρh ¼ _h2cl=2þ VeffðhclÞ in the first equality.
The right panel of Fig. 8 compares the numerical result

for ζðkÞh —that is, the first equality in Eq. (52)—with its
analytical approximation. The plot, moreover, shows that

on superhorizon scales ζðkÞh stays constant, as it should be
since we are working under the underlying assumption that
there are no interactions between the Higgs and the infla-
tionary sectors.

D. Higgs dynamics after inflation

Assuming instantaneous reheating, the energy density of
the inflaton is instantaneously converted into radiation at
the end of inflation. The inflaton energy density ρR is
related to the temperature of the thermal bath by

ρR ¼ π2g�
30

T4: ð53Þ

The dynamics after reheating is described by the following
system of coupled Higgs-radiation equations:

ḧcl þ ð3H þ ΓÞ _hcl þ V 0
TðhclÞ ¼ 0; ð54aÞ

_ρR þ 4HρR ¼ Γρh; ð54bÞ

where the energy density of the Higgs field is given by

ρh ¼
_h2cl
2

þ VT
effðhclÞ; ð55Þ

and the Hubble parameter is related to the total energy
density by

H2 ¼ ρR þ ρh
3M̄2

Pl

: ð56Þ

The damping factor Γ takes into account the Higgs decays
at temperature T and represents the energy transportation
from the Higgs field to radiation. We use the expression
quoted in [8], Γ ≃ 10−3T. In the following, we shall adopt
the assumption of sudden decay approximation. In this

approximation—corresponding to Γ ¼ 0 in Eqs. (54)—
Higgs and radiation evolve separately, and the Higgs decay
occurs instantaneously at H ¼ Γ. The system in Eqs. (54)
can be solved using the following boundary conditions. As
far as the classical Higgs field is concerned, we use the field
values at the end of inflation computed in Sec. III C. The
evolution of ρR, in contrast, starts from the temperature in
Eq. (35).9 Using the solution for ρR, Eq. (53) gives the time
evolution of the temperature.
After instantaneous reheating, the Higgs potential sud-

denly changes from the expression in Eq. (32) to the one in
Eq. (36), and interactions with the SM bath generate a large
thermal mass. If hend < hTmax, the fall of the Higgs field is
rescued by thermal corrections, and its background value
starts oscillating around the minimum at zero until the
decay becomes efficient at H ¼ Γ. At this stage, the Higgs
component ζh of the curvature perturbation is not con-
served compared to the value computed in Eq. (52) during
inflation. This is because the interactions with the SM
plasma that are responsible for the appearance of the
thermal mass introduce a nonadiabatic component in the
pressure perturbation.
We compute—in a spatially flat gauge, and for a given

comoving wave number k—the total curvature perturbation
after reheating according to

ζðkÞ ¼ H
δρ

_ρ
¼

_hcl _δhk þ VT0
effðhclÞδhk

−4ρR − 3_h2cl
; ð58Þ

where radiation perturbations are set to zero. We compute
ζðkÞ numerically at the time of Higgs decay, H ¼ Γ. After
Higgs decay, radiation remains as the only component of
the Universe and ζðkÞ is, therefore, conserved.

E. The power spectrum and the PBH abundance

The curvature power spectrum is given by

Pζ ¼
k3

2π2
jζðkÞj2: ð59Þ

A numerical example is shown in Fig. 9. Its left panel
shows that a small ξH ¼ −10−3 has only a minor effect. The
cut in the power spectrum at small k arises because of
assumption (i): before that classical rolling starts, the Higgs

9More precisely, conservation of total energy determines the
reheating temperature as

3M̄2
PlH

2
0þ

_h2cl
2
þVeffðhclÞ

����
hcl¼hend

¼π2g�
30

T4þ
_h2cl
2
þVT

effðhclÞ
����
hcl¼hend

:

ð57Þ

The approximation in Eq. (35) is valid because the inflaton
energy density dominates over the Higgs contribution.
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field is away from its minimum and exactly homogeneous.
Relaxing this assumption would increase the power spec-
trum at small k.
The right panel shows the significant effect of a small

change in the arbitrary order one parameter c that defines
the classicality condition in Eq. (38). Reducing c antici-
pates the initial moment tin (or equivalently Nin) where the
Higgs starts to roll down the potential. As a consequence,
earlier quantum fluctuations get taken into account by our
computation of Sec. III C.
Finally, we can now compute the mass and amount of

PBH generated by Higgs fluctuations. The radius of the
Hubble horizon or the wavelength of the modes determines
the typical mass of the PBHs [34],

MPBH ≈
γ

2

M2
Pl

H0

e2N; ð60Þ

where N is the number of e-folds when the k mode leaves
the horizon; γ ≈ 0.2 is a correction factor [35]. For example,
H0 ¼ 1012 GeV and N ¼ 20 gives MPBH ≈ 10−15 M⊙.
To compute the fraction of the Hubble volume collapsing

to PBHs, we need the variance of the smoothed density
perturbation over a radius R, σ2ðRÞ ¼ hδ2ðx; RÞi, where
δðx; RÞ ¼ R

d3x0δðx0ÞWðx − x0; RÞ is the density fluc-
tuation smoothed by a window function Wðx; RÞ, assumed
to be Gaussian,

Wðx; RÞ ¼ 1

ð2πÞ3=2R3
exp

�
−
jxj2
2R2

�
: ð61Þ

The variance can be computed in terms of density power
spectrum PδðkÞ, which is related to the curvature pertur-
bation ζ power spectrum PζðkÞ as [36]

σ2ðRÞ ¼
Z

d ln kPδðkÞW̃2ðkRÞ;

¼
Z

d ln k
16

81
ðkRÞ4PζðkÞW̃2ðkRÞ; ð62Þ

where W̃ðkÞ ¼ exp ð−k2=2Þ is the Fourier transform of the
window function. Assuming that PBH are formed when the
density perturbation exceeds δth ≈ 0.5 [37], the fraction of
the Universe ending up in PBH is given by the tail of the
assumed Gaussian distribution,

βðMPBHÞ ¼ γ

Z
∞

δth

dδ
1ffiffiffiffiffiffi

2π
p

σðMPBHÞ
exp

�
−

δ2

2σ2ðMPBHÞ
�

≃
σ≪δth γσffiffiffiffiffiffi

2π
p

δth
exp

�
−

δ2th
2σ2

�
: ð63Þ

The latter approximation is relevant, given that the obtained
power spectra Pζ are of order 10−2. We convert σðRÞ to a
function σðMPBHÞ, taking into account that the size R is
related to the massMPBH as R ≈ 2GMPBH=γa. The fraction
of PBH relative to the DM abundance at given mass,
fPBHðMPBHÞ, is given by [36]

fPBH ≈ 2.7 × 108
�
10.75
g�;form

�
1=4

�
γ

0.2
M⊙

MPBH

�
1=2

β: ð64Þ

The distribution of PBH as a function of their massMPBH is
strongly peaked at the value that maximizes σðMÞ, in view
of the exponential factor in Eq. (63). In terms of the power
spectrum Pζ this means that the PBH abundance roughly
scales as e−1=Pζ and is dominated by the top of the peak of
PζðkÞ. The PBH mass distribution is peaked at the value
corresponding to the k that maximizes PζðkÞ. The desired
abundance is reproduced for maxPζ ∼ 10−2, and slightly

(a) (b)

FIG. 9. Left: The power spectrum of Higgs fluctuations produced by rescued Higgs fall for ξH ¼ 0 (red curve) and ξH ¼ −10−3 (blue
curve), which has a minor impact. In the inset we show the number of e-folds at the horizon exit for each mode. Right: How the power
spectrum changes when the classicality condition in Eq. (38) is changed by �10%.
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larger (smaller) values produce way too many (too few)
PBH.
This means that, due to the fine-tuned nature of the

mechanism (as in all models that can generate PBH), the
amount and mass of PBH depend in an extremely sensitive
way on the uncertain SM and cosmological parameters,
mainly the top mass and the Hubble constant H0.
Furthermore, uncertainties in the computation of black
hole formation (such as the value of δth) imply uncertainties
of many orders of magnitude in the PBH density.
For example, a 10% variation in the order one arbitrary

constant c that parametrizes the classicality condition has
an order one impact on the power spectrum (Fig. 9), and
consequently a huge impact on the PBH abundance.
In addition to SM parameters and to H0, the PBH

abundance also depends on two extra parameters that
characterize the assumed initial condition: constant hðxÞ ¼
hin at Nin e-folds before the end of inflation, when the
approximated classicality condition is satisfied. The next
section reconsiders if this assumption is justified.

F. Is a homogeneous Higgs background
a sensible assumption?

The computation was based on assumption (i): at Nin ≈
20 e-folds before the end of inflation, the Higgs field must
be away from its minimum and constant within the
presently observable horizon.

1. Approximate Higgs homogeneity?

We here show that approximate homogeneity is a natural
product of inflation, provided that the SM Higgs potential
satisfies certain conditions. Quantum corrections in infla-
tionary (de Sitter) spacetime have been studied in [38],
which showed that long wavelength fluctuations can be
described by a Fokker-Planck equation for ρðh;NÞ,
the probability of finding the Higgs field at the value h
at N e-folds of inflation,

−
∂ρ
∂N ¼ H2

0

8π2
∂2ρ

∂h2 þ
∂
∂h

�
V 0
effρ

3H2
0

�
: ð65Þ

The first term on the right-hand side is a diffusion term due
to quantum fluctuations while the second term is a drift (or
transport) term due to the potential. After some e-folds, the
distribution converges to its equilibrium value ρeqðhÞ ∝
expð−8π2VeffðhÞ=3H4Þ [38].
We are interested in the probability of having a roughly

constant Higgs away from its minimum h ¼ 0 within the
presently observable horizon. This configuration is a
natural outcome of inflationary dynamics provided that
the correlation length of Higgs fluctuations is larger than
the present horizon. Following [38], the computation of the
correlation length is simplified, observing that correlation
functions depend on space and time separations respecting

the O(4,1) invariance of de Sitter. Thereby we can compute
the evolution of Higgs fluctuations at a fixed point in space
and study the correlation as a function of time t, or
equivalently as a function of the number of e-folds N.
At a large time separation the correlation is well approxi-
mated by its dominant exponential and parametrized in
terms of a correlation time τcorr or equivalently in terms of
number of e-folds Ncorr ¼ H0τcorr as [38]

hhðt1; x⃗Þhðt2; x⃗Þi ≃ hh2ie−jt1−t2j=τcorr ¼ hh2ie−jN1−N2j=Ncorr :

ð66Þ

O(4,1) invariance implies that the spatial correlation length
is exponentially large eHNcorr , namely that space is expo-
nentially inflated. We demand thatNcorr is larger than about
40 in order to produce a smooth region as large as our
Universe at Nin ≈ 20 e-folds before the end of inflation.
Before computing numerically Ncorr for the SM potential, it
is useful to consider some simple limits:
(0) A massless free scalar h is a simple but special case,

because it does not “thermalize” to the equilibrium
distribution. Rather, it undergoes random walk diffu-
sion. Starting from h ¼ 0, after N e-folds one has
hh2i1=2 ¼ ffiffiffiffi

N
p

H0=2π and the correlation length in a
region with given hhi is Ncorr ¼ 2πhhi=H. Imposing
Ncorr > 40 implies H0 < 0.16hhi.

(m) A free scalar with squared mass m2 > 0 fluctuates
as hh2i1=2 ¼ ffiffiffiffiffiffiffiffi

3=2
p

H2=2πm with correlation length
Ncorr ¼ 3H2=m2 [38]. For m2 ¼ −12ξHH2 one gets
Ncorr ¼ −1=4ξH > 40 for −0.006 < ξH < 0. Roughly,
this will be our final result.

FIG. 10. Contour plot of the correlation length Ncorr of Higgs
inflationary fluctuations as a function of the main parameters, ξH
and hcr=H0. The needed homogeneous patch, Ncorr > 40, can be
obtained in the green region, which corresponds to a small
negative ξH.
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(λ) A massless scalar with an interaction λh4=4 and λ > 0

fluctuates as hh2i1=2 ¼ 0.36H=λ1=4 with Ncorr ¼
7.62=

ffiffiffi
λ

p
. So Ncorr > 40 for λ < 0.036. This is satisfied

in the SM at large energy.
The above two results agree, up to order one factors,
approximating a generic VðhÞ as a massive field with
m2 ¼ V 00. The precise value of the correlation length can be
obtained as proposed in [38]: the dominant exponential that
solves Eq. (65) can be computed as the eigenvalue of a
Schrödinger-like equation. In the SM λeffðhÞ runs to
negative values, making the curvature V 00 negative at large
field values; the patch with a large correlation length is
created while h is climbing the potential in its region with
positive curvature. The result is shown in Fig. 10, and
basically agrees with the result anticipated at point (m): ξH
must be negative and small. Such a small ξH is roughly
compatible with the size of quantum corrections to ξH. The
running Higgs quartic coupling is small enough that it does
not spoil the mechanism, as qualitatively understood at
point (λ).
In conclusion, a roughly homogeneous Higgs field (up to

fluctuation of orderH0) encompassing our whole horizon is
a natural outcome of inflation, provided that ξH is small
enough. In a multiverse context, its fine-tuned value that
leads to DM as PBH can be justified on an anthropic basis.

2. Exact Higgs homogeneity?

Figure 11(a) shows that the initial homogeneous Higgs
fields hðxÞ ¼ hin at N ¼ Nin e-folds before the end of
inflation must be tuned to a part in about 10−3 in order to
produce a final hend close to the maximal value that can be
rescued by reheating, as needed to produce a substantial
amount of primordial black holes. An interesting PBH

abundance is obtained within the narrow strip in Fig. 11(a).
Its boundaries have been computed as follows:

(i) A slightly smaller hin leads to a negligible PBH
amount. In Fig. 11(a) we show the peak value of the
power spectrum and shade in gray regions where it is
below 10−2.

(ii) A slightly larger hin leads to a too large hend not
rescued by reheating. In Fig. 11(a) we shade in red
regions where hend is above the maximal value that
can be rescued by instantaneous reheating.

In Fig. 11(b) we show that a variation in _hin has a smaller
effect as it gets redshifted away.
Within the assumption that hin is homogeneous, its tuned

value can be justified on an anthropic basis provided that
PBH make all DM [8,39]. However, one single fluctuation
δhin ≳ 10−3hin away from the assumed perfect homo-
geneity can lead to one vacuum decay bubble that, after
inflation, expands engulfing the observable Universe.
As discussed previously, inflation can produce an

approximate homogeneity within a large patch, but up to
fluctuations of order δhin ∼H0=2π.

10 Additional fluctua-
tions in _hin are less significant and we ignore them. The
Hubble constant H0 cannot be significantly reduced, for
two reasons: First, H0 ≳ hcr is needed to keep the Higgs
fluctuating around the top of its potential barrier, until it
starts to classically roll down. Second, it would suppress
the unwanted prefall fluctuations δhin at the price of

(a) (b)

FIG. 11. We fix the SM to Mt ¼ 172 GeV [which corresponds to hcr ¼ 4 × 1012 GeV, b ¼ 0.09=ð4πÞ2] and H0 ¼ 1012 GeV and
explore the dependence on the parameters that define the assumed initial condition. Left: Final outcome as a function of the
homogeneous initial value of the Higgs field hin at Nin e-folds before the end of inflation and of Nin. The desired PBH abundance is
produced inside the white band. Inflationary fluctuations in hin are much larger than the needed tuning. Right: We fix Nin and introduce
dhin=dN as an additional parameter.

10Technically, such fluctuations appear in our equations when
(motivated, e.g., by the arbitrariness in the classicality condition)
we start from a different initial time: this shifts the position and
the height of the presumed peak of the power spectrum, and
thereby the abundance and mass of PBHs.
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suppressing postfall fluctuations that generate PBHs;
see Eq. (52).
Thereby we must take into account the effect of

fluctuations in the initial hðxÞ. Pictorially, the status of
the Universe should now be represented in Fig. 10 not by a
point (which can lie in the desired region), but by a dot,
much thicker than the desired region.
This is a problem because, at Nin ≈ 20 e-folds before the

end of inflation (which needs at least 60 e-folds), the present
Universe is composed by about e120 causally disconnected
regions. Within each region, the probability that the Higgs
fluctuates to the desired tuned hin is about 10−2−3.
Underfluctuations produce a negligible PBH abundance.

On small scales this is not a problem: only the average
matters. Accretion of black holes after their formation
would increase the average. On large scales of the order of
the present horizon (those probed by observations that find
a DM density more homogeneous than what could be
justified anthropically), fluctuations of hðxÞ would produce
a PBH density that is not homogeneous.
The effect of overfluctuations is much worse. As in a

cosmic Russian roulette, a too large hin in one of the e120

regions can form a vacuum decay bubble that, after the end
of inflation, engulfs the whole Universe (a general relativity
computation finds that innocuous bubbles that shrink and/
or expand behind a black hole horizon can form, but
together with dangerous ones [8]). The probability of
avoiding vacuum decay is roughly estimated as ℘ ∼ 2−e

120

.
As we now discuss, this unlikely possibility cannot be

justified on an anthropic basis.
To explain why, let us start from an analogous anthropic

argument considered by Weinberg [40]: if observers exist
only where the cosmological constant Λ is small enough to
allow their development (at the price of a tuning with
probability ℘Λ ∼ 10−120, which is possible in multiverse
with more than 10120 different vacua), they should expect to
see a cosmological constant around the anthropic bound.
Once the desired Universe with small Λ is formed, it is
relatively safe. Technically, the timescale for the variation
of the ℘Λ is the Hubble scale, presently 1010 yr.
Within the “rescued Higgs fall” mechanism, the prob-

ability ℘ to form DM but no vacuum decay is much smaller.
This might be by itself a problem, unless one relies on
eternal inflation and argues that 1=℘ is smaller than infinity.
The same Weinberg-like argument leads to expectations
incompatible with experience. Indeed, the timescale for the
growth of 1=℘ is very short. An observer that justifies its
lucky survival to vacuum decay as needed for its existence
should expect to be immediately executed by an expanding
vacuum decay bubble, given that it arises with statistical
certainty in the extra regions which continuously enter
in causal contact with the observer due to the Universe
expansion.
Needless to say, multiverse probability is a shaky

concept, plagued by infinities. Nevertheless, the problem

seems worrying enough that one wonders if it can be
avoided or alleviated.
One possibility is devising a mechanism that suppresses

vacuum decay by rescuing the Higgs more efficiently
than the thermal barrier considered in [8,10]. For example,
a nonthermal distribution11 or an inflation that initially
decays to the SM particles more coupled to h increases its
thermal mass. The green dashed line in Fig. 11 shows the
extra rescued region imposing what we believe is the most
optimistic possibility: hend < hmax

end with Veffðhmax
end Þ ¼ 0.

Namely, we demand that the negative Higgs potential
energy remains smaller than the inflaton potential
V0 ¼ 3M̄2

PlH
2
0; otherwise, nothing can stop the Higgs fall.

Figure 11 shows that a more efficient rescue mechanism
would not qualitatively change the picture. Alternatively,
some mechanism beyond the SM could prepare the Higgs
in the homogeneous state needed for the rescued Higgs fall
mechanism. A study of this possibility goes beyond the
scope declared in the title of this paper, where we wanted to
see if some mechanism can generate dark matter within the
Standard Model.

IV. CONCLUSIONS

We critically reexamined two different dark matter
candidates that do not require new physics beyond the
Standard Model.
The first is a hexaquark S ¼ uuddss dibaryon, which

(being a spin 0 isospin singlet) might have a QCD binding
energy large enough to make it lighter than MS <
1.876 GeV and thereby stable because all possible decay
modes are kinematically closed. In Sec. II A we estimated
its mass at the light of recently measured tetraquarks. We
found that S could be light enough, possibly as light as
1.2 GeV, although we cannot provide a precise mass. In
Sec. II B we computed its cosmological relic density,
finding that it can reproduce the desired DM density if
MS ≈ 1.2 GeV, while larger masses lead to smaller abun-
dances. The dominant process that keeps S in thermal
equilibrium is the scattering of two strange baryons, whose
abundance gets Boltzmann suppressed at temperatures
smaller than the strange quark mass, leading to S decou-
pling at the temperature Tdec ≈ 25 MeV where S has the
desired abundance. However, in Sec. II C we find, follow-
ing the strategy of [2], that such a light S is excluded,
because nucleons inside nuclei would bind in S faster than
what is allowed by Super-Kamiokande bounds on the
stability of oxygen. We reached this conclusion at the light
of recent global fits of nuclear potentials used to compute
the nuclear wave function of oxygen, which indicate that
nucleons are close enough to make S production too fast.
Both S and nuclei can be stable for MS ≈ 1.87 GeV;
however, this mass leads to a relic S abundance much

11We thank the authors of [8] for this suggestion.

GROSS, POLOSA, STRUMIA, URBANO, and XUE PHYS. REV. D 98, 063005 (2018)

063005-16



smaller than the DM abundance. Among sparse comments,
we mention that direct detection of S on an antimatter target
gives an annihilation signal.
In the second part of the paper, we considered the

proposal of [8]: given that the SM Higgs potential can be
unstable at large field values, during inflation the Higgs
might fall from an assumed homogeneous vacuum expect-
ation value h beyond the potential barrier toward the Planck
scale. If the fall is tuned such that h almost reaches the
maximal value that can be rescued by thermal effects, this
process generates small-scale inhomogeneities that form
primordial black holes. While DM as PBH seems excluded
in the proposed mass range (just above the bound on
Hawking radiation), the proposal is interesting enough to
deserve further scrutiny. We confirmed the computations of
[8] and extended them, adding a nonminimal coupling ξH
of the Higgs to gravity. We find that inflationary fluctua-
tions can generate a quasihomogenous h only if ξH is as
small as allowed by quantum corrections that unavoidably
generate it. Furthermore, we find in Sec. III F that the
amount and mass of PBH depend on an extremely sensitive
way on the uncertain SM and cosmological parameters,
including two extra parameters introduced as assumptions:
the Higgs starts falling from a homogeneous value at a
given moment during inflation. The assumed homogeneity
is, however, not the typical state present during inflation,
where the Higgs has fluctuations of order Hubble. This is
important for the present mechanism because it has a
Russian roulette feature: the Universe is eaten by a vacuum
decay bubble if the Higgs fluctuates to a value too high to
be rescued by thermal effects in one of the e120 causally
disconnected patches in which the present horizon is
divided while the Higgs starts falling. The probability of
obtaining the observed Universe is so small, about

ð1=2Þe120 , that trying to justify it through anthropic con-
siderations leads to the issues discussed in Sec. III F.
We conclude that tentative searches and interpretations

of dark matter as a phenomenon beyond the Standard
Model remains a justified field.
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Note added.—G.Farrar in arXiv:1805.03723 proposed that a
co-stable S dark matter with 1.86 GeV < MS < 1.88 GeV
could be produced with roughly the correct relic abundance
at the QCD phase transition at T ≈ 150 MeV. We have not
considered this possibility because this abundance would be
washed out by thermal equilibrium through the S breakup
reactions inEq. (18). To avoid this conclusion, theS breaking
cross sections should be ∼10 orders of magnitude smaller
than the naive QCD estimate given by the S radius squared.
We view this as a too extreme possibility given that—while
some special suppression could arise at low energy assuming
appropriate nucleon potentials—one would need such a
strong suppression at T ≈ 150 MeV, where the simpler
QCD physics is relevant.
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