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We present numerical results showing how our recently proposed relativistic three-particle quan-
tization condition can be used in practice. Using the isotropic (generalized s-wave) approximation,
and keeping only the leading terms in the effective range expansion, we show how the quantization
condition can be solved numerically in a straightforward manner. In addition, we show how the inte-
gral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3,
to the physical scattering amplitude can be solved at and below threshold. We test our methods
by reproducing known analytic results for the 1/L expansion of the threshold state, the volume
dependence of three-particle bound-state energies, and the Bethe-Salpeter wavefunctions for these
bound states. We also find that certain values of Kdf,3 lead to unphysical finite-volume energies,
and give a preliminary analysis of these artifacts.

Keywords: finite volume, relativistic scattering theory, lattice QCD

I. INTRODUCTION

Studies of few-hadron systems based on lattice quantum chromodynamics (LQCD) are advancing rapidly. Recent
results highlighting this progress include the first study of multiple, strongly-coupled scattering channels [1, 2], the first
determination of resonant electroweak amplitudes [3, 4], and the first study of a meson-baryon scattering amplitude
in a resonant channel [5]. Each of these calculations has been made possible by a series of theoretical developments,
stemming from seminal work by Lüscher [6, 7]. This formalism and its subsequent generalizations explain how the
desired infinite-volume observables, namely scattering and transition amplitudes, can be obtained from the finite-
volume correlation functions evaluated using numerical LQCD. We point the reader to Ref. [8] for a recent review on
the topic.

Current theoretical work is focused on extending the finite-volume relations to extract observables with initial or
final states composed of three or more hadrons. To this end, in a series of papers published in the last few years, we have
derived a quantization condition that relates the finite-volume energies of states containing a three-particle component
to infinite-volume, two- and three-particle scattering amplitudes [9–11].1 This quantization condition accounts for
all power-law volume dependence while dropping dependence that falls exponentially with the box length, L. The
formalism is relativistic and encompasses arbitrary interactions aside from two restrictions: (i) the particles must be
spinless and identical, and (ii) the two-particle K matrix cannot have poles in the kinematical regime of interest. From
our past experience in the two-body sector [22, 23], we expect the former restriction to be straightforward to remove,
and now understand how to remove the latter [24]. The relation to physical scattering amplitudes involves two steps.
In the first, the quantization condition is used to determine an infinite-volume K matrix like quantity, Kdf,3 [10]. In
the second, Kdf,3 is related to the physical scattering amplitudes via integral equations.2,3 The formalism has been
tested in several ways, most notably by reproducing the known finite-volume dependence of a weakly-interacting
threshold state and of an Efimov-like bound state [26–29].

A crucial issue yet to be considered, however, is whether the formalism is usable in practice. Indeed, in recent
papers introducing an alternative approach based on nonrelativistic effective field theory (NREFT), Refs. [17, 18]
have suggested that our formalism may be too complicated to use in the analysis of real lattice data. It is the purpose
of this work to investigate this issue. We find, in fact, that the status with regard to applicability is more-or-less

∗ e-mail: rbriceno@jlab.org
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‡ e-mail: srsharpe@uw.edu
1 For parallel studies of three-body systems see Refs. [12–21].
2 We stress that these integral equations are defined via manifestly finite integrals with fixed total three-particle energy. In addition, the

equations depend only on on-shell quantities and make no reference to an underlying effective theory.
3 In general, taking these steps will require using parametrizations for the physical scattering amplitudes, such as those currently being

developed in Ref. [25].
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identical to that for the NREFT approach: the steps are the same, the number of parameters are the same (when
using analogous approximations), and the numerical implementation seems to be of comparable difficulty. There are,
however, technical differences that we discuss briefly here and return to in the conclusions.4

In particular, we note here four advantages of using a relativistic formalism for three-particle physics. First, one aims
to constrain the physical observables over the widest energy range possible, and our formalism applies for three-particle
center-of-momentum (c.m.) energies reaching up to 4m (5m if there is a Z2 symmetry forbidding odd-legged vertices),
clearly in the regime of relativistic momenta. Second, in Ref. [11] we describe how to determine 2 → 3 scattering
amplitudes from finite-volume energies. Such processes are intrinsically relativistic since the incoming particles must
have enough kinetic energy to produce a new particle. Third, it is known in the 1/L threshold expansion that, for
weakly interacting systems, three-body effects and relativistic effects enter at the same order in 1/L. Thus it is natural
to pursue a formalism that includes both. Fourth, as we describe below, for three noninteracting particles the second
and third excited states (as well many higher groups of states) become degenerate in the nonrelativistic limit. Thus
the basic counting and locations of noninteracting states, as well as their deformations due to interactions, is very
different between the relativistic and nonrelativistic theories. This final point is discussed further in Sec. III A.

In this work, to address the issue of applicability, we primarily use a dynamical approximation similar to that
used in the numerical example worked out in Ref. [18], referred to here as the low-energy isotropic approximation.
However, in all calculations presented here, we make no kinematical approximations, i.e. we keep the relativistic form
throughout. In addition, we restrict attention to theories in which there is a Z2 symmetry forbidding transitions
between even- and odd-particle-number sectors. This is a simplifying approximation that we know, at least formally,
how to remove [11]. In short, we conclude that the three-body formalism we have previously derived [9–11] is indeed
in a form that is suitable for the analysis of some realistic lattice systems.

The remainder of this paper is organized as follows. In Sec. II we present a brief summary of the three-body
formalism, and explain the justification for the isotropic approximation, in which the matrix quantity, Kdf,3, is
replaced by a single function of the total three-particle energy, Kiso

df,3. In Sec. III we present several results concerning
the three-particle spectrum obtained using the quantization condition, starting with the simplest case of vanishing
Kiso

df,3 and then turning on nonzero values. In cases where this leads to a three-particle bound state, we compare the
volume dependence of the bound-state energy to an analytic prediction. We close Sec. III by studying the volume
dependence of the threshold state and comparing it to analytic predictions. In Sec. IV we implement the relation
between Kiso

df,3 and the physical scattering amplitude, beginning below threshold and then working directly at threshold.
This illustrates how our complete, two-stage formalism can be implemented. In Sec. V we describe how, in certain
regimes of parameters, unphysical solutions to the quantization condition can appear, and we discuss their possible
origin. We conclude and describe directions for future work in Sec. VI. Two appendices describe some technical details
of our numerical implementation of the quantization condition and our methods for solving the integral equations.

II. SUMMARY OF FORMALISM IN THE ISOTROPIC LOW-ENERGY APPROXIMATION

In this section we recall the essential results for the Z2-symmetric case; further details can be found in Refs. [9, 10].
The spatial volume is a cube of length L with periodic boundary conditions, so that finite-volume momenta have the

form ~k = 2π~n/L, with ~n a three-vector of integers. The total momentum, ~P , can take any value in this finite-volume
set.

Within this set-up, the result of Ref. [9] is that, for any fixed values of L and ~P , the finite-volume energy spectrum,
{En(L)}, is given by solutions to the quantization condition5

det
[
F3(E, ~P , L) +K−1df,3(E∗)

]
= 0 . (1)

Here the finite-volume-frame energy, E, is related to the c.m.-frame energy, E∗, by the standard dispersion relation,

E∗2 = E2 − ~P 2.
In Eq. (1) the quantities F3 and Kdf,3 are matrices in a space labeled by the finite-volume momentum, ~k, of one of

the particles (denoted the “spectator”) and the angular momentum of the other two in their two-particle c.m. frame.
The determinant above acts on this space. Kdf,3 is an infinite-volume quantity characterizing the underlying local
three-particle interaction. It is analogous to the three-body contact terms in the NREFT approach of Ref. [18]. F3

4 The steps in our approach are also similar to those in the recent relativistic proposal of Ref. [19]. This parametrizes three-particle
interactions using an isobar (dimer) formalism that maintains unitarity. This parametrization is then used both in finite volume to
predict the spectrum, and, in a separate calculation, in infinite volume to give the scattering amplitude. We suspect that this formalism
will yield similar results to ours.

5 The ultimate aim is for this result to be used to interpret results from lattice QCD simulations. These results inevitably involve errors
due to working at nonvanishing lattice spacing. Such effects are not incorporated into the quantization condition, which is a continuum
quantum field theory result. Thus, strictly speaking, lattice results should be extrapolated to the continuum limit before they can be
used in the quantization condition.
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incorporates both the effects of two-particle scattering and of the finite volume. More specifically, it depends on the
two-particle K matrix, K2, and on known kinematic finite-volume functions. Its explicit form is given in Eq. (8) below
in the approximation we use.

Just as in the two-body sector [6, 7, 30–32], to use the quantization condition in practice one must truncate the
partial waves that contribute, thus reducing the matrices to finite size [9]. This applies here not only to K2, as in the
two-particle case, but also to Kdf,3. One then proceeds as follows:6

1. Perform a two-particle finite-volume analysis to determine K2 as a function of the two-particle c.m. energy, E∗2 ,
using Lüscher’s quantization condition [6, 7] and its generalizations.

2. Use the quantization condition, Eq. (1), and the three-particle spectrum to constrain Kdf,3.

3. Determine the relativistic three-to-three scattering amplitude, M3, from Kdf,3 and K2 by solving the integral
equations given in Ref. [10].

Our aim here is to show how this procedure works when we truncate to a single partial wave and make a few further
simplifying approximations.

An important technical point is that our formalism includes a smooth cutoff function, H(~k), that depends on the

spectator momentum ~k. For fixed E, as ~k is increased the c.m. energy in the remaining two-particle subsystem, E∗2,k,
decreases, dropping first below the two-particle threshold and eventually becoming complex. Our formalism requires
that E∗2,k is real and positive, E∗2,k > 0, and the cutoff function ensures that this condition is satisfied. This means

that the sum over ~k is truncated to a finite number of terms.
There are two reasons for requiring E∗2,k > 0. First, K2 has a singularity (the left-hand cut) at this point, and

this can lead to additional power-law finite-volume effects that are not accounted for in the formalism. Second, the
boost to the two-particle c.m. frame becomes unphysical if the condition is not satisfied. There remains, however,
considerable latitude in the choice of cutoff function. In particular, the lower limit on E∗2,k can lie anywhere in the

range from 0 to (2 − δ)m, with δ a positive constant of order one. The final results for physical quantities should
be independent of this cutoff (up to terms suppressed by e−δmL). We stress that, if δ is order one, then the cutoff

occurs for spectator momenta satisfying |~k| ∼ m and thus lying in the relativistic regime.7 In this work we set δ = 2
throughout.

A. Definition and motivation of the isotropic approximation

The approximation we consider here consists of three parts. First, we restrict K2 and Kdf,3 to contain only s-wave
interactions between the nonspectator pair. This implies that all matrices appearing in the quantization condition

have only the spectator-momentum indices, e.g. Kdf,3 = Kdf,3(E∗,~k, ~p ). As noted above, these indices are truncated
by the cutoff function. Second, we assume that Kdf,3 depends only on E∗ and not on the spectator momenta, so that

Kdf,3(E∗,~k, ~p ) ≡ Kiso
df,3(E∗), independent of ~k and ~p. Together these give the “isotropic approximation” introduced

in Ref. [9]. Finally, we neglect the energy dependence of q∗2 cot δ(q∗2) appearing within K2. This corresponds to taking
only the leading order (scattering-length-dependent) term in the effective range expansion.

In the remainder of this section we explain why the isotropic approximation is the natural generalization of the
s-wave approximation in the two-body case. We begin by recalling the argument for the latter case. We make use of
the two independent Mandelstam variables, which we denote by s2 = 4q∗ 2

2 + 4m2 and t2 = −2q∗ 2
2 (1− cos θ), where

q∗2 is the magnitude of the c.m. frame momentum. The key input is that, at fixed s2 and away from isolated poles,
K2 is a finite and thus square-integrable function of cos θ. This means that it admits a convergent decomposition in
the Legendre polynomials, P`(cos θ). Alternatively, at fixed s2, K2 is an analytic function of t2 near threshold so that
one can perform a Taylor expansion about t2 = 0. Combining these two expansions, we deduce that the coefficient
of the `th polynomial, call it K2,`(q

∗
2), must scale as q∗ 2`

2 as q∗2 → 0. This holds because the `th polynomial contains
a term proportional to cos` θ and this must correspond to the (t2)` term in the Taylor expansion. Thus the s-wave
contribution dominates close to threshold.

To justify the isotropic approximation in the three-body case, it is convenient to work with the full divergence-free
K matrix, without the decomposition into interacting-pair partial waves. This quantity is function of generalized

6 This description applies to theories with a Z2 symmetry. For the general case there are more quantities to determine but the overall
approach is the same [11].

7 In the NREFT approach of Refs. [17, 18] there is no corresponding constraint on the sum over spectator momentum, nor is there a
need for the cutoff to be smooth. While this simplifies practical calculations, it comes at the price that physical singularities such as
the left-hand cut have to be dealt with in some fashion.
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Mandelstam variables, which we label

s = (p1 + p2 + p3)2 , (2)

sij = (pi + pj)
2 and s′ij = (p′i + p′j)

2 [i < j] , (3)

tij = (pi − p′j)2 , (4)

where i, j = 1 − 3, while pi are the initial and p′j the final four-momenta. Note that, at threshold, s = 9m2,

sij = 4m2 = s′ij , and tij = 0. There are many relations between these variables, so that, in addition to s, there are

only seven independent kinematic variables.8 For fixed s, the remaining variables are all “angular”, in the sense that
they span a compact seven-dimensional space [33]. In particular, for fixed s = 9m2 + ∆, the quantities that measure
the distance from threshold, namely δij ≡ sij − 4m2, δ′ij ≡ s′ij − 4m2 and tij , are all bounded in magnitude by c∆,
where c = O(1). This follows because of the relations

∑

i<j

δij =
∑

i<j

δ′ij = − 1
2

∑

i,j

tij = ∆ , (5)

together with the fact that δij , δ
′
ij and −tij are all positive.

The key input now is that, at fixed s, Kdf,3 should be an analytic function of the kinematic variables in the vicinity
of the threshold. Performing a Taylor expansion about threshold, the leading term is independent of δij , δ

′
ij and tij ,

with the leading dependence on these variables proportional to ∆. Thus, close to threshold, the dominant contribution
is independent of the angular variables. One choice of these variables is given by those introduced in Ref. [9], namely

the initial and final spectator momenta introduced above, ~k and ~p, together with the initial and final directions of
the nonspectator pairs in their respective c.m. frames, â∗ and â′∗. These ten variables are reduced to seven by overall
rotation invariance. Thus we conclude that the dominant near-threshold contribution is not only independent of â∗

and â′∗ (which is the s-wave approximation for Kdf,3 already introduced above), but also of ~k and ~p, yielding the
isotropic approximation.9

We close by commenting that, in the two-particle sector, the s-wave approximation holds both for the K matrix,
K2, and the scattering-amplitude, M2. Indeed the harmonic components of these two-objects have the same low-
momentum scaling, the usual (q∗2)2`. This differs from the situation in the three-particle sector, where the argument
holds for Kdf,3 but fails for the scattering amplitude,M3. The reason is that the latter exhibits kinematic singularities,
discussed at length in Refs. [9, 10]. In particular, M3 is not smooth (indeed it diverges) at threshold and one cannot
expect its harmonic coefficients to show low-energy suppression. This is a key advantage of Kdf,3 over M3.

B. Quantization condition in the isotropic approximation

We now return to the main argument. As shown in Ref. [9], the isotropic approximation reduces the quantization
condition to an algebraic equation

F iso
3 (E, ~P , L) = −1/Kiso

df,3(E∗) . (6)

To reach this form we first note that the determinant over angular momentum appearing in Eq. (1) is trivial given
that only the ` = 0 contribution to the K matrix is nonzero. Second, in the isotropic approximation, the K matrix is
independent of the spectator momentum. Therefore, the only eigenvector of Kdf,3 in the space of spectator momenta
with nonzero eigenvalue is that in which every entry is unity, i.e. |1〉 = (1, 1, . . . , 1).10 In this way only a one
dimensional block of the matrices contributes, leading to Eq. (6). As noted above, this form is analogous to the
s-wave approximation of the two-particle formalism. In Fig. 1 we give an example of how this condition is used and
compare to the s-wave two-particle case.

For any fixed L, ~P and any given finite-volume energy, En(L, ~P ), Eq. (6) directly gives the value of Kiso
df,3(E∗) at

E∗ = [En(L, ~P )2 − ~P 2]1/2. This assumes that Ks2(E∗2 ) is known for all E∗2 < E∗ −m, as this is needed to determine
F iso
3 , defined below. Given Kiso

df,3(E∗), one can determine the correspondingM3(E∗,Ω′3,Ω3) at the same energy. Note
that, although we are considering Kdf,3 only in the isotropic approximation, the three-to-three scattering amplitude

8 One choice is s12, s13, s′12, s′13, t11, t22, and t33.
9 It would be interesting to extend this argument to determine the form of the O(∆) corrections in terms of ~k, ~p, â∗ and â′∗, but this is

beyond the scope of the present work.
10 The other eigenvectors, which have vanishing eigenvalues of Kdf,3, lead to free three-particle states, as discussed in Ref. [9].
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FIG. 1. Examples of solving the quantization conditions in the two-particle (left) and three-particle (right) sectors for ~P = 0

and mL = 6. The two-particle condition in the left panel can be written as F̃ s
2 = −1/(2ωKs

2) where ω is the energy of the
spectating third particle. This is satisfied when the two curves intersect, as indicated by the gray circles. (Here we take the

spectator to have ~k = 0 and thus ω = m.) This is closely analogous to the isotropic three-particle quantization condition given
by Eq. (6), again satisfied at the indicated intersection points in the right panel. For this example, we take Ks

2 from the leading
order effective-range expansion with ma = −10, corresponding to an attractive two-particle interaction that pulls the lowest
level below E∗2/m = 2. We take 1/Kiso

df,3 to be a simple polynomial in E/m.

still depends on the incoming and outgoing three-particle phase space, indicated here with the shorthand Ω3 ≡ (~k, â∗).
The primary motivation of this work is to demonstrate the practical utility of our result. Thus, for the sake simplicity,

we consider only the (~P = 0)-frame. This allow us to use E rather than E∗ to denote the simultaneous finite-volume
and c.m.-frame energy. In the same spirit, and following Ref. [18], we take Ks2 to be given by the leading-order term
in the threshold expansion, i.e. the term involving the scattering length a.

The expression for F iso
3 with ~P = 0 is

F iso
3 (E,L) = 〈1|F s3 |1〉 =

∑

k,p

[F s3 ]kp , (7)

where |1〉 has been defined above, and the sum over the momenta k, p is of finite range because F s3 is truncated by

the cutoff function, H(~k). Here and below we keep dependence on E and L implicit. The matrix F s3 is given by

[F s3 ]kp =
1

L3

[
F̃ s

3
− F̃ s 1

1/(2ωKs2) + F̃ s + G̃s
F̃ s

]

kp

, (8)

where
[

1

2ωKs2

]

kp

= δkp

{
−1

a
+ |q∗2,k|[1−H(~k)]

}
1

32πωkE∗2,k
, (9)

F̃ skp = δkpF̃
s(~k) , (10)

F̃ s(~k) =
H(~k)

4ωk

[
1

L3

UV∑

~a

−PV

∫ UV

~a

]
1

4ωaωka(E − ωk − ωa − ωka)
, (11)

G̃skp =
H(~k)H(~p)

8L3ωkωpωkp(E − ωk − ωp − ωkp)
. (12)

Here ωk and ωka are the on-shell energies for particles with momenta ~k and ~k + ~a, respectively, i.e.

ωk =

√
~k2 +m2 , ωka =

√
(~k + ~a)2 +m2 . (13)
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Other ωs are defined analogously. The two-particle c.m. energy and relative momentum are given by

E∗ 22,k = (E − ωk)2 − ~k2 = E2 +m2 − 2Eωk , (14)

q∗ 22,k = E∗ 22,k/4−m2 . (15)

The sum over ~a in Eq. (11) runs over all finite-volume momenta, while the integral is defined as
∫
~a
≡
∫
d3a/(2π)3.

The principal value (PV) prescription is defined such that the integral is an analytic function of ~k 2 (and is referred

to in Ref. [9] as the P̃V prescription). Finally, the cutoff function is11

H(~k) = J(z) , (16)

z =
E∗22,k − (1 + α)m2

(3− α)m2
, (17)

J(z) =





0 , z ≤ 0 ;

exp
(
− 1
z exp

[
− 1

1−z

])
, 0 < z < 1 ;

1 , 1 ≤ z .
(18)

This is the form introduced in Ref. [11], chosen to smoothly interpolate between 0 and 1 as E∗2,k/m ranges from√
1 + α to the threshold value of 2. In the following we consider α = −1, which gives the maximum allowed range.12

In Eq. (11) we have labeled both the sum and the integral with a superscript “UV” indicating that an ultraviolet
cutoff is required to separately evaluate the sum and integral. In Refs. [9, 10] a specific choice of cutoff is used, namely

the product of two of the smooth cutoff functions, H(~a)H(−~a− ~k). We primarily use this definition in this work as
well, but we also make use of the definition given in Ref. [30] for some quantities. These two definitions are described
in more detail in Appendix B, where we also explain our method of numerical evaluation. In places where we use

both definitions, we refer to that using H-functions for the UV cutoff as F̃ sHS, and that using the approach of Ref. [30]

as F̃ sKSS. The subscripts abbreviate the authors of the article where each cutoff was first introduced.
It is important to note that the freedom to adjust the ultraviolet cutoff here is logically separate from the freedom

in the choice of H(~k) in Eqs. (9) and (12). Varying the UV regulator in Eq. (11) changes the value of F̃ s only by the
exponentially suppressed corrections that we are ignoring throughout.13 Thus we can choose the regulator that is most

convenient for numerical evaluation. By contrast, varying factors of H(~k) outside a sum-integral difference, such as
in Eqs. (9) and (12), leads to changes F s3 that are, in general, not exponentially suppressed. These are such, however,
that Kdf,3 can in principal be adjusted to keep the low-energy physics unchanged. In other words, an adjustment in
the external H functions corresponds to a change in the renormalization scheme.14

The form of the result for 1/Ks2 in Eq. (9) deserves further explication. Above threshold, where H(~k) = 1, this form
arises from the standard s-wave K matrix, 16πE∗2,k tan δ0(q∗2,k)/q∗2,k, keeping only the leading order in the threshold
expansion. Below threshold, the result interpolates smoothly to the subthreshold s-wave scattering amplitude, Ms

2,

reaching this amplitude when H(~k) → 0. As explained in Ref. [9], this behavior follows from the choice of pole

prescription in F̃ s.

From these definitions we see that F iso
3 depends on E, L and a. For fixed L and a, the spectrum is determined by

those values of E for which F iso
3 (E)Kiso

df,3(E) = −1. In Appendix A, we describe how we implement this numerically.
Here we note two caveats. First, the formalism breaks down as E approaches 5m, where the five-particle channel
becomes important. Second, the formalism does not hold if Ks2 has a pole in the region of E∗2,k that enters into the

calculation, namely
√

1 + α < E∗2,k/m < (E∗−m)/m. Note that this restriction includes poles below as well as above
threshold.

With the form of Ks2 that we use, Eq. (9), we see that there are no poles above threshold, but there is a pole below
threshold if

1/a = |q∗2,k|[1−H(~k)] . (19)

11 Note that, for ~P = 0, H(~k) = H(k). Nevertheless we keep the more general notation for consistency with Refs. [9–11] and because H

does depend on ~k when ~P 6= 0.
12 The relationship between α and the parameter δ used earlier in this section is

√
1 + α = 2− δ. Thus α = −1 corresponds to δ = 2.

13 Strictly speaking, this holds only if the regulator only modifies the terms satisfying |E − ωk − ωa − ωka| � m, and equals unity when
E − ωk − ωa − ωka = 0.

14 Despite this expectation, we discuss below examples where exponentially suppressed finite-volume artifacts can lead to significant effects,
e.g. the unphysical solutions discussed in Sec. V.
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One can show that the right-hand side lies between 0 and m for all allowed values of E, ~k and α. Thus to avoid the
poles in general the scattering length must satisfy15

a < 1/m . (20)

We stress that negative values of a having arbitrarily large magnitude are allowed, so we can investigate the unitary
limit. Indeed, as can be seen from Eqs. (9) and (A1), we can work directly at 1/a = 0, although we do not make use
of this possibility in our numerical studies.

C. Relation between Kiso
df,3 and M3

We close this section by recalling from Ref. [10] the relation between the infinite-volume quantities Kdf,3 and M3.

In the isotropic approximation, this requires solving only one integral equation. This is for the quantity D(u,u)(~k, ~p)
that sums up repeated two-particle scattering in which the two particles involved can switch any number of times. It
satisfies

D(u,u)(~k, ~p) = −Ms
2(~k)G∞(~k, ~p)Ms

2(~p)−
∫

~s

1

2ωs
Ms

2(~k)G∞(~k,~s)D(u,u)(~s, ~p) , (21)

where, as usual, ~k and ~p are spectator momenta, which are now continuous variables. Ms
2(~k) is the physical s-wave

two-particle scattering amplitude with two-particle c.m. energy E∗2,k, which in the low-energy approximation is given
by

1

Ms
2(~k)

= −1

a

1

16πE∗2,k
+ ρ(~k) , (22)

ρ(~k) =
1

16πE∗2,k

{
−iq∗2,k E∗22,k ≥ 4m2 ;

|q∗2,k| E∗22,k < 4m2 ,
(23)

and G∞ is an infinite-volume quantity related to G̃s,

G∞(~k, ~p) =
H(~k)H(~p)

2ωkp(E − ωk − ωp − ωkp + iε)
. (24)

The cutoff functions imply that the integral is of finite range. Note that we are using the iε pole prescription here.
This is correlated with the appearance of the scattering amplitude Ms

2, rather than Ks2, in the integral equation.
Above threshold, M3 has singularities at particular, physical kinematic points, and so in Ref. [9] we introduced a

divergence-free version of the amplitude

Mdf,3(~k, â∗; ~p, â′∗) =M3(~k, â∗; ~p, â′∗)− S
{
D(u,u)(~k, ~p)

}
. (25)

The notation here is that S is a symmetrization operator that sums over the three choices of spectator momentum
for both initial and final states. The need for such symmetrization implies that Mdf,3 and M3 depend not only on
the spectator momenta, but also on the directions of the other two particles in their relative c.m. frame, which are
given by â∗ and â′∗ respectively for the initial and final states. Mdf,3 has the advantage compared to M3 of being a
smooth function of momenta and E, so that, in particular, it is well defined at threshold. It has the disadvantage of
depending on the cutoff function H.

In the isotropic approximation, Mdf,3 is related to Kiso
df,3 by

Mdf,3(~k, â∗; ~p, â′∗) = S
{
L(~k)

1

1/Kiso
df,3 + F∞3

R(~p)

}
, (26)

15 In fact, for α > −1, a somewhat higher, α-dependent upper limit applies.
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where

R(~k) = L(~k) = 1
3 − 2ωkMs

2(~k)ρ̃(~k)−
∫

~s

D(u,u)(~k,~s)ρ̃(~s) , (27)

F∞3 =

∫

~k

ρ̃(~k)L(~k) , (28)

ρ̃(~k) =
H(~k)ρ(~k)

2ωk
. (29)

These relations involve only integrals over a finite range of momenta. In Appendix A, we discuss how these quantities
can be readily determined at or below threshold.

III. NUMERICAL RESULTS

In this section we present a sampling of numerical results, aiming both to provide checks by comparing with several
known analytic results, and to give examples of the finite-volume spectrum that emerges for various choices of the
scattering parameters. Throughout this section we use units in which m = 1, with the exception of the figures, where
for clarity we add back in appropriate factors of m. Most of the details regarding the numerical evaluation of the
finite-volume functions are described in the appendices.

A. Energy spectrum with Kiso
df,3 =Mdf,3 = 0

We begin by studying the finite-volume spectrum for the special case of Kiso
df,3 = 0. This in turn implies that

Mdf,3 = 0 and thus that M3 = S
{
D(u,u)(~k, ~p )

}
[see Eqs. (25) and (26)]. In words this says that the three-to-three

scattering amplitude is given by the sum over all pair-wise scattering diagrams in which the two-particle subprocesses
are mediated by on-shell two-to-two scattering amplitudes.16 In this case the quantization condition simply becomes

1/F iso
3 (E,L, a) = 0 . (30)

This is a useful starting point because it provides a benchmark for three-particle lattice calculations. If three-particle
energies were found to be consistent with the Kiso

df,3 = 0 predictions, then it would only be possible to place upper

limits on Kiso
df,3. By contrast, resolving a shift from these values would gives a direct indication of the strength of this

local three-body interaction. The solutions to Eq. (30) occur at the poles in F iso
3 . The numerical determination of

the positions of these poles is straightforward, as described in Appendix A 1. Examples of the form of F iso
3 are shown

in Figs. 1 and 21.
In Fig. 2 we plot the low-lying finite-volume spectrum for Kiso

df,3 = 0 and a = −10, together with the noninteracting
three-particle levels. The latter are given by

En(L) =
√

1 + (2π/L)2 ~m2
1 +

√
1 + (2π/L)2 ~m2

2 +
√

1 + (2π/L)2 ~m2
12 , (31)

where ~m1 and ~m2 are integer vectors determining the momentum of two of the particles, while ~m12 = −~m1 − ~m2

determines the momentum of the third. In Table I we collect some information about the low lying noninteracting
levels. The values of L that are shown correspond to those used in present lattice QCD simulations (4 . mπL . 6)
as well as somewhat larger values that may be accessible in the future.

Our interpretation of the a = −10 levels is that they correspond to the first four noninteracting levels, but pushed
to significantly lower energies by the strongly attractive two-particle interaction. In particular, the lowest state is not
a bound state. We can see this by extending the calculation to larger values of L and observing that it approaches
the threshold energy E = 3. We refer to this state below as the threshold state.

We have shown several additional noninteracting levels in Fig. 2 in order to illustrate the clustering of excited
states. This clustering can be understood by doing a nonrelativistic expansion of the energies. In particular, keeping
only the leading term—that present in nonrelativistic quantum mechanics (NRQM)—the noninteracting energies are

En.r.
n (L) = 3 +

2π2

L2

(
~m2

1 + ~m2
2 + ~m2

12

)
. (32)

16 We stress that both Kdf,3 and Mdf,3 are scheme dependent in the sense that physical predictions for a given Kdf,3 can only be made
once a particular form of H has been specified. Thus, when we say that Kiso

df,3 = Mdf,3 = 0, this is for H defined in Eq. (16) with
α = −1.
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FIG. 2. The four lowest-energy solutions to the quantization condition for Kiso
df,3 = 0 and ma = −10 (thick, orange) together

with the lowest eleven noninteracting levels, i.e. solutions for Kiso
df,3 = a = 0, (thin, black). We only show results in the energy

range for which our formalism is valid, namely En < 5m. Noninteracting levels are clustered according to momenta that are
degenerate in the nonrelativistic theory, as discussed in the text.

As a result, all states for which the sum of squared momenta are equal become degenerate. This increased degeneracy
is indicated by the groupings in Table I. The gaps within the clusters scale as

En(L)− En.r.
n (L) = −2π4

L4

(
~m4

1 + ~m4
2 + ~m4

12

)
+O(1/L6) , (33)

whereas the gaps between different clusters scale as 1/L2.17 We note that the splittings within clusters become
significant for the values of mL used in present simulations, i.e. those at the lower end of the range displayed. This
indicates the importance of including relativistic kinematics in order to gain sufficient precision in the spectrum.

One issue that is potentially confusing concerns the degeneracies of the levels shown in Fig. 2. Solutions to the
quantization condition in the isotropic approximation are nondegenerate, whereas the noninteracting levels are highly
degenerate, as can be seen from Table I. As explained in Ref. [9], the resolution is that, even in the presence of
interactions, all but one of the degenerate levels remain at the noninteracting energy when working in the isotropic
approximation. These remaining levels will be shifted and split upon inclusion of nonisotropic interactions. We also
note that one can project onto the states shown in the figure in practice by using three-particle operators living in
A+

1 irreducible representation (irrep) of the cubic group. This irrep has overlap with the state |1〉, and also picks out
a single state from each of the noninteracting levels.

In Fig. 3 we show the result of varying the scattering length. The upper left panel shows a = −8, which is very
similar to a = −10, while subsequent panels halve the value of a, with the exception of the final panel, which shows
the result for a small, positive a. (We recall that the maximum value for which our formalism holds is a = 1.) In
these figures we extend the range of mL up to 20, which allows one to see clearly the approach of the levels to the
noninteracting curves as a → 0. The larger range also allows us to show additional noninteracting levels, and thus
further emphasize the clustering discussed above. Finally, we add to the plot the prediction for the energy of the
threshold state in an expansion in powers of a/L, Eq. (36). We observe that this expansion works well for the smallest
values of |a|. We investigate this expansion in more detail in Sec. III D below.

B. Energy spectrum for nonzero Kiso
df,3

We now consider solutions to the quantization condition with nonzero Kiso
df,3. We first take energy-independent,

negative values of Kiso
df,3. As with the two-particle K matrix, small negative values of Kiso

df,3 correspond to repulsive

17 Interestingly, for the threshold state, the effect of interactions scales with the power between these two, i.e. as 1/L3 (as discussed in
detail below).
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TABLE I. Summary of noninteracting three-particle energies, in units where the particle mass is m = 1. The first column gives
the index of the level, ordered by increasing energy for large L (which means L & 9.5 for these levels). The second column gives
the three squared integers describing the individual momenta. The third column gives the degeneracy for identical particles.
The final two columns give the energies for L = 4, 6, and 10. Horizontal lines group levels having the same value of the sum
~m2

1 + ~m2
2 + ~m2

12, which are thus degenerate in the nonrelativistic limit. We show all the levels having values of this sum up to
12.

n
(
~m2

1, ~m
2
2, ~m

2
12

)
degeneracy En(L = 4) En(L = 6) En(L = 10)

1 (0 , 0 , 0) 1 3.0 3.0 3.0
2 (1 , 1 , 0) 3 4.72 3.90 3.36
3 (2 , 2 , 0) 6 5.87 4.57 3.68
4 (2 , 1 , 1) 12 6.16 4.68 3.70
5 (3 , 3 , 0) 4 6.80 5.14 3.96
6 (4 , 1 , 1) 3 7.02 5.22 3.97
7 (3 , 2 , 1) 24 7.20 5.31 4.00
8 (2 , 2 , 2) 8 7.31 5.36 4.01
9 (4 , 4 , 0) 3 7.59 5.64 4.21
10 (5 , 2 , 1) 24 7.95 5.78 4.24
11 (4 , 2 , 2) 12 8.17 5.89 4.28
12 (5 , 5 , 0) 12 8.30 6.09 4.45
13 (6 , 3 , 1) 24 8.74 6.27 4.49
14 (6 , 2 , 2) 24 8.85 6.33 4.51
15 (5 , 4 , 1) 24 8.81 6.32 4.51
16 (5 , 3 , 2) 48 8.99 6.40 4.54
17 (4 , 3 , 3) 12 9.09 6.46 4.56
18 (6 , 6 , 0) 12 8.95 6.51 4.67
19 (8 , 2 , 2) 6 9.43 6.70 4.71
20 (6 , 5 , 1) 48 9.49 6.75 4.74
21 (6 , 4 , 2) 24 9.71 6.86 4.78
22 (5 , 5 , 2) 36 9.74 6.88 4.79
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FIG. 3. En(L)/m vs mL for Kiso
df,3 = 0 and various values of the scattering length, a. Notation as in Fig. 2, although a

larger range of mL is displayed here, as well as additional noninteracting levels. The dashed black curve shows the threshold
expansion, Eq. (36) through O(1/L5).
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FIG. 4. Finite-volume energy levels for ma = −10 and various negative values of m2Kiso
df,3. The left plot shows results from

two nonzero values of Kiso
df,3, as well reproducing the Kiso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which Kiso
df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of
nonzero values of Kiso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = −10 shown previously for
Kiso

df,3 = 0 in Fig. 2. The levels increase monotonically as Kiso
df,3 becomes more negative. Large magnitudes of Kiso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of Kiso
df,3 and a, the effect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |Kiso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |Kiso
df,3| → ∞ limit. This is analogous to the two particle sector where K2 →∞ corresponds to the unitary

limit, M2 = i16πE∗2/q
∗
2 .

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If Kiso
df,3 is made even

more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of Kiso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow Kiso
df,3 to depend

on energy to model a three-particle resonance. The ansatz we use is

Kiso
df,3(E) = − c× 103

E2 −M2
R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c→ 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for Kiso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of
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FIG. 5. Finite-volume energies for ma = −10 and a “Breit-Wigner” ansatz for Kiso
df,3, Eq. (34). The constant c characterizes

the strength of coupling between the resonance of mass MR = 3.5m and the scattering states. For nonzero c the crossing
of E(L) = MR with the scattering states is replaced with an avoided level crossing. The left panel gives an overview of the
position of the crossing in the overall spectrum, while the right panel zooms in on the crossing itself.

Ref. [34],

EB(L) = 3− κ2 − 96.35|A|2κ2 e
−2κL/

√
3

(κL)3/2

[
1 +O

(
1

κL
, e−ακL, κ2

)]
, (35)

where κ is defined in terms of the infinite-volume value of the bound state energy, EB(∞) = 3 − κ2, |A|2 is a
normalization factor that is expected to be close to unity,18 while α is of O(1). This result is valid if κ � 1
(nonrelativistic regime), |a| � 1 (two-particle unitary regime), and κL� 1. In addition, two-particle interactions are
assumed to be s-wave dominated, and the bound state is assumed to have J = 0.

We note that this result can also be derived analytically from our quantization condition, under the same assump-
tions [29]. This derivation applies also within the low-energy isotropic approximation. However, this derivation re-
quires crucial external input beyond the quantization condition itself, namely the long-distance part of the Schrödinger
wavefunction in the three-body system. Thus agreement with Eq. (35) tests not only our numerical methods, but also
that the quantization condition itself correctly reproduces the physics of the bound state. We can also learn where
the formula breaks down, i.e. where subleading volume-dependence enters.

With this in mind, we have numerically determined the bound-state energy for the parameters a = −104 (assuring
that we are in the unitary regime) and Kiso

df,3 = 2500. Note that, in contrast to the previous section, here we choose

Kiso
df,3 positive, as we find that this generically produces a bound state.19 The results are shown in Fig. 6. We find

that for κL > 4 (L > 37) EB(L) is well described by the asymptotic form given in Eq. (35). To be conservative we do
our final fit only to data for L > 59 (corresponding to κL > 6.3), as shown in Fig. 6(a). The fit gives κ = 0.106844,
corresponding to a binding energy of EB = 2.98858. In addition we find |A|2 = 0.948, and the fact that this result
lies close to unity is a strong check on the applicability of the asymptotic form.

Figure. 6(b) compares the spectrum to the fit for smaller volumes, 20 < L < 40. None of the data shown in this
figure are used in the fit, so the good qualitative agreement for L > 35 provides a strong check that the result of
Eq. (35) is consistent with our quantization condition over a wide range of volumes. The deviation as one drops
below L ≈ 30 is also expected since κL then becomes too small and the asymptotic form no longer holds. We stress,
however, that the solution to the quantization condition continues to be valid for all volumes shown, including the
lowest range, 4 < L < 10, shown in Fig. 6(c). For smaller volumes the exponentially suppressed corrections that we
are ignoring would start to become sizable.

These results illustrate the potential utility of the quantization condition for analyzing three-particle bound-states.
Given the value of a from two-particle scattering, one can constrain Kiso

df,3 near threshold using multiple three-particle

18 For a detailed discussion of the significance of A see Ref. [17].
19 Why this is the case will become clear in the following section. This result is analogous to the fact that, in the two-particle case, a

bound state occurs when a is large and positive.
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FIG. 6. Finite-volume energy dependence for the bound state that arises for m2Kiso
df,3 = 2500 and ma = −104. In all three

figures the solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line
in (c). The curving (turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in
this panel. The same fit line is shown in panel (b) for lower values of mL, along with a horizontal, solid (red) line showing
the infinite-volume energy of the bound state EB(∞). The horizontal dashed (black) line shows the threshold energy E = 3m.
Panel (c) displays EB(L) for smaller mL, along with the same two horizontal lines as in (b) and the asymptotic prediction.

scattering states. Extrapolating the results for Kiso
df,3 to subthreshold energies, one can use the quantization condition

to predict the volume dependence of the bound state. We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large, and the asymptotic formula does not hold. Thus the full
quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.

D. Volume-dependence of the threshold-state energy

In this section we investigate in detail the energy of the threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is to provide a detailed comparison with the predicted
large-volume behavior. The analytic prediction is

E(L)− 3 =
c3
L3

+
c4
L4

+
c5
L5

+
c̃6
L6
− M3,thr

48L6
+O

(
1

L7

)
, (36)
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where the coefficients are (using the fact that, in our approximation, the effective range, r, vanishes)

c3 = 12πa , (37)
c4
c3

= − a
π
I , (38)

c5
c3

=
( a
π

)2
(I2 + J ) , (39)

c̃6
c3

=
( a
π

)3 [
−I3 + IJ + 15K + CF + C4 + C5 +

16π3

3
(3
√

3− 4π) log

(
L

2π

)]
+ 64π2a2C3 + 3πa . (40)

The numerical values of the constants entering these expressions are20

I = −8.91363291759 , J = 16.532315960 , K = 8.401923974828 , (41)

C3 = −0.05806 , CF + C4 + C5 = 2052 . (42)

The terms through O(1/L5) were derived in NRQM in Refs. [35, 36]. Relativistic effects first enter at O(1/L6), and
the relativistic form of c̃6 was determined in Ref. [26] from our three-particle quantization condition. The derivation
was done including all partial waves in K2 and Kdf,3, but holds also in the isotropic limit.

Considering only terms through O(1/L5), we see from Eq. (36) that the expansion parameter is a/L. Because
of this, for a fixed range of L, we expect the expansion to break down as |a| increases. This is borne out by the
results shown in Fig. 3, where only for |a| . 1 does the threshold expansion—shown only through O(1/L5) in the
plots—provide a good description over most of the range of L.

Three-particle interactions enter Eq. (36) only at O(1/L6), through the quantity M3,thr, which is a particular
definition of the three-particle divergence-free scattering amplitude at threshold, and is discussed in Sec IV C and
Appendix A 2. As noted earlier, the appearance only at high order implies that the spectrum is only sensitive
to three-particle interactions at smaller values of L, which is the region where simulations are done. But in this
small L region, the finite-order threshold expansion might not apply, and one must then use the full quantization
condition. By contrast, in this section we are aiming to test our numerical methods by working in a regime where the
threshold expansion does hold, namely small |a| and large L. Specifically, we consider a single value of the scattering
length, a = 0.41315, and determine the threshold energy to very high accuracy for the range L = 5 − 60, and with
1/Kiso

df,3 = 0.04 − 0.16. By doing so we are able to extract a value for M3,thr—which is the only undetermined

parameter in Eq. (36). Our results forM3,thr as a function of Kiso
df,3 can then be checked against the predictions from

the infinite-volume integral equations, as will be discussed in Sec. IV C below.

20 Note that we need I to greatest accuracy, followed by J , while K, C3 etc. are needed to lower accuracy.
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FIG. 7. Log-log plot of E(L)/m − 3 vs. mL (top curve) determined from the quantization condition for ma = 0.41315 and
m2Kiso

df,3 = 10, together with various subtracted curves as labeled. The results are indistinguishable for the two definitions of

F̃s, with the exception of the lowest (maximally-subtracted) curve, where the H-function regulator is shown in orange and that
based on Ref. [30] in blue. The oscillations in the former are discussed in the text.

In Fig. 7 we show that the numerical results from the quantization condition are very well described by the threshold
expansion for our choice of scattering parameters. The top curve shows the results from the quantization condition
for E(L)− 3. Here we suppress the comparison to c3/L

3 + c4/L
4 + c5/L

5 as the curves are indistinguishable at this
scale (indeed, c3/L

3 + c4/L
4 is already indistinguishable from the top curve). The plot also shows the residuals as

successively more terms are subtracted from the threshold expansion, as labeled. We see nice convergence for L & 10,
with each successive term improving the agreement, and the residuals decreasing in the expected way with L. Note
that we subtract the log-dependent piece of c̃6 together with c5 in the second-to-last residual, as these terms are of
similar numerical magnitude. We stress that we must solve the quantization condition with a numerical accuracy of
better than 1 part in 108 in order to pick out the maximally-subtracted result. This turns out to be straightforward.

The maximally-subtracted residual shows oscillatory behavior. To investigate this, we have repeated the calculation

replacing the sum-integral difference regulated using H-functions, F̃ sHS, with that regulated following Ref. [30], F̃ sKSS.

The residues are indistinguishable for all but the lowest curve, in which we find that the results obtained using F̃ sKSS

do not oscillate. Since the difference between the two choices of F̃ s is exponentially suppressed, we conclude that
the oscillations represent a class of neglected exponentially-suppressed finite-volume effects. They are visible here
presumably because we are investigating tiny contributions to the energy. Other examples of such effects will be seen
below.

As noted above, we can determineM3,thr from the maximally-subtracted results. To do so, we scale up the residual
by L6 and define

R6(L) ≡ −L6

{
E(L)− 3− c3

L3
− c4
L4
− c5
L5
− c̃6
L6

}
=
M3,thr

48
+O(1/L) . (43)

This quantity is shown in Fig. 8 as a function of 1/L for L & 20. Here we again show the results using the two

regulators for F̃ s. The oscillations with F̃ sHS are more pronounced with the new scale, and it is easier to use the

F̃ sKSS results to extrapolate to the infinite-volume limit. Averaging quadratic and cubic fits in 1/L to the latter yields
M3,thr/48 = 60.0± 0.8, with the uncertainty determined by half the difference between the two fits.

We close this subsection by considering one additional infinite-volume quantity that can be extracted from the
threshold energy. With little additional effort we can determine the dependence of the extracted M3,thr on Kiso

df,3,
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FIG. 8. Plot of R6(L) [defined in Eq. (43)] versus 1/(mL) for ma = 0.41315 and m2Kiso
df,3 = 10. The oscillating (blue) points

use F̃ s
HS, while the smooth (red) points use F̃ s

KSS. The solid curves show quadratic and cubic fits in 1/(mL) to the F̃ s
KSS data

up to 1/(mL) = 0.05. We take the average of these curves at 1/(mL) = 0 as the central value for the infinite-volume limit, and
half the difference as the uncertainty

using21

L6 ∂E(L)

∂(1/Kiso
df,3)

∣∣∣∣
a,L

= − 1

48

∂M3,thr

∂(1/Kiso
df,3)

∣∣∣∣
a,E=3

+O
(

1

L

)
. (44)

We determine the derivative numerically by varying Kiso
df,3 close to 10.22 The extrapolation to L = ∞ is done either

linearly or quadratically in 1/L. An example is shown in Fig. 9. Comparing to the results for R6(L), we see that the
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FIG. 9. Extrapolation in 1/(mL) of the left-hand side of Eq. (44) evaluated at 1/(m2Kiso
df,3) = 0.1 and ma = 0.41315. Linear

and quadratic fits are done to the region of points indicated by the curves. We stress that this data was generated using F̃ s
HS,

but in this case there are only weak oscillations, unlike in Fig. 8.

21 We take the derivative with respect to 1/Kiso
df,3 because this, rather than Kiso

df,3 itself, is the more natural quantity entering the quantization

condition in the form we use.
22 Given the weak dependence of E on M3,thr we need to vary E over a very small range. For example, for L = 20, the range E =

3.002067695− 3.002067697 leads to a variation in Kiso
df,3 from ≈ 6− 13 when a = 0.41315.
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derivative removes much of the oscillatory volume dependence, in addition to the first three orders in 1/L. We show
the resulting Kiso

df,3 dependence of the extrapolated derivative in Fig. 10. We take the average of linear and quadratic
extrapolations as the central value and half the difference as the uncertainty. The solid line shows the infinite-volume
prediction found by solving the integral equation relating M3,thr to Kdf,3, discussed in Sec. IV C below. We stress
that this is not a fit to the data, but rather the result of an independent calculation. The agreement between the
two results provides a strong check of our numerical implementation of the quantization condition, as well as of the
analytic derivation of the threshold expansion in Ref. [26].
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FIG. 10. Dependence of −(m4/48)∂M3,thr/∂(1/Kiso
df,3) vs. 1/(m2Kiso

df,3) for ma = 0.41315. The points are obtained from the
threshold energy, using extrapolations such as that in Fig. 9, while the solid curve is obtained from solving the integral equation
relating M3,thr and Kiso

df,3.

IV. RELATING Kiso
df,3 TO THE SCATTERING AMPLITUDE

As explained in Sec. II, to obtain physical infinite-volume quantities given knowledge of Kiso
df,3 requires solving an

integral equation and performing several integrals. In this section we show how this can be done by straightforward
extensions of the numerical methods used to solve the quantization condition, as long as we work below or at threshold.
We divide this section into three parts. In the first we show results for the quantities needed to relate Kiso

df,3 to Mdf,3

below threshold. In the second, we show how, in the case of a three-particle bound state, we can determine a quantity
related to the infinite-volume Bethe-Salpeter amplitude. This quantity can then be compared to the predictions of
NRQM. Finally, we work directly at threshold and calculate the relation between Kiso

df,3 and the quantity that enters
into the threshold expansion, M3,thr.

A. Relating Kiso
df,3 to Mdf,3 below threshold

The relationship between Kiso
df,3 and Mdf,3 is given in Eq. (26), which we reproduce here for clarity, making use of

the results that L(~k) = R(~k) and that L depends only on the magnitude of k in the isotropic approximation,

Mdf,3(~k, â∗; ~p, â′∗) = S
{
L(k)L(p)

1/Kiso
df,3 + F∞3

}
. (45)

In this subsection we illustrate how to calculate the quantities on the right-hand side of this equation when working
below threshold. The methods for doing so are explained in Appendix A 2. The infinite-volume quantities F∞3 and
L(k) can be obtained simply by taking the L → ∞ limit of appropriate finite-volume quantities. In the case of F∞3
one choice of finite-volume quantity is simply F iso

3 .
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In Figs. 11 and 12 we show the approach to the L = ∞ limit for F iso
3 and L(0), respectively, taking E = 2.99 as

an example. For fixed a, the approach to the limit is exponential, allowing a controlled extrapolation to L = ∞,
although larger values of L are needed as |a| increases.
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FIG. 11. F iso
3 /m2 vs. ma for E = 2.99m and mL = 40− 65, together with an extrapolation to L→∞ using mL = 50− 65.

The inset shows the small ma region, in which F iso
3 changes sign.
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FIG. 12. L(~k = 0) vs. ma for E = 2.99m and mL = 40− 65, together with an extrapolation to L→∞ using mL = 50− 65.

Here L(~k) for finite L is given by Eq. (A15). The inset shows the small ma region, within which L(0) changes sign. Note that
L(0) = 1/3 when ma = 0.

Figure 11 illustrates why, generically, there are bound states for a range of values of Kiso
df,3. We recall that, for

any finite L, there is a solution to the quantization condition if F iso
3 = −1/Kiso

df,3. Since F iso
3 approaches a limiting

function of a as L→∞, which we observe to be monotonically increasing, there will be a bound state with E = 2.99
at some value of a for all values of Kiso

df,3 in the range −1/F iso
3 (a = 1) < Kiso

df,3 < −1/F iso
3 (a = −∞). Since the limiting

function is negative for almost all values of a, most bound states occur with positive values of Kiso
df,3. One example

(for a different value of E) is the bound state discussed in Sec. III C.
Figure 13 shows examples of the k-dependence of L(k) for various choices of a. This quantity describes the effect

of multiple two-to-two scattering with the scattering pair changing each time to include the spectator of the previous
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event. As k increases the scattered pair lies increasingly far below threshold. For a bound state, L(k) is related to
the Bethe-Salpeter amplitude, as discussed in the following subsection.
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FIG. 13. L(k) versus k/m for choices of ma shown in the legend. Results using either choice of finite-volume quantity,
Eq. (A14) or (A15), and using any choice of mL ≥ 50, lie on a common curve. Here we show the results using Eq. (A15) and
mL = 70. Note that, if a = 0, L(k) = 1/3 independent of k. For sufficiently large k, L(k) = 1/3 for all a, since the cutoff
functions vanish and remove the correction term.

The results for F∞3 and L(k) can be combined to determine results forMdf,3, using Eq. (45). We choose not to quote
results here since the symmetrization that is needed is complicated, and the results produced are not transparent.
We will, however, quote the corresponding results below when working at threshold.

B. Determining the wavefunction of the bound state

A specific application of the subthreshold relation between Kiso
df,3 andMdf,3 is provided by the bound state studied

in Sec. III C. For the fixed values of Kiso
df,3 = 2500 and a = −104, one can calculate F∞3 and identify the infinite-volume

bound state pole inMdf,3, as described in the previous subsection. Since this is equivalent to solving the quantization
condition Kiso

df,3 = −1/F iso
3 for asymptotically large volumes, one finds the same result for the infinite-volume bound-

state energy as from the fit in Sec. III C, namely EB = 2.98858 (corresponding to κ = 0.106844).
The residues of the pole in Mdf,3 contain information about the Bethe-Salpeter amplitudes of the bound state.

Specifically, as discussed in Ref. [29], the unsymmetrized version ofMdf,3 takes the following factorized form near the
bound state

M(u,u)
df,3 (k, p) ∼ −Γ(u)(k)Γ(u)(p)∗

E2 − E2
B

. (46)

This assumes that pairwise scattering occurs only in the s-wave, as is the case in the isotropic approximation. The
quantity Γ(u)(k) is related to the Bethe-Salpeter amplitude by amputating and going on shell, as explained in detail
in Appendix B of Ref. [29]. We call Γ(u)(k) the residue function. Combining this expression with Eq. (45) we find
that Γ(u)(k) is proportional to L(k),

|Γ(u)(k)|2 = lim
E→EB

(E2
B − E2)

L(k)2

1/Kiso
df,3(E) + F∞3 (E)

. (47)

In our approach both F∞3 (E) and L(k) are determined by taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting |Γ(u)(k)|2 it turns out to be convenient to define a finite-volume version as

|Γ(u)(k)|2(L) = lim
E→EB(L)

(E2
B(L)− E2)

LL(E, k, L)2

1/Kiso
df,3(E) + F iso

3 (E,L)
, (48)
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|Γ(u)(k)|2 = lim
L→∞

|Γ(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |Γ(u)(k)|2(L), calculated by setting E = EB(L)+δE
(with δE = −0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|Γ(u)(k)NR|2 = |c||A|2 256π5/2

31/4
m2κ2

k2(κ2 + 3k2/4)

sin2
(
s0 sinh−1

√
3k
2κ

)

sinh2 πs0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between Γ(u)(k)
and Γ(u)(k)NR. These should vary in magnitude between of O(κ2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ≈ m. These expectations are consistent with the small differences we find.
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions
following from Eqs. (48) and (49), as described in the text. Different values of L lead to consistent results, indicating that
we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|2 = 0.948 found in
Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune Kiso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |Γ(u)(k)| ∝ |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23 It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the
leading term in the expansion of the result presented here for Γ(u)(k) about the singularity at k2 = −κ2. This leading term is given in
Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it differs substantially from the full result. Thus it is essential to use
the full form given here when studying the function for real k
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C. Relating Kiso
df,3 at threshold to M3,df,thr and M3,thr

As discussed above, Mdf,3 is finite for all energies and choices of momenta (aside from bound-state poles). In
particular it is finite at threshold, and we denote its value there byMdf,3,thr. This divergence-free scattering amplitude
is defined by subtracting an infinite series of terms from the usual three-to-three scattering amplitude, M3. An
alternate definition of a finite, three-particle threshold amplitude was introduced in Ref. [26], based on subtracting
from M3 only those parts of D(u,u) that contain IR divergences. It is this new quantity, called M3,thr, that appears
in the threshold expansion, Eq. (36) above.

In Sec. III D above, we studied the threshold state predicted by the quantization condition for a = 0.41315 and
Kdf,3 = 10 and found that the volume dependence is very well described by the threshold expansion withM3,thr/48 =
60.0± 0.8. In this section we aim to test this result by directly applying the relation between Kiso

df,3 and Mdf,3,thr as

well as that between Mdf,3,thr and M3,thr [26].
We begin by solving the integral equations relating Kiso

df,3 to Mdf,3,thr. At threshold, the general relationship of

Eq. (45) simplifies to

Mdf,3,thr =
9L(0)2

1/Kiso
df,3 + F∞3

, (51)

with the factor of 9 arising from symmetrization. Thus we need only to determine L(0) and F∞3 at E = 3, for the
chosen value of a. This is slightly more complicated than the subthreshold determinations discussed above because
the finite-volume analogs of L and F∞3 both diverge for E = 3. We have two methods to circumvent this issue. One
option is to take the L → ∞ limit for a set of sub-threshold values of E (using the method described in previous
subsections) and then extrapolate E → 3. An alternative, direct approach is to define modified versions of the finite-
volume objects in which the singularity at E = 3 is removed. As explained in Ref. [26], this removal does not affect
the L→∞ limit. The direct approach has the advantage that only one limit need be considered. We have confirmed
that the two methods give consistent results and in this subsection only show results using the direct approach. The
details of its numerical implementation are summarized in Appendix A 3.
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FIG. 15. F∞3 /m2 vs. 1/(mL) for ma = 0.41315 at threshold. The line indicates a fit of the points shown in blue to a constant,
which we use as our estimate of the L→∞ value.

We show the extrapolations for F∞3 and L(0) in Figs. 15 and 16, respectively. Note that here the use of finite
volume is simply a tool to discretize the equations, and is not related to the volume of any simulation. We have
worked up to L = 100, which, as the figures show, is enough to provide reasonable control over the extrapolation.
For F∞3 , the results show oscillations for L . 40, but for larger L settle to a constant value. We estimate the infinite
volume value by fitting the large L results to a constant. For L(0) we take the average of the linear and quadratic
fits as the central value, and half the difference as the error. We find

F∞3 = 4.0068(1)× 10−5 , L(~0) = 0.276203(7) , (a = 0.41315) . (52)

Inserting these results into Eq. (51) we obtain

Kiso
df,3 = 10 =⇒ M3,df,thr = 6.8633(1) , (a = 0.41315) . (53)
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FIG. 16. L(0) vs. 1/(mL) for ma = 0.41315 at threshold. Quadratic and cubic fits to the entire set give very consistent
results at L =∞. (Both curves are plotted but are indistinguishable aside from a thickening of the line.) The average and half
the difference of these results is used to determine the central value and uncertainty respectively.

We now turn to the relation between M3,thr and M3,df,thr. The latter is given by

M3,thr =Mdf,3,thr + Ĩ1 + Ĩ2 + SI , (54)

where Ĩ1, Ĩ2 and SI are defined in Appendix. A 3. In all cases the quantities are obtained by taking infinite-volume
limits of appropriate finite-volume quantities. As above, this is only a tool for discretizing integral equations and the
parameter L used here does not correspond to the finite-volume of the system.

0.00 0.01 0.02 0.03 0.04 0.05

1/(mL)

3000

3250

3500

3750

4000

4250
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FIG. 17. Ĩ1 for ma = 0.41315 plotted versus 1/(mL), together with linear and quadratic fits to the range indicated by the
curves. (Both curves are plotted but are indistinguishable aside from a thickening of the line.) The average of the two L→∞
extrapolations is used as the central value and half the difference as the uncertainty.

Results for Ĩ1, obtained using Eq. (A20) are shown in Fig. 17. Values of L up to 100 are easily attained, and the
extrapolation to L =∞ is well controlled. We find

Ĩ1 = 4233± 2 , (a = 0.41315) . (55)

The corresponding extrapolation for Ĩ2, based on Eq. (A21), is shown in Fig. 18. Our result for the infinite-volume
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FIG. 18. Ĩ2 for ma = 0.41315 plotted versus 1/(mL), together with quadratic and cubic fits to the range indicated by the
curves. The average of the two L→∞ extrapolations is used as the central value and half the difference as the uncertainty.
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FIG. 19. SI for ma = 0.41315 plotted versus 1/(mL), together with quadratic and cubic fits to the range indicated by the
curves. The average of the two L→∞ extrapolations is used as the central value and half the difference as the uncertainty.

limit is

Ĩ2 = −425± 10 , (a = 0.41315) . (56)

Finally, the extrapolation leading to SI is shown in Fig. 19, based on Eq. (A22), yielding

SI = −1005± 23 , (a = 0.41315) . (57)

Combining these results we find that

M3,thr −M3,df,thr = 2803± 25 , (a = 0.41315) , (58)

where Ĩ1 dominates the overall value while Ĩ2 and SI dominate the error. This shift dominates the value ofM3,df,thr =
6.9 found above. The final result is thus

M3,thr

48
= 58.5± 0.5 . (59)
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FIG. 20. Plot showing an example of the unphysical solutions that arise for certain choices of parameters, here for ma = −10
and large, negative values of Kiso

df,3. The left panel shows the lowest finite-volume level, with −10−4m2Kiso
df,3 ranging from 1

to 19 in unit steps. This level also appears in Fig. 4, but here we extend the results to more negative values of Kiso
df,3. The

unphysical behavior is the doubling back of the spectrum, so that there are three, rather than one, levels for a range of mL
around 5.4 (the value shown by the vertical dashed line). To understand how this doubling back arises, we show in the right
two panels plots of F iso

3 /m2 vs. E/m for mL = 5.4, together with the values of −1/(m2Kiso
df,3) whose intersections give the

solutions. The middle panel looks reasonable, but the enlargement shown in the right panel reveals that F iso
3 is not decreasing

monotonically, leading to the triplet of solutions for the largest three values of |Kiso
df,3|. As explained in the text, the middle

solution corresponds to a pole with an unphysical residue.

This is in good agreement with M3,thr/48 = 60.0 ± 0.8, the indirect value found using the threshold expansion
Sec. III D. This provides an important cross-check on our calculations and formalism.

Finally, we calculate the dependence of M3,thr on Kiso
df,3, in order to compare to the results obtained using the

threshold expansion. Noting that the relation between M3,thr and M3,df,thr is independent of Kiso
df,3 we find, using

Eq. (51), that

− 1

48

∂M3,thr

∂(1/Kiso
df,3)

∣∣∣∣
a,E=3

= − 1

48

∂M3,df,thr

∂(1/Kiso
df,3)

∣∣∣∣
a,E=3

=
1

48

9L(0)2

(1/Kiso
df,3 + F∞3 )2

. (60)

Since we have determined L(0) and F∞3 , we can immediately calculate this quantity. We plot the result in Fig. 10
above as the solid line. The uncertainty in this line from the volume extrapolation, which comes dominantly from the
uncertainty in L(0), is less than the width of the curve. In the figure we compare this result to that obtained above
using the threshold expansion and find good agreement.

V. UNPHYSICAL SOLUTIONS

In this section we briefly discuss unphysical solutions that we have identified numerically when solving the quanti-
zation condition for certain values of a and Kiso

df,3. As we explain below, to guarantee physical solutions for all choices

of a and Kiso
df,3, F iso

3 (E,L, a) must be a monotonically decreasing function of E. However, we find that this condition
is violated for certain parameter choices. An example is shown in Fig. 20.

The monotonicity condition on F iso
3 is derived as follows. We consider the finite-volume correlator

CL(E) =

∫

L

d4x eiEt〈0|TO(x)O†(0)|0〉L , (61)

where O†(x) is any operator that creates three-particle states. This is the correlator that is used in the derivation
of the quantization condition in Ref. [9]. From Eq. (42) of that work, we find that, when restricted to the isotropic
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approximation, the correlator in the vicinity of a pole has the form

CL(E) = iA(E)
1

Kiso
df,3(E) + F iso

3 (E,L, a)−1
A∗(E) + regular , (62)

where A(E) is an infinite-volume matrix element connecting the vacuum to a three-particle state by the action of O.
From the spectral decomposition of CL(E), we know that the pole has the form

CL(E) = i
c

E − En(L)
+ regular , (63)

with En(L) the pole position and c a positive, real constant. For this to be true for the pole in Eq. (62), the following
condition must be satisfied

[
∂F iso

3 (E,L, a)

∂E
+
∂1/Kiso

df,3(E)

∂E

]

E=En(L)

< 0 . (64)

For a constant Kiso
df,3, as used in most of this work and, specifically, in Fig. 20, this implies that F iso

3 must be decreasing

at the crossing point. Assuming that there are physical theories with all values of Kiso
df,3, the crossing point can occur

anywhere along the curve, and thus F iso
3 must be monotonically decreasing. Assuming that all values of a are physical,

this monotonicity property must hold in general.
We now return to Fig. 20. This shows an example where F iso

3 does not decrease monotonically with E, but instead,
as shown in the right panel, has a small upward excursion. This implies that, in a small range of Kiso

df,3 there are three

solutions to the quantization condition, the middle of which violates the condition Eq. (64). To obtain three states,
the spectral curves must double back, as shown in the left panel. Thus this doubling back is an alternative criterion
for unphysicality.

Clearly the appearance of such solutions is problematic and needs to be understood. This is work in progress, but
based on our tests so far we can offer some remarks. We find that F iso

3 only develops a positive slope in regions
where its magnitude is small and, as the volume is increased, these regions always go away and the function becomes
“healthy”. This leads us to suspect that we are seeing a form of neglected finite-volume effects that are formally
exponentially suppressed but with oscillatory energy dependence. These cause problems when small values of F iso

3

are sampled by large-magnitude values of Kiso
df,3.

In addition, the oscillations in F iso
3 share similarities with the oscillations observed in the threshold state of Fig. 7,

and seem to be connected. In that case we found that using a different definition of F̃ s removed the oscillations and

this points to the fact that the smooth cutoff function, H(~k), may be the source of the issue. This is plausible because,
although smooth, the cutoff function does have vanishing support above a certain value of k. It is well known that
sharp cutoffs lead to oscillatory behavior, and the oscillations here might be a related phenomenon.

It is also possible that the unphysical solutions are an indication that the isotropic, low-energy approximation is
breaking down for certain choices of parameters. Our approach for now is to avoid the (relatively small) regions in
which unphysical solutions occur, while at the same time actively investigating their source.

We close with some more general remarks about the condition Eq. (64). First, we stress that, since Kiso
df,3 can

depend on E, one should in general use the full condition including the derivative of 1/Kiso
df,3(E). Second, we note

that a similar condition holds for the two-particle quantization condition, in the s-wave approximation, namely

[
∂Fs(E,~k, L)

∂E
+
∂1/Ks2(~k)

∂E

]

E=En(L)

< 0 , (65)

where Fs = 2ωkF̃s(~k), E is the total two-particle energy, and En(L) is here a solution to the two-particle quantization

condition, Fs = −1/Ks2. Note that here we are considering also a moving frame, with −~k being the total momentum.
The result (65) can be derived using the result of Ref. [30] for the two-particle correlation function, following similar
steps to those outlined above. To our knowledge it has not been presented before. The solutions to the two-particle
quantization condition shown in the left panel of Fig. 1 all satisfy this condition.

We can use Eq. (65) to learn about the way in which such consistency conditions can fail. In all examples that
we are aware of, Fs is a monotonically decreasing function of E. Thus a violation of this condition requires 1/Ks2 to
rise sufficiently rapidly at the crossing point. If this is the case, there will be spectral lines that double back, similar
to those shown in Fig. 20. If this occurs for some L, the problem will go away as the box size increases, because Fs
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becomes an increasingly steep function of E as L is taken larger. In this case it seems that there are two possible
causes for the problem. One is that it is caused by neglected exponentially suppressed corrections, the other that
the choice of rapidly increasing 1/Ks2 is simply unphysical within the s-wave approximation. The problem cannot,
however, lie with the H functions, since F s can be regulated in other ways.

Our third observation is that the consistency condition, Eq. (65), turns into the condition introduced in Ref. [37] if
a subthreshold solution persists as L→∞. This is because Fs → ρ in this limit, and one can then show algebraically
that the conditions are equivalent. This is as expected since the persistence of a subthreshold solution is equivalent to
the existence of a bound state, and Eq. (65) is just the requirement that this pole, which remains isolated as L→∞,
has a residue with the proper sign.

Finally, we can relate Eq. (65) to a result from Ref. [31]. In that work it was noted that Lellouch-Lüscher factors
were physical only if the condition ∂(δs +φP )/∂E∗ > 0 was satisfied, where δs is the s-wave phase shift and φP is the

Lüscher pseudo-phase, related to F̃ s. It is straightforward to show that this condition is equivalent to Eq. (65). We
note also that, from the perspective of Refs. [23, 38], this equivalence is clear since the Lellouch-Lüscher-like relation
is derived there via the same matching condition that leads to Eq. (65) here.

VI. CONCLUSIONS AND OUTLOOK

In this work we have numerically explored the relativistic three-particle quantization condition derived in Refs. [9,
10]. In order to capture the key features of the formalism, and to compare the work flow to that described in Ref. [18],
we have made a number of simplifications. Specifically we have restricted attention to vanishing total momentum in
the box, truncated the infinite-volume scattering observables to the s-wave, isotropic approximation, and taken the
two-particle sector to be dominated by the scattering length in the effective-range expansion.

Within this reduced set-up, we find that the quantization condition is numerically straightforward to implement
and that a great deal of interesting physics is buried in the simple formula. For example, as summarized in Fig. 3, the
condition provides a useful benchmark, by predicting the part of the volume-dependence of three-particle energies that
is due only to two-particle scattering—i.e. the case where the three-particle contact interaction is neglected, Kiso

df,3 = 0.
This is a useful starting point in lattice calculations since infinite-volume, three-particle scattering information can
only be recovered by measuring deviations from these benchmark curves.

Going beyond this, we show how turning on nonzero values of Kiso
df,3 predicts a rich set of phenomena, including

resonance-like avoided level crossings [Fig. 5] and the finite-volume energy shift for an Efimov-like three-particle bound
state [Fig. 6]. The latter case is particularly clean as we can study the state over a vast range of volumes, mL = 4 to
70, and show that the predicted level matches the asymptotic predictions for κL� 1 (in our case implying mL� 10),
but also show how the level deviates from the asymptotic form and thus that the full formalism is needed to make
reliable predictions for realistic volumes. Finally, our result also describes the regime of weak interactions and, as we
discuss in Sec. III D, we can numerically resolve all known terms in the 1/L expansion of the threshold state, including
the log(mL)/L6 dependence.

Beyond predicting detailed finite-volume behavior, our formalism also provides a powerful tool in understanding the
infinite-volume scattering of three-particle states. This is because a simple form of Kiso

df,3 corresponds to a complicated
three-particle scattering amplitude,M3, with nontrivial phase space dependence generated dynamically by the integral
equations relating Kiso

df,3 toM3. The most dramatic example of this is summarized in Fig. 14, where we take two inputs

designed to produce a shallow bound state (Kiso
df,3 = 2500 and a = −104) and from this predict the wave-function

with no free parameters. The numerical reproduction of this complicated functional form, which spans many orders
of magnitude, gives us confidence that the approach of relating Kdf,3 to M3 should be a useful tool in describing
three-particle physics for a variety of systems.

Despite these successes, future work is needed to bring this formalism to maturity for use in realistic numerical
LQCD calculations. In this direction it is instructive to first compare our approach to that using NREFT, described
in Refs. [17, 18]. One key difference between our formalism and the NREFT proposal is that the latter uses a hard

cutoff in place of our smooth cutoff function H(~k), and places this cutoff at much higher spectator momenta.

Recalling that (E, ~P ) is fixed, the spectator momentum (ωk,~k) determines the invariant mass squared of the

nonspectator pair to be E∗22,k = (E − ωk)2 − (~P − ~k)2. Thus, taking ~k very large takes E∗22,k not only below 4m2

but in fact to negative values with large magnitude. From the perspective of our approach, dependence on the deep

sub-threshold values of the two-to-two scattering amplitude is undesirable, leading us to introduce H(~k). Among
other things, this avoids the region of the left-hand cut in the two-to-two amplitude. This region is accessed in the
approach of Refs. [17, 18], but the left-hand cut is avoided by restricting the NR expansion to a few terms.

We emphasize the role of H(~k) once more here, because we suspect this to be related to unphysical finite-volume
energies that we find for certain values of Kiso

df,3. As we describe in Sec. V, the finite-volume function F iso
3 is generally
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monotonically decreasing with energy, but can exhibit small upward oscillations for volumes up to mL ≈ 6, i.e. in-
cluding nearly all present-day lattice calculations. These oscillations lead to unphysical solutions when |Kiso

df,3| is large
enough to intersect them.

Understanding the exact nature of these artifacts and modifying the formalism to remove them is clearly crucial.

As a first step we note that varying the width of the cutoff function, H(~k), can show which regions suffer from these
effects. Thus one can identify values of F iso

3 where the artifacts do not arise and restrict attention to values of Kiso
df,3

that only intersect these regions. This is only a first step as our ultimate goal is a formalism that works for all possible
scattering parameters, with no need to identify safe regions numerically.

In addition to addressing the issues mentioned above, future projects include going beyond the isotropic approxi-
mation in a systematic way, including the role of the mixing of different angular-momentum states in finite volume.
Such mixing is already built into our full quantization condition so the task is one of block-diagonalization, or sub-
duction, onto the irreps of the finite-volume symmetry group. Additional formal steps include incorporating K2 poles,
multiple two- and three-particle channels and nonidentical and nondegenerate particles into our formalism, as well as
particles with intrinsic spin. Finally, on the side of infinite-volume physics, we are in the process of developing tools
to numerically relate Kdf,3 and M3 also above threshold. Here it will be crucial to develop realistic parametrizations
of three-particle scattering amplitudes, especially in resonant channels.
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Appendix A: Numerical implementation

The numerical implementation naturally falls into two parts: (i) applying the finite-volume quantization condition
Eq. (6), and (ii) solving the infinite-volume integral equation Eq. (21) and doing the integrals in Eqs. (27)-(29). We
consider these parts in turn. As in the rest of this work, it is convenient to use units in which m = 1. Factors of m
can be added back using dimensional analysis.

1. Implementing the quantization condition

The matrices F̃ s, G̃s, etc., entering the quantization condition (6) are all of size N × N . Here N is determined

by the cutoff function H(~k). For given choices value of E, L and α, H(~k) is nonzero only for a finite number of

finite-volume momenta ~k. For example, if E = 4 then N = 19, 93 and 895 for L = 5, 10 and 20, respectively.
To simplify the numerical computation, and, in particular, to allow a straightforward determination of the depen-

dence on a, we rewrite F s3 as

[F s3 ]kp =
1

L3

[
F̃ s

3
− F̃ s

ζ

(
1

HFG − 1/a

)
F̃ s

ζ

]

kp

, (A1)

ζkp = δkp
1√

32πωkE∗2,k
, (A2)

[HFG]kp = δkp|q∗2,k|[1−H(~k)] +

[
F̃ s

ζ2
+

1

ζ
G̃s

1

ζ

]

kp

. (A3)

HFG is a real, symmetric matrix that can be diagonalized as

HFG =

N∑

n=1

|n〉λn〈n| , (A4)

http://arxiv.org/abs/de-sc/0011637
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where λn and |n〉 are its eigenvalues and eigenvectors respectively. To implement the sums over ~k and ~p in the
definition of F iso

3 , Eq. (7), we use the vector |1〉 introduced following Eq. (6) in the main text. Putting this together
we find

F iso
3 =

1

L3

{
〈1|F̃ s|1〉

3
−
∑

n

〈1|F̃ s/ζ |n〉2
−1/a+ λn

}
. (A5)

Thus, in order to determine F iso
3 , it is convenient to construct HFG, then diagonalize it, and finally calculate the

(real) matrix elements 〈1|F̃ s|1〉 and 〈1|F̃ s/ζ |n〉. Given the eigenvalues and these matrix elements we know F iso
3 (at

the chosen values of E and L) for all values of a. An example of the a dependence is shown in Fig. 21 where the
energy and volume have been fixed to E = 4 and L = 10 respectively. Because of the overall factor of 1/L3, F iso

3 has
a small magnitude except near the poles at a = 1/λn. The figure shows a typical example in that most of the poles
are in the region a ≥ 1 where our formalism does not hold.

−1 0 1 2 3 4 5 6 7

ma

−3

−2

−1

0

1

2

3

10
3 F

is
o

3
/m

2

E = 4m, mL = 10

FIG. 21. F iso
3 /m2 vs. ma for E = 4m and mL = 10. There are eight poles in total (shown by vertical [red] dashed lines), one

per momentum shell.

We can substantially reduce the size of the matrices needed in the calculation using group theory [9]. The finite-
volume momenta fall into “shells”, the members of which are related by elements of the octahedral group Oh (which
we define to include parity). For example, the first four shells have 1, 6, 12 and 8 members, respectively, with

representative elements being 2π~n/L with ~n = (0, 0, 0), (0, 0, 1), (0, 1, 1) and (1, 1, 1). The matrices ρ̃, F̃ s and G̃s are
invariant under cubic group transformations, implying that the eigenvectors of HFG lie in irreducible representations

(irreps) of the group. The state |1〉 projects each shell onto the fully symmetric A+
1 irrep, and the invariance of F̃ s

and ξ implies that only eigenvectors |n〉 lying in the A+
1 irrep contribute to F iso

3 . The net result is that we need only

invert the A+
1 block of HFG, which is an Nsh ×Nsh matrix, with Nsh being the number of shells for which H(~k) 6= 0.

This drastically reduces the matrix size and concomitantly speeds up the numerical evaluation. For the examples
given above, where E = 4, and L = 5, 10 and 20, the values of Nsh are 3, 8 and 40 (compared to N = 19, 93 and
895). Note also that the 8 poles in Fig. 21 directly correspond to the 8 shells for E = 4, L = 10. Although we focus
on systems at rest here, one may speed up calculations for systems with nonzero total momenta by consider the irreps
of the little groups of Oh.

F̃ s is our version of the zeta-function introduced by Lüscher in Refs. [6, 7]. We give a brief description of the
methods we use to calculate it in Appendix B, below.

2. Implementing the integral equations and integrals below threshold

As discussed in Sec. II C, in order to relate Kiso
df,3 to physical quantities, it is general necessary to solve an integral

equation, Eq. (21). In this study we have restricted our attention to energies below and at threshold, where this
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procedure is relatively straightforward. Here we explain how the infinite-volume limit can be achieved for these
kinematics. The below-threshold case is simplest and we discuss it first. In particular, we are interested in determining
the quantities appearing in the equation for Mdf,3, Eq. (26). In particular, there will be a bound state whenever

F∞3 = −1/Kiso
df,3, with L(~k) = R(~p) being proportional to the on-shell Bethe-Salpeter wavefunction of this bound

state.
The determination of F∞3 below threshold is straightforward: we can simply take the L→∞ limit of our numerical

evaluations of F iso
3 , i.e.

F∞3 = lim
L→∞

F iso
3 = lim

L→∞

∑

~k,~p

[F s3 ]kp . (A6)

This is an example of the limit employed in Ref. [10] in order to relate the finite- and infinite-volume scattering
amplitudes.

To explain why Eq. (A6) is valid, we first note that, as explained in Ref. [10]

F̃ s(~k)
L→∞−−−−→ ρ̃(~k) . (A7)

This holds for all values of E, but we are interested only in E < 3, where ρ̃ is real. Naively one would have expected

the right-hand side to vanish, but the nonzero result arises because we use the PV prescription in the integral in F̃ s.24

The expression for F s3 , Eq. (8), can thus be rewritten in the infinite-volume limit as

[F s3 ]kp
L→∞−−−−→ 1

L3

[
ρ̃

3
− ρ̃ 1

1/(2ωMs
2) + G̃s

ρ̃

]

kp

, (A8)

=
1

L3

[
ρ̃

3
− ρ̃(2ωMs

2)ρ̃+ ρ̃
1

1 + (2ωMs
2)G̃s

(2ωMs
2)G̃s(2ωMs

2)ρ̃

]

kp

. (A9)

Here the new matrices are

ρ̃kp = δkpρ̃(~k) and [2ωMs
2]kp = δkp2ωkMs

2(~k) , (A10)

and to obtain Eq. (A8) we have used the definition of Ms
2, Eq. (22).

Next we note that the integral equation for D(u,u), Eq. (21), can be discretized as

D(u,u)
kp = −

[
L3(2ωMs

2)G̃s(2ωMs
2) + (2ωMs

2)G̃sD(u,u)
]
kp
. (A11)

Here D(u,u)
kp = D(u,u)(~k, ~p) for finite-volume momenta, and we have used the definitions of G̃s and G∞ in Eqs. (12)

and (24).25 Since Eq. (A11) is now a finite matrix equation, its solution is

D(u,u) = −L3 1

1 + (2ωMs
2)G̃s

(2ωMs
2)G̃s(2ωMs

2) . (A12)

Using this we can rewrite Eq. (A9) as

F s3
L→∞−−−−→ ρ̃

3L3
− 1

L3
ρ̃(2ωMs

2)ρ̃− 1

L6
ρ̃D(u,u)ρ̃ . (A13)

Comparing to Eqs. (27) and (28), and using the fact that 1/L3
∑
k →

∫
~k

as L → ∞, we find the claimed result,
Eq. (A6).

By similar arguments, one can evaluate the Bethe-Salpeter amplitudes using either of the forms

L(k) = R(k) = lim
L→∞

1

3
−
∑

p

[
1

1/(2ωMs
2) + G̃s

ρ̃

]

kp

, (A14)

= lim
L→∞

∑

~p

L3
[
[F̃ s]−1F s3

]
kp
. (A15)

We stress that, when using the results Eq. (A6)-(A15), L is no longer playing the role of the spatial volume in the
lattice calculation. Instead, it allows for a convenient discretization of integral equations. In particular, we are here
interested only in the limiting values as L→∞, and not to the form of the finite-L corrections.

24 This result also serves as a useful check of our numerical evaluation of F̃ s.
25 In general, to take the L→∞ limit of G̃s, we have to introduce a pole prescription [9], but this is not the case below threshold, because

there are no poles. Note that G̃s does not come with a built-in pole prescription, unlike F̃ s.
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3. Implementing the integral equations and integrals at threshold

We now explain how we solve the integral equations and perform the integrals when working directly at threshold.

The only change compared to the subthreshold case is that G̃s has a pole when ~k = ~p = 0, which leads to an IR
divergence in D(u,u). However, this IR divergence is absent for all the quantities of interest, either because it is
multiplied by ρ̃(~0), which vanishes at threshold, or because it appears in an IR finite integral. Thus we can regularize

in the IR simply by removing the single divergent entry in G̃s:

G̃skp −→ /Gkp =

{
0 ~k = ~p = 0

G̃skp otherwise
. (A16)

The finite-volume version of D(u,u) is then given by

/D(u,u)
= −L3 1

1 + (2ωMs
2)/G

(2ωMs
2)/G(2ωMs

2) , (A17)

which is simply Eq. (A12) with G̃s replaced by /G. Now, since F̃ s → ρ̃ even at threshold, we can still use Eqs. (A8),

(A9) and (A13), as long as G̃s → /G and the quantity being calculated is IR finite. This leads to the results (all at
threshold)

F∞3 =
1

3L3
tr(ρ̃)− 1

L3
tr(ρ̃ (2ωMs

2) ρ̃)− 1

L6

∑

kp

[
ρ̃ /D(u,u)

ρ̃
]
kp

+O(1/L) , (A18)

L(~0) = R(~0) =
1

3
− 1

L3

∑

k

[
/D(u,u)

ρ̃
]
0k

+O(1/L) . (A19)

The quantities on the right-hand sides of these equations can be evaluated numerically by a slight extension of the work
needed to solve the quantization condition, and taking L→∞ gives the left-hand sides. These are then combined to
determine Mdf,3,thr using Eq. (51) in the main text.

Similar methods allow the numerical determination of the relation between M3,thr and M3,df,thr that is given in

Eq. (123) of Ref. [26]. The basic relation is given in Eq. (54), and we give here the definitions of the quantities Ĩ1, Ĩ2
and SI that appear in that equation.

First, making uses of Eqs. (119), (123) and (126) of Ref. [26], we find

Ĩ1 = 9L3
[(

2ωM2 /G
)2

2ωM2

]
00

+ 9× 212m2π3a3
1

L3

∑

~k 6=0

[
H(~k)2

k4
+ a

√
3

2

H(~k)3

k3

]
+O(1/L) . (A20)

Both terms have linear and logarithmic divergences as L → ∞, but these cancel to leave a finite limit. The corre-

sponding result for Ĩ2, obtained using Eqs. (122), (123) and (125) of Ref. [26], is

Ĩ2 = −9L3
[(

2ωMs
2 /G
)3

2ωMs
2

]
00
− 9× 216m2π4a4

1

L6

∑

~k1,~k2 6=0

H(~k1)2H(~k2)2

k21

[
k21 + k22 + (~k1 + ~k2)2

]
k22

+O(1/L) . (A21)

Here the two terms have canceling logarithmic divergences.
The final quantity is SI =

∑∞
n=3 In, where In is defined in Eq. (124) of Ref. [26]. Given this definition, it is

straightforward to evaluate the geometric sum to arrive at

SI = 9L3

[
1

1 + 2ωMs
2
/G

(
2ωMs

2 /G
)4

2ωMs
2

]

00

+O(1/L) . (A22)

In the numerical evaluation of F∞3 , L(~k), Ĩ1, Ĩ2 and SI , we can use the same group-theoretical simplifications as
described in the numerical solution of the quantization conditions. Thus the matrices involved have dimensions given

by the number of momentum shells. We also note that Ĩ1 is the simplest of the quantities to calculate, since it involves
only a column of /G rather than the full matrix.
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Appendix B: Evaluation of F̃ s

In this appendix we describe how we numerically evaluate the two versions of F̃ s that we use. Since both differ
from the more standard choice of Refs. [7, 39], based of zeta-function regulation, we think it is useful to present a
short description.

We begin with F̃ sHS. We rewrite Eq. (11) as

F̃ s(~k) = F̃ sr (~k) + δF̃ s(~k) , (B1)

F̃ sHS(~k) =
1

2ωk

H(~k)

32π3(E − ωk)

2π

L


∑

~na

−PV

∫

~na


 H(~a)H(~b)

x2 − r2 , (B2)

where δF̃ s is exponentially suppressed. F̃ sHS is the form introduced in Eqs. (43) and (44) of Ref. [26], and contains

a sum and integral over the vector of integers ~na, with ~a = (2π/L)~na and ~b = −~a − ~k, while x2 ≡ q∗ 22,kL
2/(4π2) is a

quantity that can have either sign. Finally, r is magnitude of a vector whose parts parallel and perpendicular to −~k
are

r‖ =
na‖ − |~nk|/2

γ
, r⊥ = na⊥ , (B3)

with γ = (E − ωk)/E∗2,k.
The reason for this rewriting is that it is now easier to numerically implement the PV prescription, following a

method introduced in Appendix A of Ref. [26]. Using d3na = γd3r, the integral can be rewritten as

PV

∫

~na

H(~a)H(~b)

x2 − r2 = γPV

∫

~r

H(~a)H(~b)

x2 − r2 (B4)

= γ

[
−
∫

~r

H(~a)H(~b)

r2
+ x2

∫

~r

H(~a)H(~b)− 1

r2(x2 − r2)
+ x2 PV

∫

~r

1

r2(x2 − r2)

]
. (B5)

The pole prescription is needed only for the third integral on the right-hand side (rhs), and this integral vanishes
identically for all real x2 (of either sign). The first integral on the rhs is IR finite, while in the second the pole
at x2 = r2 is cancelled by the difference in the numerator. Thus both integrals are straightforward to evaluate

numerically, which we do by breaking them up into regions where H(~a)H(~b) vanishes, is nontrivial, or equals unity.

For the calculations presented in the main text, we have dropped the quantity δF̃ s, since it is exponentially
suppressed. This is theoretically consistent, since the quantization condition is only accurate up to exponentially
suppressed corrections in the first place.

We now turn to F̃ sKSS. Here we again drop δF̃ s, and then use the exponential regulator of Ref. [30] to define the
sum and integral

F̃ sKSS(~k) = lim
α→0

1

2ωk

H(~k)

32π3(E − ωk)

2π

L


∑

~na

−PV

∫

~na


 e

α(x2−r2)

x2 − r2 . (B6)

Unlike for F̃ sHS, where the H-functions cut off the sums and integrals at finite values of ~n, here both extend to infinite
|~n|, albeit in a convergent fashion. We cut off the sum when the contributions of higher terms drop below our desired
precision (roughly 1 part in 1011). The integral, however, can be evaluated analytically, using the same method as in
Eq. (B5) to take care of the principal value prescription:

PV

∫

~na

eα(x
2−r2)

x2 − r2 = γ

[
−
∫

~r

eα(x
2−r2)

r2
+ x2

∫

~r

eα(x
2−r2) − 1

r2(x2 − r2)
+ x2γ PV

∫

~r

1

r2(x2 − r2)

]
(B7)

= 4πγ

[
−
√

π

4α
e−αx

2

+
πx

2
erfi
(√

αx2
)]

, (B8)

where erfi(z) is the imaginary error function, defined by d erfi(z)/dz = 2ez
2

/
√
π and erfi(0) = 0. The final issue is

how to take the limit α → 0. As shown in Ref. [30], the α dependence comes in the form e−cL
2/α, where c = O(1).
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Thus for sufficiently small α the corrections become numerically negligible. We find that, for the range of values of L
that we use, taking α = 0.5− 1 suffices for the desired numerical accuracy.
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