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1 Introduction

In the absence (so far) of any clear signature of some physics beyond the Standard Model

(BSM) at the LHC, the Standard Model Effective Field Theory (SMEFT) has emerged

as one of the most interesting tools to probe systematically the data from the LHC and

elsewhere for hints of possible BSM physics.1 The formulation of the SMEFT assumes

that all the known particles have the same SU(3)c×SU(2)L×U(1)Y gauge transformation

properties as in the Standard Model (SM), with their conventional dimension-2 and -4

interactions being supplemented by higher-dimensional interactions between all allowed

combinations of these SM fields. Such interactions might be generated by massive particles

being exchanged at the tree-level or circulating in loop diagrams. These interactions would

in general be suppressed by powers of some high mass scale Λ related to the scale of

BSM physics, with dimensionless coefficients that depend on their interactions with SM

particles. The leading higher-dimensional operators relevant to many LHC measurements

are expected to be those of dimension 6. If the LHC experiments measure one or more

significant deviations from SM predictions, the SMEFT can be used to help characterize

1See refs. [1–4] for some recent reviews of the SMEFT.
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its possible origin. In the absence of any significant deviations, the SMEFT can be used to

constrain the scales of different BSM physics scenarios and to guide the search for direct

effects of new physics.

First steps in this SMEFT programme have included the cataloguing of possible in-

teractions of dimension 5, 6 and higher [5–8], the construction of non-redundant bases of

independent operators [1, 9–12], and the development of a dictionary to translate between

different bases [13, 14]. This groundwork has been the basis for subsequent phenomenolog-

ical analyses through global fits of data [15–40] from the LHC and other experiments that

constrain various combinations of dimension-6 operator coefficients and thereby different

scenarios for BSM physics. The principal classes of observables used in such analyses have

included precision electroweak data from LEP [41], the SLC [41] and the Tevatron [42],

constraints on diboson production from LEP 2 [43–46] and the LHC [47, 48], and data on

Higgs production from the LHC [49]. In the past, the precision of the electroweak Z-pole

data has been such that the coefficients of the operators affecting them could initially be

considered independently of those entering into other observables. However, such a seg-

regated approach is theoretically unsatisfactory, with some bases being more correlated

across measurements than others, and is becoming obsolescent with the advent of more

precise LHC data on Higgs production and diboson production where the latter, in par-

ticular, can no longer be interpreted solely as a measurement of anomalous triple-gauge

couplings [50, 51].

In this paper we perform the first comprehensive global analysis of relevant electroweak

and diboson data together with Higgs production data from Runs 1 and 2 of the LHC,

while allowing all relevant operators to vary in the combined dataset, thus superseding our

previous analyses [17–19]. As we discuss in more detail below, we include in our analysis 14

precision electroweak measurements, 74 measurements of e+e− → W+W− → 4 fermions,

22 Higgs signal strength measurements from Run 1 of the LHC and 46 measurements of

Higgs production from Run 2 of the LHC (including information using Simplified Template

Cross Sections (STXS) [1]), and one measurement of W+W− production at high pT during

Run 2 of the LHC.

We present our results in both the Warsaw [9] and SILH [10, 52] operator bases and

in two forms: one in which all the dimension-6 operator coefficients are allowed to be

non-vanishing simultaneously, and one in which the operator coefficients are switched on

one at a time. We exhibit the improvement in the constraints on operator coefficients

compared to fits using only data from Run 1 of the LHC, and we discuss the correlations

between the constraints on the coefficients. We also analyze the implications of this fit

for BSM models that make tree-level contributions to the operator coefficients [53], as well

as for stop squarks in the minimal supersymmetric extension of the SM (MSSM), which

contribute to the operator coefficients at the loop level [54–56].

The layout of our paper is as follows. In section 2 we review the SMEFT framework

and introduce the 20 dimension-6 operators that appear in our analysis, and in section 3

we introduce the data we use. Section 4 presents the methodology we use for our fit, and

section 5 presents the results of our analysis. Their implications for a variety of BSM

scenarios are discussed in section 6. Finally, section 7 summarizes our conclusions.

– 2 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
6

2 The SMEFT framework

The SM is defined by a Lagrangian consisting of all operators up to mass dimension 4 formed

by combinations of SM fields that are allowed by a linearly-realized SU(3)c×SU(2)L×U(1)Y
gauge symmetry. However, if new physics exists at some heavier scale Λ, one generically

expects higher-dimensional operators to also be present, their effects suppressed by Λ

to powers fixed by dimensional analysis, with logarithmic corrections that are calculable

in perturbation theory. Treating the SM properly as a low-energy Effective Field Theory

(EFT), the SMEFT is the SM Lagrangian extended to include a series of higher-dimensional

operators. At dimension 5 there is a single category of operators, which violate lepton

number and give masses to neutrinos [5]. Here we focus on the effects of the leading

lepton-number-conserving operators O of dimension 6,

LSMEFT ⊃ LSM +
∑
i

ci
Λ2
i

Oi , (2.1)

where the ci are Wilson coefficients induced by integrating out the heavy degrees of freedom

of some new physics at a scale Λ.2 One would typically expect a tree-level contribution

to be proportional to at least the square of some new physics coupling, e.g., c ∼ g2
∗, with

an additional suppression by a factor ∼ 1/(4π)2 if it appears when the BSM physics is

integrated out at one loop. From a bottom-up point of view the coefficients are treated as

free parameters where the validity of the EFT can be assessed a posteriori [65].

The coefficients c(Λ) generated at the scale Λ are related to their values c(v) at the elec-

troweak scale v ∼ 246 GeV through RGE running, using the SMEFT one-loop anomalous

dimension matrix that has been calculated in refs. [66–72]. Below the electroweak scale the

SMEFT can be matched to a low-energy EFT [73–76], whose running is also known [77].

Since the data currently do not require a large hierarchy between the electroweak scale and

the BSM scale, and we work to leading order for simplicity,3 we do not discuss these effects

in this paper.

The dimension-6 operators were first classified systematically in ref. [6]. Such a list

generally forms a redundant set since operators related by field redefinitions, equations of

motion, integration by parts, or Fierz identities give identical S-matrix predictions and

are therefore equivalent descriptions of the same physics.4 The first non-redundant basis

of operators was derived in ref. [9] and is commonly called the Warsaw basis. Another

popular basis in the literature is referred to as the SILH basis [10, 52]. There are 2499

CP-even dimension-6 operators, which reduce to 59 independent operators when assuming

minimal flavour violation [71], but of those only 20 are relevant for the Higgs, diboson,

and electroweak precision observables that we consider here.5 We assume here an U(3)5

flavor symmetry, under which the Yukawa matrices are promoted to spurions transforming

as bi-triplets, and present results in both the Warsaw and SILH bases.

2For some recent developments on matching using functional methods, see refs. [54, 57–64].
3See refs. [2, 78–83] for some discussion and results in the SMEFT at NLO.
4The problem of generating a non-redundant set of operators to arbitrary mass dimension has recently

been solved using Hilbert series methods [8, 84–87].
5We do not consider CP-odd operators in our analysis; for a recent study of CP tests in the Higgs sector

see ref. [88].

– 3 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
6

In the Warsaw basis, the 11 operators involved in diboson measurements and elec-

troweak precision observables, through input parameter shifts or modifications of the gauge

boson self-coupling and couplings to fermions, can be written in the notation of ref. [2] as

LWarsaw
SMEFT⊃

C̄
(3)
Hl

v2
(H†i

←→
D I

µH)(l̄τ Iγµl)+
C̄

(1)
Hl

v2
(H†i

←→
D µH)(l̄γµl)+

C̄ll
v2

(l̄γµl)(l̄γ
µl)

+
C̄HD
v2

∣∣∣H†DµH
∣∣∣2+

C̄HWB

v2
H†τ IHW I

µνB
µν

+
C̄He
v2

(H†i
←→
D µH)(ēγµe)+

C̄Hu
v2

(H†i
←→
D µH)(ūγµu)+

C̄Hd
v2

(H†i
←→
D µH)(d̄γµd)

+
C̄

(3)
Hq

v2
(H†i

←→
D I

µH)(q̄τ Iγµq)+
C̄

(1)
Hq

v2
(H†i

←→
D µH)(q̄γµq)+

C̄W
v2

εIJKW Iν
µ W Jρ

ν WKµ
ρ ,

(2.2)

where flavour indices and Hermitian conjugate operators are implicit,6 and we defined

C̄ ≡ v2

Λ2
C . (2.3)

There are in addition 9 operators that affect Higgs measurements,

LWarsaw
SMEFT ⊃

C̄eH
v2

ye(H
†H)(l̄eH) +

C̄dH
v2

yd(H
†H)(q̄dH) +

C̄uH
v2

yu(H†H)(q̄uH̃)

+
C̄G
v2
fABCGAνµ GBρν GCµρ +

C̄H�
v2

(H†H)�(H†H) +
C̄uG
v2

yu(q̄σµνTAu)H̃ GAµν

+
C̄HW
v2

H†HW I
µνW

Iµν +
C̄HB
v2

H†H BµνB
µν +

C̄HG
v2

H†H GAµνG
Aµν . (2.4)

The OH = |H|6 operator, not listed here, can be measured in double-Higgs production, for

which there is limited sensitivity at the LHC.7

We note that Higgs production in association with a top-quark pair probes many

coefficients in the SMEFT [30, 31, 96] but a number of these do not appear in our other

observables — the only one we consider explicitly here is CuG, which is expected to make

the largest contribution to tt̄h production. However, it should be borne in mind that the

bounds on CuG in this work are actually bounds on the following linear combination of

coefficients,

CuG → CuG + 0.006CuW + 0.002CuB − 0.13C(8)
qu + additional ψ4 operators . (2.5)

We note also that Higgs production in association with a jet is sensitive to the triple-

gluon operator. Although we will sometimes include CG, or equivalently c̄3G for the SILH

basis, in our fits, more stringent bounds on CG have been derived from multi-jet processes

at the LHC [97]. Other SMEFT operators that do not appear here can be constrained

independently of Higgs, diboson, and electroweak precision measurements.

6The flavour indices of the four-lepton operator are Cll = C ll
eµµe

= C ll
µeeµ

.

7Prospects for future double-Higgs measurements at higher luminosity or energy are studied, for example,

in refs. [89–95] and references therein.
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In the SILH basis the relevant operators for our fit, with conventions defined in [10]

(which differs slightly from ref. [98]), are

LSILH
SMEFT⊃

c̄W
m2
W

ig

2

(
H†σa

↔
DµH

)
DνW a

µν+
c̄B
m2
W

ig′

2

(
H†
↔
DµH

)
∂νBµν+

c̄T
v2

1

2

(
H†
↔
DµH

)2

+
c̄ll
v2

(L̄γµL)(L̄γµL)+
c̄He
v2

(iH†
↔
DµH)(ēRγ

µeR)+
c̄Hu
v2

(iH†
↔
DµH)(ūRγ

µuR)

+
c̄Hd
v2

(iH†
↔
DµH)(d̄Rγ

µdR)+
c̄′Hq
v2

(iH†σa
↔
DµH)(Q̄Lσ

aγµQL)

+
c̄Hq
v2

(iH†
↔
DµH)(Q̄Lγ

µQL)+
c̄HW
m2
W

ig(DµH)†σa(DνH)W a
µν+

c̄HB
m2
W

ig′(DµH)†(DνH)Bµν

+
c̄3W
m2
W

g3εabcW
aν
µ W b

νρW
cρµ+

c̄g
m2
W

g2s |H|2GAµνGAµν+
c̄γ
m2
W

g′2|H|2BµνBµν

+
c̄H
v2

1

2
(∂µ|H|2)2+

∑
f=e,u,d

c̄f
v2
yf |H|2F̄LH(c)fR

+
c̄3G
m2
W

g3sfABCG
Aν
µ GBρν GCµρ +

c̄uG
m2
W

gsyuQ̄LH
(c)σµνλAuRG

A
µν . (2.6)

Hermitian conjugates and flavour indices are again kept implicit.

Our computations are performed at linear order in the Warsaw and SILH bases using

α, GF , and MZ as input parameters. We used the predictions for electroweak precision

observables and WW scattering at LEP 2 in the Warsaw basis from refs. [2, 39]. Predictions

for LHC observables are made using SMEFTsim [99]. These computations can be converted

to the SILH basis using the known results in the literature [13, 54, 71].

3 Data used in the global fit

The following data are used in our global fit, which, as stated above, are sensitive to 20

directions in the SMEFT parameter space.

• Precision electroweak data. We use the Z-pole observables from table 8.5 of ref. [41],

including the correlations. We use the W mass measurements from the Tevatron [42]

and ATLAS [100]. These measurements and the corresponding theoretical predic-

tions within the SM are summarized in table 1, and they probe eight directions in

the SMEFT.

• e+e− → W+W− → 4 fermions. We use all the data from tables 12, 13, 14, and 15

of ref. [39]. The original experimental results can be found in refs. [43–46], and we

use the SM predictions from refs. [44, 45]. This is a total of 74 measurements. These

measurements also probe eight directions in the SMEFT. However only three of these

combinations of the parameters are unconstrained by the electroweak precision data.

• Higgs production in LHC Run 1. We use all the 20 signal strengths from table 8

of ref. [49], including the correlations given in figure 27 of the same paper, where

a signal strength is defined as the ratio of the measured cross section to its SM

prediction. The ATLAS and CMS combination for the h → µ+µ− signal strength

is taken from table 13 of ref. [49]. The ATLAS h → Zγ signal strength is taken

– 5 –
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Observable Measurement Ref. SM Prediction Ref.

ΓZ [GeV] 2.4952± 0.0023 [41] 2.4943± 0.0005 [40]

σ0
had [nb] 41.540± 0.037 [41] 41.488± 0.006 [40]

R0
` 20.767± 0.025 [41] 20.752± 0.005 [40]

A0,`
FB 0.0171± 0.0010 [41] 0.01622± 0.00009 [120]

A` (Pτ ) 0.1465± 0.0033 [41] 0.1470± 0.0004 [120]

A` (SLD) 0.1513± 0.0021 [41] 0.1470± 0.0004 [120]

R0
b 0.021629± 0.00066 [41] 0.2158± 0.00015 [40]

R0
c 0.1721± 0.0030 [41] 0.17223± 0.00005 [40]

A0,b
FB 0.0992± 0.0016 [41] 0.1031± 0.0003 [120]

A0,c
FB 0.0707± 0.0035 [41] 0.0736± 0.0002 [120]

Ab 0.923± 0.020 [41] 0.9347 [120]

Ac 0.670± 0.027 [41] 0.6678± 0.0002 [120]

MW [GeV] 80.387± 0.016 [42] 80.361± 0.006 [120]

MW [GeV] 80.370± 0.019 [100] 80.361± 0.006 [120]

Table 1. Summary of the precision electroweak data used in our global fit.

from figure 1 of ref. [101]. These measurements are summarized in table 2. The 20

correlated measurements are sensitive to nine combinations of SMEFT parameters,

and the measurement of h→ Zγ constitutes a tenth direction. However, h→ µ+µ−

is a dependent quantity because of the U(3)5 flavor symmetry that we assume.

• Higgs Production in LHC Run 2. We use 25 measurements from CMS [102–105, 105–

109], and 23 measurements from ATLAS [110–116]. A summary is given in table 3.

The correlations between the 4` and γγ decay notes from ref. [115] are also included

in the context of template cross sections (STXS) as described in ref. [117]. These

measurements probe 12 combinations of SMEFT parameters.8

• W+W− Production at the LHC. We use only one measurement of the differential

cross section for pp→ WW → e±νµ∓ν by ATLAS at 13 TeV [47] as no correlations

are provided. The particular bin we chose, which requires the transverse momentum

(pT ) of the leading lepton (`1) to be greater than 120 GeV, is the overflow bin,

which is expected to maximize the sensitivity to certain Wilson coefficients. The

signal strength for this measurement is µ(pp → e±νµ∓ν; p`1T > 120 GeV) = 1.05 ±
0.06(exp.)± 0.1(theo.).

8A SMEFT fit to ATLAS Higgs production data is presented in [115]. See also a recent non-linear EFT

analysis in [118] and a global SM fit to electroweak and Higgs measurements in [119].
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Production Decay Signal Strength Production Decay Signal Strength

ggF γγ 1.10+0.23
−0.22 Wh ττ −1.4± 1.4

ggF ZZ 1.13+0.34
−0.31 Wh bb 1.0± 0.5

ggF WW 0.84± 0.17 Zh γγ 0.5+3.0
−2.5

ggF ττ 1.0± 0.6 Zh WW 5.9+2.6
−2.2

VBF γγ 1.3± 0.5 Zh ττ 2.2+2.2
−1.8

VBF ZZ 0.1+1.1
−0.6 Zh bb 0.4± 0.4

VBF WW 1.2± 0.4 tth γγ 2.2+1.6
−1.3

VBF ττ 1.3± 0.4 tth WW 5.0+1.8
−1.7

Wh γγ 0.5+1.3
−1.2 tth ττ −1.9+3.7

−3.3

Wh WW 1.6+1.2
−1.0 tth bb 1.1± 1.0

pp Zγ 2.7+4.6
−4.5 pp µµ 0.1± 2.5

Table 2. Summary of LHC Run 1 Higgs results used in this work. All the measurements are

combined CMS and ATLAS results from ref. [49], except for the Zγ result, which is an ATLAS

result from ref. [101].

4 Fit methodology

We assume Gaussian errors throughout and use the method of least squares to perform our

estimation of the SMEFT parameters. The least-squares estimators for the parameters of

interest, ĉ, are defined by the χ2 function

χ2 (c) = (y − µ (c))>V−1 (y − µ (c)) , (4.1)

where the measurements tabulated in section 3 have been collected into a vector of central

values, y, along with a covariance matrix, V. The SMEFT values of the corresponding

observables have been expressed as a vector, µ = µSM + H · c, where µSM represents the

predictions in the SM, c is a vector of SMEFT Wilson coefficients, and H is a matrix

that parameterizes in the linear approximation we use here the SMEFT corrections to the

SM predictions.

The least-squares estimators ĉ for the Wilson coefficients are found by extremizing the

χ2 function, w ≡∇χ2 = 0:

ĉ =
(
H>V−1H

)−1
H>V−1 (y − µSM) . (4.2)

The covariance matrix for the least-squares estimators, U, is given by the inverse of the

Hessian of the χ2 function, Fij ≡ 1
2∇i∇jχ

2:

U =
(
H>V−1H

)−1
= F−1. (4.3)

The quantity in parentheses in eq. (4.3) is also known as the Fisher information. With

these definitions an alternative way of writing the chi-squared function is

χ2 (c) = χ2
min + (c− ĉ)> · ŵ + (c− ĉ)> · F · (c− ĉ) , (4.4)

– 7 –
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Production Decay Sig. Stren. Production Decay Sig. Stren.

[102] 1-jet, pT > 450 bb̄ 2.3+1.8
−1.6 [110] pp µµ −0.1± 1.5

[103] Zh bb̄ 0.9± 0.5 [111] Zh bb̄ 1.12+0.50
−0.45

[103] Wh bb̄ 1.7± 0.7 [111] Wh bb̄ 1.35+0.68
−0.59

[104] tt̄h,≥ 1` bb̄ 0.72± 0.45 [112] tt̄h bb̄ 0.84+0.64
−0.61

[105] tt̄h 1`+ 2τh −1.52+1.76
−1.72 [113] tt̄h 2`os+ 1τh 1.7+2.1

−1.9

[105] tt̄h 2`ss+ 1τh 0.94+0.80
−0.67 [113] tt̄h 1`+ 2τh −0.6+1.6

−1.5

[105] tt̄h 3`+ 1τh 1.34+1.42
−1.07 [113] tt̄h 3`+ 1τh 1.6+1.8

−1.3

[105] tt̄h 2`ss 1.61+0.58
−0.51 [113] tt̄h 2`ss+ 1τh 3.5+1.7

−1.3

[105] tt̄h 3` 0.82+0.77
−0.71 [113] tt̄h 3` 1.8+0.9

−0.7

[105] tt̄h 4` 0.9+2.3
−1.6 [113] tt̄h 2`ss 1.5+0.7

−0.6

[106] 0-jet DF WW 1.30+0.24
−0.23 [114] ggF WW 1.21+0.22

−0.21

[106] 1-jet DF WW 1.29+0.32
−0.27 [114] VBF WW 0.62+0.37

−0.36

[106] 2-jet DF WW 0.82+0.54
−0.50 [115] B(h→ γγ)/ B(h→ 4`) 0.69+0.15

−0.13

[106] VBF 2-jet WW 0.72+0.44
−0.41 [115] 0-jet 4` 1.07+0.27

−0.25

[106] V h 2-jet WW 3.92+1.32
−1.17 [115] 1-jet, pT < 60 4` 0.67+0.72

−0.68

[106] Wh 3-lep WW 2.23+1.76
−1.53 [115] 1-jet, pT ∈ (60, 120) 4` 1.00+0.63

−0.55

[107] ggF γγ 1.10+0.20
−0.18 [115] 1-jet, pT ∈ (120, 200) 4` 2.1+1.5

−1.3

[107] VBF γγ 0.8+0.6
−0.5 [115] 2-jet 4` 2.2+1.1

−1.0

[107] tt̄h γγ 2.2+0.9
−0.8 [115] “BSM-like” 4` 2.3+1.2

−1.0

[107] V h γγ 2.4+1.1
−1.0 [115] VBF, pT < 200 4` 2.14+0.94

−0.77

[108] ggF 4` 1.20+0.22
−0.21 [115] V h lep 4` 0.3+1.3

−1.2

[109] 0-jet ττ 0.84± 0.89 [115] tt̄h 4` 0.51+0.86
−0.70

[109] boosted ττ 1.17+0.47
−0.40 [116] Wh WW 3.2+4.4

−4.2

[109] VBF ττ 1.11+0.34
−0.35

[106] Zh 4-lep WW 0.77+1.49
−1.20

Table 3. Summary of LHC Run 2 Higgs results used in this work. The left side of the table lists

results from CMS, and the right side lists results from ATLAS.

where ŵ is the gradient of the chi-squared function evaluated using the least-squared

estimators.

Since our analysis is to linear order in the Wilson coefficients, the likelihood associated

with our χ2 function is a multivariate Gaussian distribution. As such, it is simple to

compute the marginalized likelihood for a given subset of Wilson coefficients. It is not

necessary to do any integration, one simply drops the variables the one wants to marginalize

over from c, ĉ, and U. We note also that the marginalized and profiled likelihoods for a

given subset of Wilson coefficients are equivalent in the Gaussian approximation, which is

not true in general.
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Figure 1. Fits to the ∆S and ∆T parameters [121–126] using Z-pole, W mass, and LEP 2 WW

scattering measurements (red), using LHC Run 1 and Run 2 Higgs results (dark yellow), and all

the data (blue). The darker and lighter shaded regions are allowed at 1 and 2σ, respectively. We

see that the Higgs measurements at the LHC have similar impacts to the electroweak precision

measurements, and are largely complementary, emphasizing the need for a combined global fit.

5 Results

5.1 Oblique parameters S and T

As an introduction to the results from our updated global fit, we first present its impli-

cations in a simplified case where only the oblique parameters ∆S and ∆T introduced

in [121–126] are non-zero. In the Warsaw basis these parameters are given by

v2

Λ2
CHWB =

g1g2

16π
∆S,

v2

Λ2
CHD = − g1g2

2π (g1 + g2)
∆T , (5.1)

whereas in the SILH basis the relation (at leading order) is given by α∆T = c̄T and

α∆S = 4s2
W (c̄W + c̄B).

Figure 1 shows the preferred parameter space for ∆S and ∆T for three different se-

lections of the data sets included in the fit. The green ellipses are obtained using just

the Z-pole, W mass, and LEP 2 WW scattering measurements in the fit, whereas the

orange ellipses use only the LHC Run 1 and Run 2 Higgs results. Finally, the blue ellipses

are obtained using all the data described in section 3. The regions shaded in darker and

lighter colours are allowed at 1 and 2σ, respectively. The 2-σ marginalized ranges of ∆S

and ∆T are

∆S ∈ [−0.06, 0.07],

∆T ∈ [−0.02, 0.05], (5.2)

with a correlation coefficient of 0.72.
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This two-dimensional fit is restricted to the two operators in the Warsaw basis that con-

tribute to ∆S and ∆T , as defined by electroweak gauge boson propagator modifications.9

Nevertheless, figure 1 makes it clear that the importance of the Higgs measurements at

the LHC is now comparable to that of the electroweak precision measurements for certain

operators, with (basis-dependent) correlations between various measurements. Moreover,

these and the Higgs constraints on ∆S and ∆T are largely complementary in the Warsaw

basis [127]. This exemplifies the necessity of performing a combined global fit to precision

electroweak, Higgs and diboson data, as we discuss in the rest of this section.

5.2 Fits to all operator coeficients

With this motivation, we now turn to the results of our global fit using all the 20 dimension-

6 operators discussed previously. The upper panel of figure 2 displays our results for the

best-fit values and 95% CL ranges in the Warsaw operator basis if all these operators are

included simultaneously, while the lower panel shows our results when each operator is

turned on individually, with the other operator coefficients set to zero. The orange error

bars are for a fit to all the measurements described above, whereas the blue error bars are

for a fit omitting the LHC Run 2 data. As one would expect, the uncertainties in each

operator coefficient are smaller in the fit including LHC Run 2 data, and are generally

larger in the global fit with all operators switched on than in the fit where the operators

are switched on one at a time. The numerical results of the global fit for the 1-σ ranges in

the Warsaw basis including all sources of data are presented in the left part of table 4.

Figure 3 shows the corresponding best-fit values and 95% CL ranges in the SILH basis.

The orange error bars are again for a fit to all the measurements described above, whereas

the green error bars are for a fit to the Z-pole and W mass measurements alone. Again, the

uncertainties in each operator coefficient are smaller when the LHC Run 2 data are included

in the fit, and are generally larger when all operators are switched on simultaneously. The

numerical results for the 1-σ ranges in the global fit to all the available data in the SILH

basis are shown in the right part of table 4.

Figure 3 also compares the results of the updated global fit performed in this work

with those found in previous work in the SILH basis by three of us (JE, VS and TY) in

ref. [18]. It should be borne in mind, when comparing the fits to see how the bounds on

different coefficients have changed, that the procedures of the two works are not identical.

Nevertheless several general trends can be seen. When considering fits to one operator at

a time, the bounds on coefficients that primarily affect W - and Z-pole observables have

not changed drastically between ref. [18] and this work. On the other hand, the bounds in

the individual fits on the coefficients of operators that do not affect the electroweak pole

observables have tightened, quite considerably in some cases. When all the operators are

considered simultaneously there are not such large differences between the bounds on the

operators that do not affect W - and Z- pole observables as in the one-at-a-time case.

We show in table 5 the relative information contents of the different sets of data for the

different Wilson coefficients in the Warsaw basis. A cross indicates no current sensitivity.

9These operators also induce vertex corrections that enter in the hγγ coupling.
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Figure 2. Results from global fits in the Warsaw basis (orange) including all operators simultane-

ously (upper panel) and switching each operator on individually (lower panel). Also shown are fits

omitting the LHC Run 2 data (blue). We display the best-fit values and 95% CL ranges.
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Figure 3. Results from global fits in the SILH basis (orange) including all operators simultaneously

(upper panel) and switching each operator on individually (lower panel). Also shown are fits to the

precision electroweak Z-pole and W -mass data (green) and results from [18] (blue). We display the

best-fit values and 95% CL ranges.
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As discussed in, e.g., ref. [18], one can divide sets of operators in terms of their sensitivity to

LEP or LHC observables. Operators involving light fermions in the Warsaw basis had been

best constrained by LEP Z-pole and mW constraints. The introduction of LEP W+W−

data brings marginal gains, except for the operator c̄W where the effect is quite dramatic.

For this operator the high-energy LHC W+W− data do not yet improve substantially the

sensitivity, although one would expect this to change as more statistics are gathered and

the complete information in the full distribution is available, not just the overflow bin.

The LHC Run 1 data opened the possibility to explore a new set of operators involving

the Higgs and gauge bosons to which LEP was not sensitive. For all these operators,

the Run 2 dataset is as sensitive as the Run 1 dataset, or even more sensitive. These

measurements open up the sensitivity to a set of possible BSM effects that could lead to a

discovery with an increased dataset in the future LHC runs. The relative improvements in

the constraints on the Wilson coefficients in the Warsaw basis when the LHC Run 2 data

are included in the global fit are displayed graphically in figure 4. In the case where all the

operators are included (upper panel), the constraints on all the operator coefficients are

improved, most significantly in the cases of CHD, CHe, C
(1)
H` and CHWB, though some of the

improvements are marginal, e.g., those on CHd and CW . In the case where the operator

coefficients are switched on individually (lower panel), the improvements in the constraints

on some coefficients are improved quite dramatically, see, e.g., CG and to a lesser extent

CuG and CuH , whereas there are no improvements in the constraints on several operator

coefficients, namely CHd, CHD, CHe, C
(1)
H` , C

(3)
H` , C

(1)
Hq, C

(3)
Hq, CHu and C``, as those are mainly

constrained by electroweak precision observables. Nevertheless, we see that the improved

precision of Run 2 plays an important role in improving marginalised limits.

The relative importances of these data sets are also important for the correlations

between the constraints on the coefficients of the different operators. These correlations

depend on the choice of basis, and we display in figure 5 the correlation matrices in the

Warsaw basis (left) and the SILH basis (right), using the colour code shown in the legend

on the right. We see that both bases exhibit high degrees of correlation between some of

the coefficients. In particular, in the Warsaw basis the coefficients contributing to EWPTs

observables (C
(1)
H` , CHe, CHD) as well as the pair (C

(3)
Hq, C

(3)
H`) are very correlated, whereas

we find strong anti-correlations among operators involved in the LHC measurements (CG,

CHW ), (CuG, CuH), with operators mostly sensitive to LEP data (CHd, C``).

On the other hand, in the SILH basis, we find strong correlations between the operators

(c̄3W , c̄HW ) due to the impact of diboson measurements, and correlations of the operator

c̄Hq with other fermionic operators c̄`` and c̄′Hq, which are mostly constrained by LEP data,

see table 5. As expected, the operator c̄T is correlated with the combination of operators

c̄W + c̄B, as they both contribute to oblique corrections to the SM couplings.10

10Numerical values of the correlation coefficients are available as supplementary material attached to

this paper.
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Figure 4. The relative improvement in the standard deviations of the Wilson coefficients in

the Warsaw basis when LHC Run 2 data are added to the fits (a lower number correspond to

more improvement). The upper and lower panels correspond to when all operators are included

simultaneously or when switching on each operator individually, respectively.
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Coefficient Central value 1-σ

C̄dH 0.33 0.15

C̄eH 0.06 0.10

C̄G 0.09 0.06

C̄HB 0.003 0.005

C̄H� 0.50 0.27

C̄Hd -0.036 0.017

C̄HD -0.001 0.014

C̄He 0.002 0.007

C̄HG 0.0002 0.0003

C̄
(1)
H` 0.002 0.003

C̄
(3)
H` -0.015 0.011

C̄
(1)
Hq -0.002 0.003

C̄
(3)
Hq -0.017 0.013

C̄Hu 0.000 0.011

C̄HW -0.002 0.014

C̄HWB 0.006 0.007

C̄`` -0.009 0.006

C̄uG 0.7 0.4

C̄uH -4.8 2.6

C̄W -0.05 0.06

Coefficient Central value 1-σ

c̄3G 0.005 0.003

c̄3W -0.018 0.023

c̄d 0.36 0.15

c̄e 0.09 0.11

c̄g 0.00002 0.00002

c̄H -1.1 0.6

c̄HB -0.013 0.018

c̄Hd -0.035 0.017

c̄He 0.007 0.013

c̄Hq -0.003 0.004

c̄′Hq -0.003 0.003

c̄Hu -0.03 0.013

c̄HW 0.002 0.014

c̄`` -0.009 0.006

c̄T 0.005 0.013

c̄u -4.7 2.6

c̄uG 0.031 0.016

c̄W − c̄B -0.04 0.04

c̄W + c̄B 0.003 0.024

c̄γ -0.001 0.0006

Table 4. Numerical results of a global fit to all data, marginalizing over all coefficients, evaluated

in the Warsaw (left) and SILH (right) bases.

6 Implications for extensions of the Standard Model

6.1 Single-parameter models

Ref. [53] gave a complete dictionary in the Warsaw basis [9] for new scalar bosons, vector-

like fermions, and vector bosons that contribute to the dimension-six SMEFT operator

coefficients at the tree level. We use the notation of ref. [53] in what follows, unless explicitly

stated otherwise. The models that are constrained by our fit are listed in table 6.11 All

of the vector-like fermion models are constrained by this dataset, whereas it constrains

only the color-singlet boson models. It is worth noting that many of these models generate

operators that are not constrained by this dataset.

11We do not consider model L1, although it would be constrained by our fit, because its only interaction

with the SM is through kinetic mixing with the Higgs field.
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Coefficient Z-pole + mW WW at LEP2 Higgs Run1 Higgs Run2 LHC WW high-pT

C̄dH × × 36 64 ×
C̄eH × × 49.6 50.4 ×
C̄G × × 2.3 97.7 ×
C̄HB × × 19 81 ×
C̄H� × × 19.7 80.3 0.01

C̄Hd 99.88 × 0.04 0.07 ×
C̄HD 99.92 0.06 × × ×
C̄He 99.99 0.01 × × ×
C̄HG × × 34 66 0.02

C̄
(1)
H` 99.97 0.03 × × ×

C̄
(3)
H` 99.56 0.41 × × 0.01

C̄
(1)
Hq 99.98 × 0.01 0.01 ×

C̄
(3)
Hq 98.6 0.96 0.19 0.23 0.07

C̄Hu 99.5 × 0.2 0.3 0.04

C̄HW × × 18 82 ×
C̄HWB 57.9 0.02 8.2 33.9 ×
C̄`` 99.66 0.32 × 0.01 0.01

C̄uG × × 7.8 92.2 ×
C̄uH × × 9.5 90.5 ×
C̄W × 96.2 × × 3.8

Table 5. Impact of different sets of measurements on the fit to individual Wilson coefficients in

the Warsaw basis as measured by the Fisher information contained in a given dataset for each

coefficient. A cross indicates no (current) sensitivity.

We first consider renormalizable versions of the UV-complete models, with bounds on

single-parameter models being given in table 7. The total χ2 and the χ2 per degree of

freedom (χ2/nd) in the SM are given in the top row. The subsequent rows show the total

χ2 and the χ2/nd The first set of models below the SM improve both the χ2 and the χ2/nd.

For these models we give the 1-σ preferred range for the modulus of the coupling squared,

assuming a mass of 1 TeV, and for the mass assuming a coupling of unity. The middle

set of models improve only the χ2. However, we note that in none of these cases is the

improvement in either the χ2 or the χ2/nd significant. The bottom set of models improve

neither the χ2 nor the χ2/nd. For each of these models we give instead the 1-σ upper limit

on the modulus of the coupling squared, and the 1-σ lower limit on the mass. The bound

on, or preferred range for, the mass of a particle is a better indicator than the pull of the

model of how likely it is to be discovered at the LHC or some other future collider.

The model named ϕ in ref. [53] is equivalent to the Two-Higgs Doublet Model (2HDM);

see, e.g., [128] for the corresponding 2HDM notation. We give bounds on the Type-I 2HDM

in table 7, which is characterized in part by having a universal modification of the SM
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Figure 5. Matrices of correlations among the operator coefficients in the Warsaw (left) and SILH

(right) bases, as shown in table 4, using the colour code shown on the right.

Name Spin SU(3) SU(2) U(1) Name Spin SU(3) SU(2) U(1)

S 0 1 1 0 ∆1
1
2 1 2 −1

2

S1 0 1 1 1 ∆3
1
2 1 2 −1

2

ϕ 0 1 2 1
2 Σ 1

2 1 3 0

Ξ 0 1 3 0 Σ1
1
2 1 3 -1

Ξ1 0 1 3 1 U 1
2 3 1 2

3

B 1 1 1 0 D 1
2 3 1 −1

3

B1 1 1 1 1 Q1
1
2 3 2 1

6

W 1 1 3 0 Q5
1
2 3 2 −5

6

W1 1 1 3 1 Q7
1
2 3 2 7

6

N 1
2 1 1 0 T1

1
2 3 3 −1

3

E 1
2 1 1 -1 T2

1
2 3 3 2

3

Table 6. Single-field extensions of the SM constrained by our analysis.

Yukawa couplings. Our fit is only sensitive to the product of couplings Z6 cosβ in the

Type-I 2HDM where
v2Z6

M2
ϕ

≈ 1

2
tan (2 (β − α)) . (6.1)

For this reason we consider it a single-parameter model, and we do not perform a com-

prehensive analysis of the 2HDM. Furthermore, many such analyses already exist, both

within [18, 129, 130] and outside [119, 131, 132] the EFT framework. Lastly, note the

preferred mass range for Mϕ in table 7 assumes the product Z6 cosβ = −1.
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Model χ2 χ2/nd Coupling Mass / TeV

SM 157 0.987 – –

S1 156 0.986 |yS1 |
2 = (6.3± 5.9) · 10−3 MS1 = (9.0, 49)

ϕ, Type I 156 0.986 Z6 · cosβ = −0.64± 0.59 Mϕ = (0.9, 4.3)

Ξ 155 0.984 |κΞ|2 = (4.2± 3.4) · 10−3 MΞ = (12, 35)

N 155 0.978 |λN |2 = (1.8± 1.2) · 10−2 MN = (5.8, 13)

W1 155 0.984
∣∣∣ĝφW1

∣∣∣2 = (3.3± 2.7) · 10−3 MW1 = (4.1, 13)

E 157 0.993 |λE |2 < 1.2 · 10−2 ME > 9.2

∆3 156 0.990 |λ∆3 |
2 < 1.9 · 10−2 M∆3 > 7.3

Σ 157 0.992 |λΣ|2 < 2.9 · 10−2 MΣ > 5.9

Q5 156 0.990 |λQ5 |
2 < 0.18 MQ5 > 2.4

T2 157 0.992 |λT2 |
2 < 7.1 · 10−2 MT2 > 3.8

S 157 0.993 |yS |2 < 0.32 MS > 1.8

∆1 157 0.993 |λ∆1 |
2 < 5.7 · 10−3 M∆1 > 13

Σ1 157 0.993 |λΣ1 |
2 < 7.3 · 10−3 MΣ1 > 12

U 157 0.993 |λU |2 < 2.8 · 10−2 MU > 6.0

D 157 0.993 |λD|2 < 1.4 · 10−2 MD > 8.4

Q7 157 0.993 |λQ7 |
2 < 7.7 · 10−2 MQ7 > 3.6

T1 157 0.993 |λT1 |
2 < 0.13 MT1 > 3.0

B1 157 0.993
∣∣∣ĝφB1∣∣∣2 < 2.4 · 10−3 MB1 > 21

Table 7. Single-parameter renormalizable extensions of the SM, which is included for the sake of

comparison. The coupling bound assumes a mass of 1 TeV, and the mass range assumes a coupling

of one. All bounds are at the 1−σ level. The first set of models below the SM improve both the χ2

and the χ2/nd, whereas the middle set of models only improve the χ2 (numeric values have been

rounded). The bottom set of models improve neither the χ2 nor the χ2/nd. Model ϕ is the 2HDM;

see the text for more discussion of this model.

6.2 Multi-parameter models

We have also investigated a number of two-parameter scenarios, namely the models Ξ1,

Q1, B, and W defined in table 6. For the latter two models we have assumed that all four-

fermion operator coefficients are zero, both to reduce the parameter space and to avoid

the bounds from dijet and dilepton searches at the LHC, which are not included in our fit.

The viable parameter space is each of these models assuming a mass of 1 TeV is shown in

figure 6. As previously, the regions shaded in darker and lighter colours are allowed at 1

and 2 σ, respectively.
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(a) Ξ1 (b) Q1

(c) B, no ψ4 operators (d) W, no ψ4 operators

Figure 6. The viable parameter spaces in the renormalizable Ξ1, Q1, B, and W models defined in

table 6, assuming a mass of 1 TeV. For the two latter models we have assumed all four-fermion oper-

ators are zero. The regions shaded in darker and lighter colours are allowed at 1 and 2 σ, respectively.

6.3 Non-renormalizable models

We now relax the assumption of renormalizability in the UV models. In particular,

dimension-5 operators are added to the UV models. A combination of super-renormalizable

and non-renormalizable operators in a UV theory can generate higher-dimensional opera-

tors with arbitrary coefficients in the corresponding low energy EFT [53, 133]. In a UV

completion of this intermediate EFT, should it exist, these dimension-5 operators can only
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be generated at loop level [53, 134]. However if this UV-completion is strongly-interacting,

the coefficients generated may be sizeable, see ref. [135] for an explicit example.

The results of fits to the non-renormalizable versions of the models in table 6 are pre-

sented in terms of the eigensystem of the covariance matrix for the least-squares estimators

in eqs. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14),

(6.15), and (6.16) below. The chi-squared and goodness-of-fit are given, as are any relations

between the coefficients generated when they exist. Note that only contributions to the

eigenvectors at the percent level or larger are presented.

• S(5): χ2 = 153, χ2/nd = 1.00.

0.54C̄H�−0.05C̄HW +0.01C̄HB+0.08C̄eH+0.84C̄uH+0.03C̄dH
−0.16C̄H�+0.75C̄eH+0.64C̄dH

0.50C̄H�−0.04C̄HW +0.01C̄HB+0.57C̄eH−0.36C̄uH−0.54C̄dH
0.65C̄H�−0.06C̄HW +0.02C̄HB−0.32C̄eH−0.42C̄uH+0.54C̄dH

0.09C̄H�+0.95C̄HW−0.29C̄HB
0.91C̄HG+0.12C̄HW +0.39C̄HB
−0.39C̄HG+0.27C̄HW +0.88C̄HB


=



−0.03±0.18

0.11±0.11

(−4.1±7.9)·10−2

(8.0±6.0)·10−2

(1.8±9.6)·10−3

(1.7±1.4)·10−4

(2.0±8.4)·10−5


(6.2)

• Ξ(5): CHD = −4CH�, χ2 = 152, χ2/nd = 0.986.
−0.28C̄eH + 0.96C̄uH − 0.04C̄dH
0.95C̄eH + 0.28C̄uH + 0.14C̄dH

−0.14C̄eH + 0.99C̄dH
0.66C̄H� + 0.75C̄HWB

0.75C̄H� − 0.66C̄HWB

 =


−0.09± 0.10

(1.5± 9.1) · 10−2

(7.3± 4.5) · 10−2

(1.2± 2.0) · 10−4

(8.8± 8.1) · 10−5

 (6.3)

• Ξ
(5)
1 : CHD = −4CH�, χ2 = 152, χ2/nd = 0.988.

−0.26C̄eH + 0.96C̄uH − 0.03C̄dH
0.96C̄eH + 0.26C̄uH + 0.08C̄dH

−0.09C̄eH + 1.0C̄dH
−0.19C̄H� + 0.98C̄``
0.98C̄H� − 0.19C̄``

 =


−0.09± 0.10

(1.9± 8.9) · 10−2

(6.3± 4.0) · 10−2

(1.5± 4.8) · 10−4

(1.2± 1.0) · 10−4

 (6.4)

• N (5): χ2 = 155, χ2/nd = 0.984.(
0.95C̄

(1)
H` − 0.32C̄

(3)
H`

0.32C̄
(1)
H` + 0.95C̄

(3)
H`

)
=

(
(3.7± 2.7) · 10−4

(−1.4± 2.0) · 10−4

)
(6.5)

• E(5): C
(1)
H` = C

(3)
H` , χ

2 = 157, χ2/nd = 0.999.(
C̄eH

C̄
(3)
H`

)
=

(
(−0.8± 8.9) · 10−2

(−0.3± 1.5) · 10−4

)
(6.6)
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• ∆
(5)
1,3: χ2 = 156, χ2/nd = 0.996.(

C̄eH
C̄He

)
=

(
(−0.8± 8.9) · 10−2

(−2.3± 3.3) · 10−4

)
(6.7)

• Σ(5): C
(1)
H` = 3C

(3)
H` , χ

2 = 157, χ2/nd = 0.998.(
C̄eH

C̄
(3)
H`

)
=

(
(−0.8± 8.9) · 10−2

(3.3± 7.4) · 10−5

)
(6.8)

• Σ
(5)
1 : C

(1)
H` = −3C

(3)
H` , χ

2 = 155, χ2/nd = 0.988.(
C̄eH

C̄
(3)
H`

)
=

(
(−0.8± 8.9) · 10−2

(−1.2± 0.9) · 10−4

)
(6.9)

• U (5): C
(1)
Hq = −C(3)

Hq, χ
2 = 155, χ2/nd = 0.993.0.99C̄uH − 0.13C̄uG

0.13C̄uH + 0.99C̄uG

C̄
(3)
Hq

 =

 0.51± 0.52

(−1.4± 1.4) · 10−2

(1.0± 5.1) · 10−4

 (6.10)

• D(5): C
(1)
Hq = C

(3)
Hq, χ

2 = 154, χ2/nd = 0.983.(
C̄dH

C̄
(3)
Hq

)
=

(
(6.4± 4.0) · 10−2

(1.0± 2.9) · 10−4

)
(6.11)

• Q(5)
1 : χ2 = 152, χ2/nd = 0.987.

0.99C̄uH − 0.07C̄dH − 0.14C̄uG
0.08C̄uH + 1.0C̄dH + 0.05C̄uG
0.13C̄uH − 0.06C̄dH + 0.99C̄uG

0.57C̄Hu + 0.82C̄Hd
0.82C̄Hu − 0.57C̄Hd

 =


−0.8± 1.2

(5.8± 4.1) · 10−2

(−1.5± 1.4) · 10−2

(−1.0± 0.8) · 10−2

(0.5± 1.9) · 10−3

 (6.12)

• Q(5)
5 : χ2 = 154, χ2/nd = 0.982.(

C̄dH
C̄Hd

)
=

(
(6.4± 4.0) · 10−2

(−2.0± 3.1) · 10−3

)
(6.13)

• Q(5)
7 : χ2 = 156, χ2/nd = 0.995,(

C̄uH
C̄Hu

)
=

(
−0.08± 0.10

(0.01± 2.3) · 10−3

)
(6.14)
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• T (5)
1 : C

(1)
Hq = −3C

(3)
Hq, χ

2 = 154, χ2/nd = 0.986.

C̄uH − 0.01C̄dH
0.01C̄uH + C̄dH

C̄
(3)
Hq

 =

 −0.09± 0.10

(6.4± 4.0) · 10−2

(−1.4± 5.9) · 10−4

 (6.15)

• T (5)
2 : C

(1)
Hq = 3C

(3)
Hq, χ

2 = 154, χ2/nd = 0.985.

C̄uH − 0.01C̄dH
0.01C̄uH + C̄dH

C̄
(3)
Hq

 =

 −0.09± 0.10

(6.4± 4.0) · 10−2

(0.7± 1.9) · 10−4

 (6.16)

6.4 Stop squarks in the MSSM

Finally, as an example how the constraints on the SMEFT coefficients can be used to

constrain possible BSM physics at the loop level, we consider the minimal supersymmetric

extension of the SM (the MSSM). Among the sparticles for which the data may be most

constraining are the stops, by virtue of their large couplings to the Higgs field. Moreover,

SMEFT constraints are of particular interest for stops also because the constraints from

direct searches are model-dependent and often require the understanding of complicated

final states to which the LHC has reduced sensitivity, whereas the SMEFT constraints are

relatively model-independent. Run 1 LHC data were used to constrain degenerate stops

in [54, 55], and non-degenerate stops in [56], where comparisons were made between the

constraints obtained using the SMEFT and an exact one-loop calculation. It was found

there that the SMEFT and exact one-loop results were quite similar, except in regions of

parameter space where the data were insensitive even to very light stops.

Here we make a new comparison of the degenerate stop case using Run 2 LHC data.

Figure 7 shows the SMEFT constraints in the plane of the degenerate stop mass mt̃ and the

stop mixing parameter Xt for the two choices tan β = 1 and 20 of the ratio of Higgs vev’s,

where the darker and lighter blue regions correspond to 1- and 2-σ ranges, respectively. We

note that the kinematic ranges of the LHC Run 2 Higgs data used in our analysis extend

typically to pT . 200 GeV (see table 3). The LHC W+W− data that we use include a

tail that may extend to higher pT , but this has less weight in the global fit, see the last

column in table 5. We therefore expect the SMEFT analysis to be reasonably reliable for

mt̃ & 300 GeV.

By way of comparison, although the LHC limits on the stop mass may extend as far

as mt̃ ' 1 TeV under certain assumptions on the sparticle spectrum [136, 137], they are

sensitive to the value assumed for the lightest supersymmetric particle χ̃1
0, disappearing

entirely for mχ̃1
0
. 400 GeV and having holes for some values of mt̃ & 300 GeV when

mχ̃1
0
& 250 GeV. We conclude that the indirect SMEFT constraint is highly competitive,

despite the fact that the Wilson coefficients are generated only at the loop level.
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Figure 7. The allowed degenerate stop parameter space with tan β = 1 (left) and tan β = 20

(right), where the darker and lighter blue regions are within 1- and 2-σ of the minimum of

the χ2 function, respectively. In addition, the green shading indicates the region where Mh ∈
(122, 128) GeV [56].

7 Conclusions

We have presented in this paper a first combined global analysis within the SMEFT of

the available precision electroweak data, diboson production data from LEP and the LHC,

and the data on Higgs production from Runs 1 and 2 of the LHC. Our analysis takes into

account all the 20 dimension-6 operators that are relevant to these processes. We emphasize

that these data should be analyzed jointly, as the constraints from different data categories

are synergistic, complementary and of comparable importance. This point is exemplified

in figure 1, where we see explicitly the complementarity of the constraints from Z-pole, W

mass, and LEP 2 W+W− production measurements (orange) and LHC Higgs production

measurements (green) on the oblique parameters S and T , which are proportional to the

dimension-6 operator coefficients CHWB and CHD, respectively.

The sensitivities to the scales of the operators in the Warsaw basis for an O(1) Wilson

coefficient is summarised in figure 8. Overviews of our results are shown in figures 2

(Warsaw basis) and 3 (SILH basis), where we see in the upper panels the results of fits where

all the 20 operator coefficients are allowed to vary simultaneously, and in the lower panels

results where the operators are switched on one at a time. Figure 2 also shows comparisons

with fits omitting the LHC Run 2 data, and figure 4 displays explicitly the reductions in

the uncertainties in the operator coefficients in the Warsaw basis when the LHC Run 2

data are included. Figure 3 (SILH basis) shows a comparison with a fit to the precision

Z-pole and W -mass data alone, and a comparison with the results of [18], which included

Higgs results from Run 1 of the LHC only. Numerical results from the fits in the Warsaw
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Figure 8. Summary of the 95% CL bounds on the sensitivity (in TeV) for an O(1) Wilson

coefficient, obtained from marginalised (red) and individual (green) fits to the 20 dimension-6

operators entering in electroweak precision tests, diboson and Higgs measurements at LEP, SLC,

and LHC Run 1 and 2.

and SILH bases are tabulated in table 4, and impacts of the different datasets on the global

fit in the Warsaw basis are shown numerically in table 5. Whereas the constraints from the

precision electroweak observables have evolved slowly, those from Higgs production are now

much stronger than from Run 1, due to the availability of much kinematical information as

well as the increased statistics. Correlations between the operator coefficients in the two

operator bases are shown in figure 5.

Table 8 compares the qualities of the fits within the SM and the SMEFT, displaying

their respective χ2, χ2/nd, and p-values. The top line is for a fit to the SM and the middle

line is for a fit to the SMEFT allowing all 20 coefficients to vary, whilst the bottom line

assumes a UV-completion of the SMEFT (indicated with a ?) that is renormalizable and

weakly-coupled. These assumptions allow 13 coefficients to be non-zero, and in the Warsaw

basis the coefficients set to zero in this case are CG, CW , CHG, CHW , CHB, CHWB, and

CuG. We see that neither the full SMEFT nor the SMEFT? give fits that are significant

improvements on the SM fit, which has already a very acceptable p-value. Thus, these fits

provide no sign or evidence of any physics beyond the Standard Model.

Our new constraints on the dimension-6 operator coefficients can be applied to variety

of specific BSM scenarios. Specifically, we have studied extensions of the SM that can

make tree-level contributions to the operator coefficients, as tabulated in table 6, using

the dictionary proposed in [53]: see figure 6 and the numerical results in section 6. We

have also explored the constraints imposed by the global fit on stops in the MSSM, which
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Theory χ2 χ2/nd p-value

SM 157 0.987 0.532

SMEFT 137 0.987 0.528

SMEFT? 143 0.977 0.564

Table 8. The χ2, χ2/nd, and p-values for the SM and SMEFT fits. The middle line is a fit to the

SMEFT allowing all 20 coefficients to vary, whilst the bottom line assumes a UV-completion of the

SMEFT that is renormalizable and weakly-coupled, indicated with a ?. These assumptions allow

just 13 non-zero coefficients, and in the Warsaw basis the coefficients set to zero in this case are

CG, CW , CHG, CHW , CHB , CHWB , and CuG.

contribute to the operator coefficients only at the loop level, see figure 7. These constraints

are model-independent, and competitive with the model-dependent constraints on stops

from Run 2 of the LHC.

We can expect in the near future further substantial increases in the amounts of in-

formation from diboson and Higgs production at the LHC as the ATLAS and CMS Col-

laborations complete their analyses of data from Run 2. We emphasize the importance to

SMEFT analyses of making available as much information as possible on the kinematics of

diboson and Higgs production, since the pT and invariant mass distributions, in particular,

are more sensitive to dimension-6 operator coefficients than are the integrated production

rates. In this way maximal information can be extracted from the data and used, via a

SMEFT analysis, to constrain possible BSM scenarios, as we have illustrated in this paper.

We cannot know whether such an analysis will reveal any BSM physics, but in this way we

will give the search for new physics our best shot.
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