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The aim of the ASACUSA-CUSP experiment is to form a beam of antihydrogen atoms for in-
flight precision spectroscopic measurements. This is performed by trapping and mixing antiprotons
and positrons in a common nested-well potential, which is sitting in a double-cusp magnetic field
with minimum-B field configuration. We have built a tracking detector, the ASACUSA Micromegas
Tracker (AMT) [1], to monitor and resolve annihilations on-axis from annihilations on the trapping
electrode walls of the experiment, which latter is a general signature of antihydrogen formation. Data
taken during the summer of 2015 is presented in order to demonstrate the first performance of the
AMT detector. In particular, data from on- axis trapping and slow extraction of antiprotons is used to
illustrate the vertex reconstruction capability of the detector.
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1. The Asacusa Micromegas Tracker detector

The AMT detector [1] was designed to resolve antihydrogen annihilation vertices with σvx ≃ 1
cm spatial resolution inside the ASACUSA double-cusp trap. It consists of two, half- cylinder, curved
micro-strip pattern gaseous detector layers using Micromegas technology [2]. The AMT detector is
illustrated on Fig 1.

The detector efficiency at various drift and mesh voltages were measured in a cosmic ray test-
bench setup. In particular, the strong magnetic field (B = 3-4 T) of the ASACUSA experiment induces
Lorentz-forces on the Micromegas electron avalanche signal which needs to be compensated with
appropriate drift fields. The single hit projection efficiency is shown on Fig 2 as a function of the
mesh voltage and on Fig 3 as a function of the drift voltage. As a result of the efficiency scan the
optimal drift and mesh voltages have been obtained and the AMT is operated at the plateau of the
efficiency curve.
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Fig. 1. 3D CAD drawing of the AMT detector.
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Fig. 2. Single hit projection efficiency of the AMT as a function of the mesh voltage.

2. Annihilation test measurements with antiprotons

Both trapped and in-flight antiprotons were used to test the 3D vertex position reconstruction
capability of the AMT. On left in Fig 4 radial distribution of vertices found for trapped antiprotons
is shown. On right the same distribution is shown for antiprotons annihilating at the B = 0 T field
position on the multi-ring electrode walls. Antihydrogen production is expected to show annihilation
signatures similar to the figure on the right for antihydrogen can escape the trapping electric fields
due to its neutrality and annihilate on the electrode walls at R = 4 cm radius.
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Fig. 3. Single hit projection efficiency of the AMT as a function of the drift voltage.
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Fig. 4. Reconstructed antiproton annihilation vertex position distribution for antiprotons trapped at the cen-
tral axis (R = 0 cm radius) of the ASACUSA multi-ring electrode (left) and for antiprotons annihilating on the
ASACUSA multi-ring electrode walls at R = 4 cm radius (right).

3. Antihydrogen production observed by the AMT

To produce antihydrogen antiprotons are injected into a nested-well trap where they mix with
positrons (see Fig 5). A fraction of the neutral antihydrogen atoms escape the trap potential and
either move along the axis or annihilate on the electrode walls used for trapping. The mixing process
lasts for a few tens of seconds after which the antiprotons do not overlap with the positron cloud and
settle in the two nested well minima.

The AMT detector reconstructed the events during mixing process. The radial and axial vertex
position distributions are shown in Fig 6 and Fig 7, respectively, for various time slices during mixing.

In the first 3 seconds the annihilation vertex position is mainly enhanced on the multi-ring elec-
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Fig. 5. Electric field configuration used to trap and mix antiprotons and positrons for antihydrogen produc-
tion.

trode walls indicating that a very efficient antihydrogen production takes place. At the same time the
axial annihilation position distribution shows a wide distribution, which also suggest that antihydro-
gen atoms are formed and emerge from the mixing region significantly to many directions. During
the subsequent time slices the radial position of annihilation vertices reduce to the central axis of the
trap, and the axial distribution shrinks to a position consistent with one of the nested-well minima.
The limited acceptance of the AMT does not allow to recover both nested-well minima.

4. Conclusions

In summary, the Asacusa Micromegas Tracker successfully fulfilled its design goal to detect and
discriminate antihydrogen annihilation events from antiproton background events. These first results
allow to improve on the discrimination power using more sophisticated analysis techniques.
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Fig. 6. Radial vertex position distribution, reconstructed by AMT, for various time slices during mixing. The
start time of the mixing is t = 0 seconds.
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Fig. 7. Axial vertex position distribution, reconstructed by AMT, for various time slices during mixing. The
start time of the mixing is t = 0 seconds.
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