002307718 001__ 2307718
002307718 003__ SzGeCERN
002307718 005__ 20180409133819.0
002307718 0247_ $$2DOI$$9IEEE$$a10.1109/TASC.2017.2785828
002307718 0248_ $$aoai:inspirehep.net:1650767$$pcerncds:CERN$$qForCDS
002307718 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1650767$$d2018-03-08T14:49:55Z$$h2018-03-09T05:00:04Z$$mmarcxml
002307718 035__ $$9Inspire$$a1650767
002307718 041__ $$aeng
002307718 100__ $$aBruzzone, [email protected]$$uCRPP, Lausanne
002307718 245__ $$9IEEE$$aConceptual Design of a Large Aperture Dipole for Testing of Cables and Insert Coils at High Field
002307718 260__ $$c2017
002307718 300__ $$a5 p
002307718 520__ $$9IEEE$$aAdvances in the performance of low and high temperature superconductors enable the development of advanced magnets for a range of applications, including tokamaks for fusion energy, dipoles and quadrupoles for hadron colliders. The capability of testing prototype cables and insert coils at high field is critical to these developments. We present here the conceptual design of a test facility dipole with features suitable to support the advanced magnet development efforts of both Fusion and HEP communities. A background field of 15 T is provided over a homogeneous length of 1000 mm and the clear bore of 144x94 mm can accommodate large fusion conductors as well as prototype coils for high field dipoles. Two technical solutions are considered. The first uses a forced flow Cable-in-Conduit Conductor and follows the design developed by EFDA for the EDIPO magnet. The second uses a bath cooled Rutherford cable and follows a block-coil design similar to the CERN FRESCA2 dipole, and the LBNL HD and LD1 dipoles. Following a comparison between the two approaches, we present two designs for the Rutherford cable approach including performance objectives, key parameters, and preliminary magnetic, mechanical and quench protection analysis.
002307718 6531_ $$9author$$aCoils
002307718 6531_ $$9author$$aSuperconducting magnets
002307718 6531_ $$9author$$aConductors
002307718 6531_ $$9author$$aWires
002307718 6531_ $$9author$$aSuperconducting cables
002307718 6531_ $$9author$$aMagnetic separation
002307718 6531_ $$9author$$aTest facilities
002307718 6531_ $$9author$$aText
002307718 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002307718 690C_ $$aCERN
002307718 700__ $$aBottura, [email protected]$$uCERN
002307718 700__ $$aCau, [email protected]$$uFusion for Energy, Barcelona
002307718 700__ $$ade Rijk, [email protected]$$uCERN
002307718 700__ $$aFerracin, [email protected]$$uCERN
002307718 700__ $$aMinervini, [email protected]$$uMIT
002307718 700__ $$aPortone, [email protected]$$uFusion for Energy, Barcelona
002307718 700__ $$aPrestemon, [email protected]$$uLBL, Berkeley
002307718 700__ $$aRochepault, [email protected]$$uCERN
002307718 700__ $$aRavaioli, [email protected]$$uLBL, Berkeley
002307718 700__ $$aSabbi, [email protected]$$uLBL, Berkeley
002307718 700__ $$aTestoni, [email protected]$$uFusion for Energy, Barcelona
002307718 773__ $$c4005505$$n3$$pIEEE Trans. Appl. Supercond.$$v28$$y2017
002307718 960__ $$a13
002307718 962__ $$b2306288$$k4005505$$namsterdam20170827
002307718 980__ $$aARTICLE
002307718 980__ $$aConferencePaper
002307718 999C5 $$hP. Bruzzone et al.$$mIEEE Trans. Appl. Supercond., vol. 24, no. 3, Jun., Art. no. 9500205$$o1$$tCommissioning of the main coil of the EDIPO test facility$$y2014
002307718 999C5 $$9CURATOR$$hR. Wesche et al.$$o2$$sIEEE Trans.Appl.Supercond.,26,9500705$$tCommissioning of HTS adapter and heat exchanger for testing of high-current HTS conductors$$y2016
002307718 999C5 $$hP. Bruzzone et al.$$o3$$sIEEE Trans.Appl.Supercond.,22,520-523$$tUpgrade of operating range for SULTAN test facility$$y2002
002307718 999C5 $$hA. Verweij$$mCERN AT-MAS, Geneva, Switzerland, Tech. Rep. EDMS 677510$$o4$$tThe 10 T dipole magnet of the FRESCA facility: an overview of 6 years of operation$$y2005
002307718 999C5 $$hP. Ferracin et al.$$min Proc. 13th Eur. Conf. Appl. Supercond$$o5$$tAssembly and test of the Nb3Sn dipole magnet FRESCA2$$y2017
002307718 999C5 $$hR. Scanlan$$o6$$sIEEE Trans.Appl.Supercond.,11,2150-2155$$tConductor development for high energy physics—plans and status$$y2001
002307718 999C5 $$01466589$$hL. Bottura et al.$$o7$$sIEEE Trans.Nucl.Sci.,63,751-776$$tSuperconducting magnets for particle accelerators$$y2016
002307718 999C5 $$9CURATOR$$hP. Ferracin et al.$$o8$$sIEEE Trans.Appl.Supercond.,22,4901604$$tDesign of LD1, a large-aperture high-field Nb3Sn dipole magnet$$y2012
002307718 999C5 $$hG. Willering et al.$$mIEEE Trans. Appl. Supercond., to be published$$o9$$tResults of the cold powering tests of the Nb 3Sn FRESCA2 block coil magnet
002307718 999C5 $$hE. Rochepault et al.$$mIEEE Trans. Appl. Supercond., to be published$$o10$$tMechanical analysis of the FRESCA2 dipole during pre-load, cool-down, and powering
002307718 999C5 $$9CURATOR$$hG. Sabbi et al.$$o11$$sIEEE Trans.Appl.Supercond.,25,4001407$$tPerformance characteristics of Nb3 Sn block-coil dipoles for a 100 TeV Hadron Collider$$y2015
002307718 999C5 $$9CURATOR$$hM. B. Field, Y. Zhang, H. Miao, M. Gerace, and J. A. Parrell$$o12$$sIEEE Trans.Appl.Supercond.,24,6001105$$tOptimizing Nb3Sn conductors for high field applications$$y2014
002307718 999C5 $$hA. Godeke et al.$$mArt. no. 095015$$o13$$sSupercond.Sci.Technol.,26,2013$$tA review of conductor performance for the LARP high-gradient quadrupole magnets
002307718 999C5 $$9CURATOR$$hD. Tommasini et al.$$o14$$sIEEE Trans.Appl.Supercond.,27,4000405$$tThe 16 T dipole development program for FCC$$y2017
002307718 999C5 $$9CURATOR$$hF. Rondeaux et al.$$o15$$sIEEE Trans.Appl.Supercond.,26,4002405$$tBlock type coil fabrication procedure for the Nb3Sn dipole magnet FRESCA2$$y2016
002307718 999C5 $$9CURATOR$$hE. Rochepault et al.$$o16$$sIEEE Trans.Appl.Supercond.,27,9500205$$tFabrication and assembly of the Nb3 Sn dipole magnet FRESCA2$$y2017
002307718 999C5 $$hN. Bourcey et al.$$mIEEE Trans. Appl. Supercond., to be published$$o17$$tAssembly of the Nb3Sn dipole magnet FRESCA2
002307718 999C5 $$hP. Ferracin et al.$$o18$$sIEEE Trans.Appl.Supercond.,19,1240-1243$$tAssembly and test of HD2, a 36 mm bore high field Nb3Sn dipole magnet$$y2009
002307718 999C5 $$9CURATOR$$hP. Ferracin et al.$$o19$$sIEEE Trans.Appl.Supercond.,23,4002005$$tDevelopment of the EuCARD Nb3Sn dipole magnet FRESCA2$$y2013
002307718 999C5 $$hE. Ravaioli$$mPh.D. dissertation, Energy, Materials Syst., Faculty Sci. Technol., Univ. Twente, Enschede, the Netherlands$$o20$$tCLIQ$$y2015
002307718 999C5 $$01501818$$hE. Ravaioli, B. Auchmann, M. Maciejewski, H. ten Kate, and A. Verweij$$o21$$sCryogenics,80,346-356$$tLumped-element dynamic electro-thermal model of a superconducting magnet$$y2016
002307718 999C5 $$9CURATOR$$hE. Ravaioli et al.$$o22$$sIEEE Trans.Appl.Supercond.,27,4000508$$tModeling of inter-filament coupling currents and their effect on magnet quench protection$$y2017
002307718 999C5 $$hG. Ambrosio$$min Proc.Int. Workshop Accel. Magnet Supercond. Des.Optim., Geneva, Switzerland, Jan., pp. 43 -46$$o23$$tMaximum allowable temperature during quench in Nb3Sn accelerator magnets$$y2013
002307718 999C5 $$9CURATOR$$hE. Ravaioli et al.$$o24$$sIEEE Trans.Appl.Supercond.,24,0500905$$tNew, coupling loss induced, quench protection system for superconducting accelerator magnets$$y2014
002307718 999C6 $$a0-0-0-1-0-0-1$$t2018-03-08 14:35:56$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44