Search for long-lived particles, forward EWK and Top physics at LHCb

CERN

LHCD

Oscar Augusto on behalf of the LHCb Collaboration

Lake Louise Winter Institute 2018 Lake Louise, Alberta, Canada 20/02/18

Outlook

Displaced vertices searches

- Search for dark photons
- Search for massive long-lived particles decaying semileptonically
- Search for massive long-lived particles decaying to jet pairs

Forward electroweak and top physics

- First observation of $Z(b\overline{b})$ in the forward region
- Measurement of $t\bar{t}$, $W + c\bar{c}$ and $W + b\bar{b}$ production cross-sections
- Measurement of the forward top pair production in the dilepton channel

Conclusion

LHCb experiment

Forward spectrometer ($2 < \eta < 5$)

 Designed to measure CP violation, rare decays involving B and D mesons and search for beyond Standard Model physics

- LHCb offers an unique coverage (Complementary to CMS and ATLAS)
- Low pile-up
- Excellent vertex reconstruction
 - for a primary vertex (PV) with 25 tracks:
 - $\sigma_{PV_z} = 71 \, \mu m$
 - $\sigma_{PV_T} = 13 \ \mu m$

Displaced vertices searches

Displaced vertices reconstruction

- Displaced vertex is reconstructed using tracks
 - mass resolution might be improved using jets to associate the neutral energy to the vertex
- Inside the vertex locator (up to 50 cm):
 - Excellent vertex and track resolution
 - Background dominated by the material interactions 5 mm away from the beam (detailed geometry)
- Before the TT station (up to 2 m):
 - Track resolution is two times worse than VELO tracks (under study)

- More than 20 m (whole experiment):
 - Charged LLP signature (Eur. Phys. J. C (2015) 75: 595)
 - Proposal of a new subdetector Codex-b 25-35 m away (*Phys. Rev. D* 97 (2018) 015023)

Displaced vertices reconstruction

Three examples will be covered in this talk:

Oscar Augusto

Dark photons search

- Dark matter sector linked to Standard model particles via portals
- A massive dark photon (A') production is suppressed relative to the ordinary photon by a factor ϵ^2
- Search of prompt-like and long-lived dark photons using $A' \rightarrow \mu^+ \mu^-$ (Similar to $\gamma^* \rightarrow \mu^+ \mu^-$ decays)
- Selection:
 - Muons are required to be in the LHCb acceptance (2 $<\eta<$ 4.5)
 - $p_T > 0.5 (1.0)$ GeV, p > 10 (20) GeV for long-lived (prompt-like) search
 - A' is also required to have $p_{\it T}$ above 1 GeV
 - Material interactions are vetoed

Dark photons search

- Jet isolation requirement improves the sensitivity by up to factor 2 ($p_T(\mu)/p_T(jet) > 0.7$)
- Prompt-like search covers mass range up to 70 GeV
- Long-lived search is restricted to the low-mass region 214 GeV < m(A') < 350 GeV
- Most stringent to date for the mass range 10.6 70.0 GeV
- First search to achieve enough sensitivity using displacedvertex signature (not from beam dump)

Phys. Rev. Lett. 120 (2018) 061801

07/09/16

Search for massive long-lived particles decaying semileptonically $m_{UD} = 38 \text{ GeV} \tau = 5 \text{ ns}$ $m_{UD} = 98 \text{ GeV} \tau = 10 \text{ ps}$

- Benchmark model: MSSM mSUGRA with R-parity violation
- The neutralino is a long-lived particle that decays via ${\rm X}^0_1 \to lq' \bar{q}$
- High multiplicity displaced vertex reconstruction with one associated high p_T muon
- Lifetime between 5-100 ps (up to 30 cm flight distance in average) and masses between 20-80 GeV
- Data driven method to extract the background shape based on the muon isolation
- Limits at 95% CL were set on the cross section times branching fractions

Search for massive long-lived particles decaying Eur. Phys. J. C 77, 12 (2017) 812 to jet pairs 10^{3} Candidates / (2 GeV/c²)

- Benchmark model: Hidden valley
- Search for SM-like $H^0 \rightarrow \pi_V \pi_V$ where $\pi_V \rightarrow q \bar{q}$ (q=b, c or s)
- High multiplicity displaced vertex with two jets
- Anti-kt jet reconstruction with R=0.7
- 0.62 fb⁻¹(1.38 fb⁻¹) at 7 TeV (8 TeV)
- Explored several masses (25 50) GeV/c2) and lifetimes (2 - 500)ps) of the π_V
- Plan to analyse the Run II data and go to lower π_V masses

Forward electroweak and top physics

Electroweak and top measurements at LHCb

- LHCb offers an unique coverage complementary to CMS and ATLAS
- Probe Parton Density Function (PDFs) in an previously unexplored region of low x and high Q^2
- Important tests for pQCD
- Understanding of important backgrounds for Standard Model measurements and beyond Standard Model searches
- Many measurements already performed:
 - Z/W [JHEP 09 (2016) 136, JHEP 10 (2016) 030, Eur. Phys. J. C 75 (2015) 152, JHEP 12 (2014) 079, JHEP 11 (2015) 190, JHEP 08 (2015) 039, JHEP 01 (2014) 033, JHEP 02 (2013) 106, JHEP 01 (2013) 111, JHEP 06 (2012) 058]
 - Z/W+jet [JHEP 05 (2016) 131]
 - Z+b [JHEP 01 (2015) 064]
 - Z+D [<u>JHEP(2014)091</u>]
 - W+b/c [*Phys. Rev. D* 92 (2015) 052001]
 - <u>Z(bb)</u> [Phys. Lett. B 776 (2018) 430-439]
 - $t\bar{t}, W + b\bar{b}, W + c\bar{c}$ [Phys. Lett. B 767 (2017) 110-120]
 - Single top [Phys.Rev.Lett. 115 (2015) no.11, 112001]
 - <u>*tt*</u> in dilepton channel [in preparation LHCb-PAPER-2017-050]

- First measurement of $Z(b\overline{b})$ in the forward region
- Fiducial selection: $p_T~>~20~GeV, 2.2 < \eta < 4.2$ and $45~GeV < ~m_jj < 165~GeV$
- A third jet is required to reduce the contribution from QCD multijets
- uGB BDT (<u>J. Instrum. 10 (2015) T03002</u>) is used to separate signal from background based on Δη(b jets), p_T of the third jet and Δφ(Z, third jet)
- Simultaneous fit in the signal region and control region

GeV)

 \mathfrak{S}

Candidates

- First observation of forward $Z \rightarrow b\overline{b}$ in pp collisions at $\sqrt{s} = 8$ TeV Phys. Lett. B 776 (2018) 430-439
- The jet energy correction is also calculated during the fit
- The Z mass peak is at around 80 GeV
- The systematic uncertainty is dominated by the heavy flavour tagging efficiency (~17%)

- The measurement is agreement with the aMC@NLO NNPDF3.0:
 - $\sigma_{measurement}(pp \to Z)\mathcal{B}(Z \to b\overline{b}) = 332 \pm 46 \pm 59 \text{ pb}$
 - $\sigma_{aMC@NLO}(pp \rightarrow Z)\mathcal{B}(Z \rightarrow b\overline{b}) = 272^{+9}_{-12}(scale) \pm 5 (PDF) \, pb$

Measurement of forward $t\bar{t}$, $W + b\bar{b}$ and $W + c\bar{c}$ production cross-sections at $\sqrt{s} = 8$ TeV

Phys. Lett. B 767 (2017) 110-120

- Novel measurement of the $W + c\bar{c}$ production
- Selection:
 - $W(\mu\nu_{\mu})$ or $W(e\nu_{e})$
 - $p_T^l > 20 \text{ GeV}$, **12.5 GeV** < $p_T^j < 100 \text{ GeV}$
 - 2.2 < η^{j} < 4.2, 2.0 < η^{μ} < 4.5 (2.0 < η^{e} < 4.25)
 - Isolated leptons and jets ($\Delta R > 0.5$)
- Backgrounds: Z+b/c, single top, QCD, ...
- 4D simultaneous fit for μ^+ , μ^- , e^+ and e^- using:
 - $BDT_{b|c}$ for both jets
 - Dijet mass (m_{jj})
 - Uniform Gradient boosting BDT (uGB) to separate $t\overline{t}$ and $W + b\overline{b}$ (<u>J. Instrum. 10 (2015) T03002</u>)

Good agreement with MCFM NLO prediction with PDF CT10 Showering and hadronization using Pythia 8

Measurement of forward top pair production in the dilepton channel in pp collisions at $\sqrt{s} = 13$ TeV

- Top quark measurement in the μeb final state
- Fiducial selection:
 - $p_T(l) > 20 \text{ GeV}$, 2.0 < $\eta(l)$ < 4.5 and $\Delta R(l, l)$ > 0.1
 - $p_T(b_{jet}) > 20 \text{ GeV}, 2.2 < \eta(b_{jet}) < 4.2 \text{ and } \Delta R(l, b_{jet}) > 0.5$

paper in preparation (LHCb-PAPER-2017-050)

- High purity selection ($\sim 87\%$)
- Systematic uncertainty is dominated by the b-jet tagging
- The measurement is compatible with the predictions obtained using POWHEG, aMC@NLO and MCFM
- Potential to be the highest precision $t\overline{t}$ measurement at LHCb after the Upgrade

Conclusion

- The LHCb is a general purpose forward detector that provides an unique opportunity for analyses in the forward region complementary to CMS and ATLAS acceptance
- After the detector upgrade in 2020, the trigger will be fully implemented in the software level (more flexibility) and accumulate at least 50 $\rm fb^{-1}$ of data
- More talks about LHCb measurements at the Flavour physics section

Backup slides

Search for massive long-lived particles decaying to jet pairs

- Comparison of the exclusion regions using Run I data
- B($H^0 \rightarrow \pi_V \pi_V$) > 50% is excluded at 95% C.L. is shown
- CMS 18.5 fb-1 [PRD 91 (2015) 012007]
- ATLAS 20.3 fb-1 [PRD 92 (2015) 012010] [PLB 743 (2015) 15-34]
- new 13 TeV results from CMS not included in the recast [CMS-PAS-EXO-16-003]

Jet reconstruction

- Particle flow algorithm
- Neutral recovery
 - Excess of energy in the calorimeter nearby a track is treated as an additional neutral particle
- Clustering algorithm: anti-kt with R=0.5
- Jet reconstruction efficiency is ~95% for high p_T jets after the quality criteria (jet identification)
- Jet energy resolution is ${\sim}10-15\%$ for $10~{\rm GeV} < p_T^j < 100~{\rm GeV}$
- The jet energy is dominated by the tracks (charged particles)

J. High Energy Phys. 01 (2014) 033

Tagging

Two BDT responses

- Discrimination between heavy and light jets (BDT(bc|udgs))
- Discrimination between bottom and charm jets (BDT(b|c))
- The secondary vertex (SV) is required to be in the jet

- <u>J. Instrum. 10 (2015) P06013</u>
- Several variables are used including:
 - The SV mass M
 - The SV corrected mass (M_{corr})
 - The flight distance χ^2
 - Fraction of jet p_T carried by the SV

LHCb simulation

Powerful heavy quark tagging ullet

Tagging

- For jets with 20 GeV $< p_T^j < 100$ GeV and 2.2 $< \eta^j < 4.2$: •
 - Efficiency of b-jet tagging $\sim 65\%$
 - Efficiency of c-jet tagging $\sim 20\%$
 - Misidentification of a light-jet $\sim 0.3\%$

Identification of beauty and charm quark jets at LHCb

J. Instrum. 10 (2015) P06013

Variables used for the BDT(bc|udgs) and BDT(b|c):

- the SV mass M
- the SV corrected mass (M_{corr})
- the transverse flight distance of the two-track SV closest to the PV
- the fraction of the jet p_T carried by the SV
- ΔR between the SV and the jet
- the number of tracks in the SV
- The number of tracks in the jet ($\Delta R < 0.5$)
- the net charge of the tracks that form the SV
- The flight distance χ^2
- The sum of all SV track $\chi^2(IP)$

Measurement of the $t\bar{t}$, $W + b\bar{b}$ and $W + c\bar{c}$ production cross-section Phys. Lett. B 767 (2017) 110-120

 μ^+ sample

 e^+ sample

Measurement of the $t\bar{t}$, $W + b\bar{b}$ and $W + c\bar{c}$ production cross-section Phys. Lett. B 767 (2017) 110-120

 μ^{-} sample

e⁻ sample

Measurement of the $t\bar{t}$, $W + b\bar{b}$ and $W + c\bar{c}$ production cross-section Phys. Lett. B 767 (2017) 110-120

 μ sample merged

e sample merged

