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1 Introduction

QED radiative corrections to hadronic observables are generally rather small but they

become phenomenologically relevant when the target precision is at the percent level. For

example, hadron masses and leptonic decay rates of light pseudoscalar mesons are among

the best measured hadronic observables and they have to be calculated at the same level of

precision. Presently, these quantities can be calculated with percent accuracy by performing

lattice simulations of QCD+QED, see e.g. refs. [1–6] for a selection of recent papers on the

subject and refs. [7–9] for recent reviews. All these calculations have been performed by

using non-compact gauge-fixed lattice formulations of QED in a finite box, see ref. [9].

In ref. [10] it has been argued that charged-hadron masses can be calculated on the

lattice from first principles, in a completely gauge-invariant setup, without spoiling basic

QFT principles in finite volume, in particular locality. This result is far from obvious. The

construction is possible thanks to two crucial ingredients: a slightly unconventional com-

pact formulation of lattice QED, and properly chosen boundary conditions in the spatial

directions.

In a gauge theory physical states are invariant under local gauge transformations.

Therefore, in order to avoid gauge fixing, physical states have to be probed by using

interpolating operators that are invariant under local gauge transformations. Building

these operators is trivial in the neutral sector of the theory. For example, in order to

compute the mass of a neutral kaon one can use s̄γ5d as the interpolating operator. Since

the down and strange quarks have the same electric charge the operator is electrically

neutral and invariant under both local and global U(1) gauge transformations.
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Remarkably, in infinite volume, one can build interpolating operators that are invariant

under local gauge transformations also in the charged sector of the theory. The existence

of these operators was first pointed out by Dirac in an illuminating classic paper [11] (see

section 2). In principle, Dirac’s interpolating operators can be used to calculate observables

associated with charged particles, e.g. the mass of the electron or of a charged kaon, in a

fully gauge-invariant way. In practice, in order to obtain a fully gauge-invariant formulation

of QCD+QED one has to provide a regularisation of the theory where Dirac’s construction

can be implemented without any theoretical ambiguity.

Dirac’s construction cannot be implemented on the periodic torus. In operatorial

formalism, the generator of local gauge transformations is ∂kEk − j0, where Ek is the

electric field and j0 is the charge density, such that Q =
∫

d3x j0. Identifying physical

states, |Ψ〉, with gauge-invariant states is equivalent to requiring that physical states must

satisfy the Gauss law. In particular this implies that Q|Ψ〉 =
∫

d3x ∂kEk|Ψ〉. Therefore,

with periodic boundary conditions in space the global constraint imposed by the Gauss law

forbids states with non-zero charge. Equivalently, no interpolating operator exists on the

periodic torus which is electrically charged and invariant under local gauge transformations.

In ref. [10] it has been proposed to discretise QCD+QED on a finite lattice by us-

ing the compact formulation and, as first suggested in refs. [12–15], with C-periodic (or

C⋆) boundary conditions in space. A detailed theoretical analysis of the theory, called

QCD+QEDC, has shown that the Gauss law implies a less restrictive global constraint in

this case. Some electrically charged states can be probed by implementing Dirac’s original

construction in a fully consistent theoretical setup (see section 3), i.e. by using charged

interpolating operators which are invariant under local gauge transformations.

While the theoretical analysis of ref. [10] opens the attractive possibility to perform

first-principles non-perturbative lattice simulations of QCD+QED in a fully gauge-invariant

setup, no evidence was provided concerning the numerical viability of the proposal.1 In this

paper we make a first step in the direction of filling this gap. We provide clear numerical

evidence that charged-hadron masses can be effectively calculated in QCD+QEDC from

the gauge-invariant interpolating operators with the same signal-to-noise ratio as their

neutral almost-degenerate counterparts. We also discuss how to describe states of charged

hadrons with real photons in a fully gauge-invariant way. On the other hand, the cost of

the generation of configurations will be analysed in future work.

The paper is organised as follows. In section 2 we review Dirac’s original construction

of gauge-invariant interpolating operators for charged states. In section 3 we recall the

finite-volume formulation of QCD+QED with C⋆ boundary conditions of ref. [10] and

the lattice construction of gauge-invariant electrically-charged operators. In section 4 we

present our numerical results for charged and neutral meson masses both in the vector and

pseudoscalar channel. In particular, in subsection 4.1 we discuss the implementation of a

strategy to probe charged-hadron states with real photons. We draw our conclusions in

1The numerical effectiveness of the gauge-invariant construction of ref. [10] has been investigated in the

context of the abelian Higgs model in ref. [16] with rather satisfactory numerical results. Here the issue is

addressed, for the first time, in the more realistic and phenomenologically relevant case of full QCD+QED

lattice simulations.
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section 5. Finally, in appendix A we discuss some of the subtleties arising in the charged

sector when the U(1) gauge is fixed, and in appendix B we provide some technical details

concerning the numerical evaluation of the correlators used in this study.

2 Dirac’s interpolating operator

Dirac [11] has shown that charged states in infinite-volume QED can be described in a

fully gauge-invariant setup in terms of physical degrees of freedom. In Dirac’s original

construction the state of an electron can be interpolated by means of the operator

Ψc
e(x) = exp

{

−i

∫

d3yΦ(x− y) ∂kAk(x0,y)

}

ψe(x) , (2.1)

where k is a spatial index, Aµ(x) and ψe(x) are the photon and electron fields while Φ(x)

is the electrostatic potential satisfying

∂k∂kΦ(x) = δ3(x) . (2.2)

Under a gauge transformation λ(x) the fundamental fields transform as

Aµ(x) → Aµ(x) + ∂µλ(x) , ψe(x) → exp{iλ(x)}ψe(x) . (2.3)

If λ(x) has compact support, the integral appearing in the definition of Ψc
e(x) transforms as

∫

d3yΦ(x− y) ∂kAk(x0,y) →
∫

d3yΦ(x− y) ∂kAk(x0,y) + λ(x) . (2.4)

The operator Ψc
e(x) is invariant under local gauge transformations, but transforms non-

trivially under global gauge transformations. When acting on the vacuum, Ψc
e(x) gener-

ates a physical state (i.e. invariant under local gauge transformations) with total charge

different from zero.

An important observation concerning this construction is that in Coulomb gauge

∂kAk(x) = 0 the interpolating operator is identically equal to ψe(x). On the one hand,

this means that Dirac’s construction can be circumvented and that the mass of the elec-

tron can be calculated in Coulomb gauge by using ψe(x) as interpolating operator. This

is presumably the reason why Dirac’s paper went almost forgotten. On the other hand,

Dirac’s construction explains why gauge-invariant physical quantities can be conveniently

extracted by working at fixed gauge.

The gauge-invariant language is very useful in order to identify and clarify some of the

subtleties arising with commonly used gauge-fixing conditions. For instance the Landau-

gauge elementary field ψe(x) is identical to the following generalisation of Dirac’s original

operator,

Ψℓ
e(x) = exp

{

i

∫

d4yΦℓ(x− y) ∂µAµ(y)

}

ψe(x) , ∂µ∂µΦℓ(x) = δ4(x) . (2.5)

This implies for the two-point function

〈ψe(x)ψ̄e(0)〉Landau gauge = 〈Ψℓ
e(x)Ψ̄

ℓ
e(0)〉gauge invariant . (2.6)
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Since Ψℓ
e(x) is non-local in time, a standard interpretation as an interpolating operator is

not possible. The phase in eq. (2.5) should rather be viewed as a term in the action. Since

the term is linear in the electromagnetic field, this is in fact the coupling to a non-real

external electromagnetic current.

This mechanism is quite general. As discussed in appendix A, gauge fixing introduces

(except special cases, of which Coulomb gauge is the most notable one) a violation of

the Gauss law in the sector of non-zero charge, which can be interpreted as the effect of

coupling the physical system to an external electromagnetic four-current. This current,

and consequently the Hamiltonian, is generally time dependent. In Euclidean spacetime,

as an effect of the Wick rotation, the external charge density is real while the external

current density is imaginary and the Hamiltonian turns out to be non-hermitean. This im-

plies that a spectral decomposition of two-point functions as a sum of exponentials of the

form
∑

n an exp(−tEn) is simply incorrect. For reasonable enough gauges (e.g. covariant

gauges) the external four-current vanishes asymptotically far away from the interpolating

fields in the two-point function, and the long-distance behaviour of the two-point function

is dictated by the ground state of the physical Hamiltonian, i.e. in absence of the external

four-current. However, in a setup in which observables are not expanded in powers of αem,

it is not obvious at all how to extract excited physical states, such as the finite-volume

counterparts of states of charged hadrons with real photons. A gauge-invariant construc-

tion of n-point functions becomes of utmost relevance precisely when excited states are

of interest. Because the gauge-invariant Hamiltonian is hermitean and time independent,

standard spectral theory applies, and gauge invariance ensures that only physical states

(i.e. states that satisfy the Gauss law) propagate at any intermediate time.

In ref. [10] Dirac’s construction has been used to provide a theoretically consistent

definition of electrically charged states in a finite volume within the framework of local

field theory, as we will review in the next section.

3 Charged states in finite volume

The formulation of QCD+QEDC has been discussed in ref. [10] together with a detailed

analysis of its symmetries and an analytical calculation of the leading finite volume effects

on the masses of charged hadrons. Here, in order to make the paper self-contained, we

briefly discuss the compact lattice formulation of the theory.

Gauge degrees of freedom are encoded in the link variables Uµ(x) ∈ U(1) and Vµ(x) ∈
SU(3). All the fields obey C⋆ boundary conditions along the spatial directions, namely

Uµ(x+ k̂L) = Uµ(x+ k̂L)∗ , ψf (x+ k̂L) = C−1ψ̄T
f (x) ,

Vµ(x+ k̂L) = Vµ(x+ k̂L)∗ , ψ̄f (x+ k̂L) = −ψT
f (x)C , (3.1)

where ψf are the quark fields, f is the flavour index and C is the charge-conjugation

matrix.2 We have simulated the theory by imposing periodic boundary conditions in time.

2The charge-conjugation matrix C acts on spinor indices and it can be any invertible matrix with unit

determinant such that CγµC
−1 = −γT

µ where γµ are the hermitean Euclidean Dirac matrices. In four

dimensions such a matrix exists and satisfies CT = −C and C† = C−1.
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The spatial boundary conditions for the gauge fields are imposed in a completely

straightforward way. However, since C⋆ boundary conditions mix ψ and ψ̄, the Dirac

operator Df cannot be defined as an operator acting on the space of the fields ψ only, but

it has to be thought as an operator acting on the quark-antiquark doublet

ηf =

(

ψf

C−1ψ̄T
f

)

, (3.2)

which satisfies the following boundary condition

ηf (x+ k̂L) = σ1ηf (x) , (3.3)

where the Pauli matrix σ1 acts on the quark-antiquark components. An explicit expression

for the Dirac operator Df will be given at the end of this section.

Once the fermions are integrated out, the lattice-discretised path-integral measure

turns out to be

[dU ][dV ] e−Sg−Sγ
∏

f=u,d,s

Pf (Cσ1Df ) , (3.4)

where Sg and Sγ are the SU(3) and U(1) gauge actions respectively, Pf denotes the Pfaffian,

and we choose to have three dynamical quarks for definiteness. The Pfaffian is proven to be

real at finite lattice spacing, and positive in the continuum limit (see appendix D in [10]).

The probability to find a negative value is expected to be negligible in our simulations with

fairly heavy quarks. Therefore, we have simulated the absolute value of the Pfaffian, and

monitored that the lowest eigenvalue stays significantly away from zero.

For the SU(3) gauge action Sg we use the Lüscher-Weisz discretisation [17], while the

U(1) gauge action is defined as

Sγ =
18

e20

∑

x,µν

{1− Uµν(x)} , (3.5)

where e0 is the bare electric charge of the positron and Uµν(x) is the U(1) gauge plaquette,

i.e.

Uµν(x) = Uµ(x)Uν(x+ µ̂)Uµ(x+ ν̂)−1Uν(x)
−1 . (3.6)

The point to be noticed in previous formulae is the unconventional normalisation of the

U(1) gauge action, namely the factor 18/e20 instead of 1/2e20. The canonically-normalised

continuum action is obtained by setting

Uµ(x) = exp

{

− i

6

∫ a

0
dsAµ(x+ sµ̂)

}

. (3.7)

To be consistent with this normalisation, the covariant derivatives acting on the quark fields

are defined with the 6qf -power of the U(1) gauge links, where qf is the charge of ψf in units

of e0. For example the forward covariant derivative acting on the flavour f is given by

∇f
µψf (x) =

Uµ(x)
6qfVµ(x)ψf (x+ µ̂)− ψf (x)

a
. (3.8)
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The peculiar normalisation of Sγ is due to the fact that quarks have fractional electric

charges, qu,c,t = 2/3 and qd,s,b = −1/3, and to the fact that with this choice Dirac’s in-

terpolating operators can be discretised using analytical functions of the link variables. In

the lattice formulation one can choose

Ψs
f (x) =

1

3

3
∑

k=1

ψf (x)
L−1
∏

s=0

Uk(x+ sak̂)−3qf . (3.9)

The k-th term in the sum above is the unique U(1) gauge-invariant extension of the quark

field in axial gauge3 Uk(x) = 1. The corresponding expression in the finite-volume contin-

uum theory is

Ψs
f (x)

a→0
=

1

3

3
∑

k=1

ψf (x) exp

{

iqf
2

∫ L

0
dsAk(x+ sk̂)

}

. (3.10)

Notice that, given the normalisation of Sγ , only integer powers of the link variables appear

in the expression of Ψs
f (x). One can easily prove that the operators in eqs. (3.9) and (3.10)

are invariant under local U(1) gauge transformations with contractible domains, while

they transform non-trivially under the residual Z2 ⊂ U(1) global gauge symmetry (see [10]

for more details). Under local SU(3) gauge transformations the operators in eqs. (3.9)

and (3.10) transform in the same way as the elementary field ψf (x). Finally the sum over

the direction of the string ensures that they transform under discrete spatial rotations

around the point x in the same irreducible spinorial representation of the dihedric group

as the elementary field ψf (x).

A discretization of Dirac’s original interpolating operator, i.e. the one corresponding

to Coulomb gauge, can be obtained by considering

Ac
µ(x) = ∆−1∇̄kFkµ(x) , (3.11)

where ∇k and ∇∗
k are the free forward and backward lattice derivatives, ∇̄k = (∇k+∇∗

k)/2,

∆ = ∇k∇∗
k, and Fµν is a discretisation of the U(1) field tensor. In this work we have used the

standard clover discretisation for the field tensor. Notice that Ac
µ is a gauge-invariant dis-

cretisation of the photon field in Coulomb gauge, ∇̄kA
c
k = 0. In the formal continuum limit

Ac
µ(x)

a→0
= ∆−1∂k {∂kAµ(x)− ∂µAk(x)} = Aµ(x)−

∫

L3

d3yΦ(x−y)∂µ∂kAk(tx,y) , (3.12)

where Φ(x) is the unique electrostatic potential on the finite volume with antiperiodic

boundary conditions. Therefore,

Ψc
f (x) =

1

3

3
∑

k=1

ψf (x)
L−1
∏

s=0

{

Uk(x+ sak̂)−3qf ei3qf Ac
k
(x+sak̂)

}

(3.13)

is a consistent discretisation of Dirac’s interpolating operator.

3Even though it is not obvious, one can prove that this gauge condition can always be imposed if k is a

C⋆ direction.
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In our numerical calculations, we used both the string operator Ψs
f and the Coulomb

operator Ψc
f . Fully gauge-invariant interpolating operators for charged hadrons can be

obtained by starting from the usual expressions, e.g. s̄γ5u, and by replacing the quark

fields with the chosen Dirac’s interpolating operator, e.g. S̄cγ5U
c.

Before closing this section we give the explicit expression of the O(a)-improved Wilson-

Dirac operator used in our simulations

Df = m0,f +
1

2

3
∑

µ=0

{

γµ

(

∇f
µ +∇f∗

µ

)

−∇f∗
µ ∇f

µ

}

+

− 1

4

∑

µν

σµν

{

cQCD
sw,f

(

Gµν

−Gµν

)

+ qfc
QED
sw,f

(

Fµν

−Fµν

)}

. (3.14)

The forward derivative acts on the quark-antiquark doublet ηf as

a∇f
µηf (x) =

(

Uµ(x)
6qfVµ(x)

Uµ(x)
−6qfVµ(x)

∗

)

ηf (x+ µ̂)− η(x) , (3.15)

and is defined at the boundary by means of the relation (3.3). The backward derivative

∇f∗
µ is defined analogously. Gµν and Fµν are the clover discretisations of the SU(3) and

U(1) field tensors respectively, and σµν = i[γµ, γν ]/2. The field tensors are normalised in

such a way that tree-level improvement is achieved by choosing cQCD
sw,f = cQED

sw,f = 1.

4 Numerical explorations

In this section we discuss some exploratory simulations of QCD+QED with C⋆ boundary

conditions. The main goal of this study is to show that the masses of charged mesons can be

extracted in a completely gauge invariant way, with the same quality of the numerical signal

as for neutral mesons. A preliminary calculation of excited states that would correspond

to states of charged mesons with one real photon at αem = 0 is also shortly presented.

The simulations have been performed by using a modified version of the HiRep code [18]

(see ref. [19] for more details concerning the implementation) and we have checked our re-

sults by performing dedicated runs with the publicly-available openQ*D code [20] developed

independently within the RC⋆ collaboration (see ref. [21]). While the HiRep code has been

preferred in this exploratory work because of its simplicity, the optimized openQ*D code is

currently used by the RC⋆ collaboration to perform realistic QCD+QED simulations.

We have generated two SU(3)×U(1) ensembles which differ only for the electromagnetic

coupling, one with αem = 1/137 and one with αem = 0.05 = 6.85/137. The lattice is

48 × 243 with periodic boundary conditions in time and C⋆ boundary conditions in all

spatial directions. The Lüscher-Weisz action and the action in eq. (3.5) have been used

for the SU(3) and U(1) gauge fields respectively. Three dynamical Wilson fermions with

Dirac operator given in eq. (3.14) have been simulated, one up-type quark with charge

q = 2/3 and two down-type quarks with q = −1/3. The QCD bare parameters have been

taken from one of the Nf = 2 + 1 CLS ensembles at the symmetric point, i.e. the H200

– 7 –
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αem t0/a
2 a M0

P M±
P

0 5.150(25) 0.064 fm 420 MeV 420 MeV

1/137 4.903(39) 0.066 fm 460 MeV 510 MeV

0.05 3.823(22) 0.075 fm 660 MeV 860 MeV

Table 1. Values of t0 in lattice units, and approximative values for the lattice spacing and pseu-

doscalar meson masses in physical units. The values at αem = 0 are the CLS ones (H200 ensemble),

and have been taken from [22]. The three ensembles share the same value of β = 3.55 and κu = κd =

κs = 0.137. For our simulations at αem 6= 0 we use qu = 2/3 and qd = qs = −1/3. The lattice spacing

has been estimated by rescaling the CLS value with our measured a/
√
t0, and the error is estimated

to be of order 10−3 fm. The error on our pseudoscalar masses is estimated to be of order 15 MeV.

ensemble in ref. [22] with β = 3.55, κ = 0.137, cQCD
sw,⋆ = 1.824865, and complemented with

the tree-level value cQED
sw,⋆ = 1. The values in physical units of the lattice spacing and of the

pseudoscalar meson masses are given in table 1.

In order to obtain a similar physics in the QCD and QCD+QED ensembles, the bare

parameters would need to be retuned. In particular the bare masses of the up and down

quarks should be retuned separately. However for sake of simplicity, in these exploratory

simulations we chose to keep the bare parameters fixed and to measure the QED effects

on the physical quantities. In particular we observe that QED corrections on the lattice

spacing are fairly small even at the larger value of αem. The effect on the critical bare mass

is general larger, as expected since this is an ultraviolet divergent quantity. Nevertheless we

observe that in our ensemble with αem = 1/137 the pseudoscalar mesons have reasonable

masses, of the order of the physical kaon mass.

Our simulations use a volume that is smaller than the original CLS ensemble. This is

potentially an issue since masses in QCD+QED have finite volume corrections that decay

as inverse powers of L rather than exponentially. An estimate of the finite-volume effects

can be obtained by calculating the universal 1/L and 1/L2 corrections (see section 5 in [10]),

which turn out to be well below 1% for both values of αem.

4.1 Charged and neutral mesons

With C⋆ boundary conditions the eigenstates of the momentum are also eigenstates of

charge conjugation. In particular zero-momentum states are also even under charge conju-

gation. The boundary conditions break the U(1) global gauge symmetry down to its Z2 sub-

group. As a consequence, if Q is the electric charge operator, then Q is not conserved, but

(−1)Q is. When we talk about neutral states we really talk about states with (−1)Q = +1,

and when we talk about charged states we really talk about states with (−1)Q = −1.

We consider the following C-even, zero-momentum, neutral interpolating operators

P 0(t) =
1

2L3

∑

x

{s̄γ5d(t,x) + d̄γ5s(t,x)} , (4.1)

V 0
k (t) =

1

2L3

∑

x

{s̄γkd(t,x)− d̄γks(t,x)} , (4.2)
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Figure 1. Effective masses for the pseudoscalar correlators at αem = 0.05 (left plot, blue and

orange points), αem = 1/137 (right plot, blue and orange points), and αem = 0 (both plots, green

points). The blue points correspond to the neutral states, M0

P (t). The orange points correspond to

the charged states interpolated by using either the string, M s

P (t), or the Coulomb, M c

P (t), operators.

The green points correspond to the states in QCD-only simulations, Mqcd
P (t). The quality of the

numerical signal is essentially the same for charged and neutral states, with and without QED, and

it is not affected by the non-local gauge-invariant operators used in the charged channel. With

these unphysical values of the bare parameters the charged-neutral mass splitting can be extracted

with statistical significance even at αem = 1/137.

and the following C-even, zero-momentum, charged interpolating operators

P {s,c}(t) =
1

2L3

∑

x

{S̄{s,c}γ5U
{s,c}(t,x) + Ū{s,c}γ5S

{s,c}(t,x)} , (4.3)

V
{s,c}
k (t) =

1

2L3

∑

x

{S̄{s,c}γkU
{s,c}(t,x)− Ū{s,c}γkS

{s,c}(t,x)} , (4.4)

where the non-local operators S̄I and U I are constructed as in eqs. (3.9), string (I = s),

and (3.13), Coulomb (I = c). Under rotations the P and V operators transform like

pseudoscalars and vectors respectively. We have calculated the following correlators

CI
P (t) = 〈P I(t)P I(0)〉 , CI

V (t) =
1

3

3
∑

k=1

〈V I
k (t)V

I
k (0)〉 , I = {0, s, c} . (4.5)

For each correlator we have calculated the effective mass, defined as

M I
J (t) = cosh−1 C

I
J(t+ 1) + CI

J(t− 1)

2CI
J(t)

, J = {P, V } . (4.6)

The effective masses are shown in figure 1 for the P states and in figure 2 for the V

states for both values of αem. For comparison, in figure 1 we also report the effective mass

calculated on a QCD-only ensemble, generated with the CLS H200 bare parameters on a

– 9 –
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Figure 2. Effective masses for the vector correlators at αem = 0.05 (left plot) and αem = 1/137

(right plot). In both plots the blue points correspond to the neutral states, M0

V (t), while the orange

points correspond to the charged states interpolated by using either the string, M s

V (t), or the

Coulomb, M c

V (t), operators. Also in this channel the quality of the numerical signal is essentially

the same for charged and neutral states. With these unphysical values of the bare parameters the

charged-neutral mass splitting can be extracted with statistical significance at αem = 0.05 while

more statistics is required at αem = 1/137. This is not surprising as vector correlators have a worse

signal-to-noise ratio with respect to pseudoscalar ones.

48× 243 lattice with C⋆ boundary conditions. In all cases we have used 500 configurations

and 8 stochastic sources per configuration. As expected, we observe that the pseudoscalar

masses are larger with respect to the ones quoted in ref. [22] for the H200 ensemble, because

of the mass shift due to the electromagnetic interactions.

The most important result of this paper is the fact that effective masses can be ex-

tracted with similar errors in the neutral and charged channels. In fact, the introduction of

the non-local gauge-invariant operators for charged states does not affect much the quality

of the signal in correlators and effective masses. We also observe that in these channels,

the string and Coulomb operators behave very similarly. Moreover, we observe that the

statistical errors in the QCD+QED pseudoscalar effective mass are very similar to their

QCD-only counterparts.

While these simulations are performed at unphysical values of the quark masses, the

charged-neutral mass splittings can clearly be extracted with a statistically significant

accuracy for both the pseudoscalar and vector states at αem = 0.05. Remarkably, the mass

splitting in the pseudoscalar channel is statistically significant even at αem = 1/137.

4.2 Charged mesons with real photons

The goal of this subsection is to sketch a strategy to extract states of charged mesons with

real photons. Let us focus on the charged vector channel. In finite volume, the spectral

decomposition can be written for the V correlator. Amplitudes can be organised according

– 10 –
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to their leading behaviour in αem, i.e.

CI
V (t) =

∞
∑

n=0

∞
∑

r=0

cIn,re
−En,rt ,

cIn,r =
L3

3

3
∑

k=1

∣

∣

∣

∣

〈Ω| 1
L3

∑

x

V I
k (x)|n, r〉

∣

∣

∣

∣

2

= O(αr
em) , I = {s, c} . (4.7)

In these formulae we assume that the T → ∞ limit has been taken already. Since the

full QCD+QED Hamiltonian does not conserve the photon number, the states |n, r〉 are

not eigenstates of the photon number operator. However at the leading order in α
1/2
em , the

state |n, r〉 is nothing but the tensor product of a QCD state with r free real photons, and

its energy is given by the energy of the QCD state plus the energy of the free photons.

Therefore it makes sense to refer to |n, r〉 as a state with r real photons, as long as αem is

small enough. Notice that these states are gauge invariant by construction, therefore only

physical polarizations of the photon contribute.

If the volume is large enough, the ground state of the CI
V (t) correlator is a state with

one real photon. At the leading order in α
1/2
em this state contains a charged P particle and a

real photon in a kinematic configuration with zero momentum and zero angular momentum.

Some tedious but standard group theory reveals that, in order to be able to construct a state

in the vector (T−
1 ) representation of the cubic group Oh, the minimum-norm momentum

allowed for the photon is

p̄ =
π

L
(1, 1, 1) , (4.8)

up to isometries of the cube.4 This state has energy equal to

E0,1 =

√

M2
P +

3π2

L2
+

π
√
3

L
+O(αem) , (4.9)

and is created at the leading order in α
1/2
em by the following interpolating operator

W I
k (t) =

∑

p∈Ohp̄

P̃ I(t,−p)ǫkℓjpℓÃ
c
j(t,p) , (4.10)

where P̃ I and Ãc are defined as

P̃ I(t,p) =
1

2L3

∑

x

eipx{S̄Iγ5U
I(t,x)− Ū Iγ5S

I(t,x)} , (4.11)

Ãc
k(t,p) =

1

L3

∑

x

eipxAc
k(t,x) , (4.12)

and Ac
k is the gauge-invariant representation of the Coulomb-gauge photon field defined in

eq. (3.11). Notice that the operator P̃ I(t,p) is C-odd, contrarily to the analogous operator

defined in the previous subsection. This is due to the fact that states with momentum p̄

4We remind that, because of C⋆ boundary conditions, the photon field is antiperiodic in all spatial

directions. Therefore the allowed momenta for the photons have components that are odd multiples of π/L.
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are antiperiodic, i.e. they are odd under a translation by a distance L in any of the spatial

directions, and therefore odd under charge conjugation.

If the volume is large enough and αem is small enough, then the inequality E0,1 < E0,0

comes from the observation that MP is always smaller than MV , and in particular this is

true at αem = 0. However as the volume goes to zero, the relative momentum of the two

particles in the |0, 1〉 state diverge and so does E0,1. Therefore, if the volume is small enough,

then E0,1 > E0,0. It will turn out that this is the kinematic region of our simulations.

One can set up a generalised eigenvalue problem with two operators: V I
k and W I

k . If

αem is small enough, V I
k has maximal overlap with the state |0, 0〉 and W I

k has maximal

overlap with the state |0, 1〉. At moderate value of αem, or in the regime in which the P+γ

state is almost degenerate with a P+P state (which is in fact the case in our simulations), a

larger operator basis may be necessary. In this exploratory calculation we will ignore these

subtleties and proceed with the simple two-operator setup. If CI(t) is the 2× 2 matrix of

correlators constructed with the operators V I
k and W I

k , we solve the generalised eigenvalue

problem given by

CI(t) vIn(t, t0) = λI
n(t, t0)C

I(t0) v
I
n(t, t0) , n = 0, 1. (4.13)

We have extracted the ground state, λI
0(t, t0), and the excited state, λI

1(t, t0), eigenvalues

by using both the string and Coulomb interpolating operators by obtaining statistically

consistent results with essentially the same quality of the signal-to-noise ratio. In figure 3

we plot the effective masses extracted from

λn(t, t0) =
λs
n(t, t0) + λc

n(t, t0)

2
(4.14)

for n = 0, 1, corresponding to αem = 1/137 and αem = 0.05 respectively. The presented

results are obtained with t0 = 8, but we have checked the stability of our results in the

range t0 ∈ [4, 10].

On the one hand, from a quantitative analysis of the excited-state energy it turns out

that (as anticipated in the discussion above) we cannot discriminate between a P+γ and

a P+P state within the present statistical uncertainties. Since this may be due to the

unphysical values of the bare parameters used in this study, we postpone a more detailed

numerical analysis to future work on this subject. This will certainly require more statistics

and, possibly, an extended basis of interpolating operators.

On the other hand, some qualitative information can be drawn from the plots in

figure 3. In our opinion, the quality of the numerical signals makes us pretty confident

of the possibility to probe charged states containing real photons by using a fully non-

perturbative gauge-invariant strategy along the lines of the one sketched in this section.

5 Conclusions

We have performed numerical lattice simulations of the compact formulation of QCD+QED

with C-periodic boundary conditions in the spatial directions. In this setup, following
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Figure 3. Effective masses for the ground state, λ0(t, 8) (blue points), and the excited state,

λ1(t, 8) (orange points), eigenvalues obtained by solving eq. (4.13) for both the string and Coulomb

operators and by averaging the corresponding results. The left plot corresponds to αem = 0.05

while the right plot to αem = 1/137.

ref. [10], charged-hadron masses can be calculated from first principles without relying on

gauge fixing at any stage of the calculation.

Our simulations are performed at unphysical values of the bare parameters, with pseu-

doscalar meson masses of the order of the physical kaon at αem = 1/137. For this reason

our results do not have phenomenological relevance but do have, in our opinion, deep theo-

retical implications. We provide a clear evidence that the strategy of ref. [10] is numerically

viable and that charged states can be efficiently probed in a gauge-invariant way.

In particular, we show in section 4 that the masses of charged hadrons can be extracted

with the same numerical accuracy as their almost-degenerate neutral counterparts. This is

true both in the pseudoscalar and in the vector meson channels. At the values of the bare

parameters used in our study, the pseudoscalar-meson charged-neutral mass splitting can

be extracted with statistical significance even in the simulation performed at αem = 1/137.

We have also sketched a strategy to probe states of charged mesons with real photons.

The proposal consists of using gauge-invariant interpolating operators that, at leading order

in αem, have maximal overlap with states having a fixed number of real photons. Although

much more work is certainly needed in this direction, the results of subsection 4.2 represent

a promising indication on the numerical validity of this approach.

Acknowledgments

This work is part of the programme of the RC⋆ Collaboration and we warmly thank our col-

leagues for their help. We are particularly indebted to Alberto Ramos for his contribution

to various stages of this work. BL is supported in part by the Royal Society, by the Wolf-

son Foundation and by the STFC Consolidated Grants ST/L000369/1 and ST/P00055X/1.

MH is supported by the Danish National Research Foundation grant DNRF90 and by a

Lundbeck Foundation Fellowship grant. Numerical simulations have been performed on

– 13 –



J
H
E
P
0
5
(
2
0
1
8
)
1
4
6

clusters of the Supercomputing Wales project, partly funded by the European Regional

Development Fund (ERDF) via Welsh Government, on a cluster at CERN, managed by

the HPC team in the IT Department, and on the Marconi system at CINECA under the

initiative INFN-LQCD123.

A Gauge-fixed two-point functions

The goal of this appendix is to illustrate some of the subtleties that arise in the charged

sector, when the U(1) gauge is fixed. For definiteness we work here with the familiar

case of covariant gauge, in continuum notation. In order to avoid potential issues with

IR divergences, we consider QCD+QED in a spatial box with size L3 and C⋆ boundary

conditions for all fields. For simplicity we consider an infinite time extent. In Euclidean

spacetime, the action in covariant gauge is

Sξ0 = S0(A,B, ψ, ψ̄) +
ξ0
2e20

(∂µAµ, ∂νAν) , (A.1)

where S0 is the gauge-invariant part of the action, Aµ and Bµ are the photon and gluon

fields, while ψ and ψ̄ are the quark fields, and the scalar product is defined as

(f, g) =

∫

d4x f(x)∗g(x) . (A.2)

Let h(x) be some local operator which interpolates a hadron with electric charge qh, and

let h̄(x) the interpolating operator with the corresponding antiparticle. We are interested

in the two-point function

〈h(y)h̄(x)〉ξ0 =

∫

[dλ] [dA] [dB] [dψ] [dψ̄]e−Sξ0
(A,B,ψ,ψ̄)h(y)h̄(x)

∫

[dλ] [dA] [dB] [dψ] [dψ̄]e−Sξ0
(A,B,ψ,ψ̄)

. (A.3)

The integrands do not depend on λ, therefore the auxiliary integral over λ gives an infinite

constant which simplifies in the ratio. We change variables in the two integrals to the

gauge-transformed fields

Aµ(x) → Aµ(x) + ∂µλ(x) , ψf (x) → exp{iqfλ(x)}ψf (x) . (A.4)

The interpolating operator and action transform as

h(x) → exp{iqhλ(x)}h(x) , Sξ0 → S0 +
ξ0
2e20

(∂µAµ +�λ, ∂µAµ +�λ) . (A.5)

After this change of variables, the integral over λ is Gaussian and can be calculated ana-

lytically, yielding the following gauge-invariant representation

〈h(z)h̄(y)〉ξ0 = e
− 1

2ξ0
(Jµ,

1
−�

Jµ)〈e−i(Jµ,Aµ)h(z)h̄(y)〉0 , (A.6)

where the current Jµ(z) is defined by the equation

�Jµ(x) = qh∂µ[δ
4(x− y)− δ4(x− z)] . (A.7)
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Because of C⋆ boundary conditions, the Laplacian � = ∂µ∂µ is defined with antiperiodic

boundary conditions in space and is therefore invertible. The expectation value in eq. (A.6)

is calculated with the gauge-invariant action S0. Under a gauge transformation λ(x) with

antiperiodic boundary conditions in space the phase factor in eq. (A.6) transforms as

e−i(Jµ,Aµ) → e−i(Jµ,Aµ)−i(Jµ,∂µλ) =

= e−i(Jµ,Aµ)+i(∂µJµ,λ) = e−i(Jµ,Aµ)eiqh[λ(y)−λ(z)] . (A.8)

The integration by part (Jµ, ∂µλ) = −(∂µJµ, λ) does not generate boundary terms since

the product Jµλ satisfies periodic boundary conditions. The factor eiqh[λ(y)−λ(z)] in the

above equation cancels the phase generated by the gauge transformation of h(z)h̄(y). As

a consequence, the observable in eq. (A.6) is invariant under local gauge transformations.

It is tempting to interpret the gauge-invariant observable

H(x) = eiqh(
1
�
∂µδx,Aµ)h(x) , (A.9)

as a possible interpolating operator for the charged hadron h. In fact this operator is for-

mally very similar to Dirac’s interpolating operator. However H(x) is non-local in time and

a standard interpretation as an interpolating operator is not possible. The Hamiltonian

representation of the expectation value in the r.h.s. of eq. (A.6) is obtained by interpreting

the phase as a term of the action. As in the case of J = 0, the action S0+i(Jµ, Aµ) defines a

constrained Hamiltonian system. States propagating in the gauge-invariant two-point func-

tion satisfy the Gauss law in presence of the charge density j0(x) =
∑

f qfψ
†
fψf (x) of the

dynamical degrees of freedom, and the external time-dependent charge density J0(t,x), i.e.

{∂kEk(x)− j0(x)− J0(t,x)}|Ψ(t)〉 = 0 . (A.10)

The evolution of states is governed by a time-dependent non-hermitean Hamiltonian

H(t) = H0 + i

∫

d3x Ak(x)Jk(t,x) , (A.11)

where H0 is the standard gauge-invariant Hamiltonian without external current.

Notice that for z0 ≫ t ≫ y0, the four-current vanishes exponentially, i.e.

J0(t,x) =
qh
2L3

{

e−
π
L
(t−y0)

3
∑

j=1

cos
π(xj−yj)

L + e−
π
L
(z0−t)

3
∑

j=1

cos
π(xj−zj)

L

}

+O(e−
3π
L
∆t) , (A.12)

Jk(t,x) =
qh
2L3

{

e−
π
L
(t−y0) sin π(xk−yk)

L + e−
π
L
(z0−t) sin π(xk−zk)

L

}

+O(e−
3π
L
∆t) . (A.13)

On the one hand, this is a way to see that the leading exponential behaviour of the two-point

function is determined by the ground state in the charged sector of the gauge-invariant

Hamiltonian H0. Therefore the mass defined by means of the two-point function in co-

variant gauge is the correct one. On the other hand, the unphysical exponentials in the

external current mimic the contribution of excited states in the long-distance behaviour of

the two-point function. For this reason the covariant gauge is not a suitable choice for the

extraction of excited states from two-point functions.
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B Explicit expressions for two-point functions

In this appendix we provide explicit expressions for the two-point functions used in this

work, in which fermions have been integrated out. Because of C⋆ boundary conditions, the

fermion Wick contractions are not the usual ones in terms of the original fields ψf and

ψ̄f . For instance, the ψψ Wick contraction does not vanish. For this reason, we find more

convenient to work with the quark-antiquark doublet ηf defined in eq. (3.2).

The neutral meson operators considered in this work can be easily written in terms of

the ηf field,

s̄γ5d+ d̄γ5s = −ηTs σ1Cγ5ηd = −ηTd σ1Cγ5ηs , (B.1)

s̄γkd− d̄γks = −ηTs σ1Cγkηd = ηTd σ1Cγkηs . (B.2)

Charged meson operators are written in a similar way,

S̄Iγ5U
I + Ū Iγ5S

I = −ηTs σ1Φ
I
1Cγ5ηu = ηTu σ1Φ

I
−1Cγ5ηs , (B.3)

S̄Iγ5U
I − Ū Iγ5S

I = −ηTs σ1σ3Φ
I
1Cγ5ηu = ηTu σ1σ3Φ

I
−1Cγ5ηs , (B.4)

S̄IγkU
I − Ū IγkS

I = −ηTs σ1Φ
I
1Cγkηu = ηTu σ1Φ

I
−1Cγkηs , I = {s, c} , (B.5)

where ΦI
q(x) are field-dependent dressing matrices that depend on the choice of the gauge

invariant interpolating operator. For string interpolating operators

Φs
q(x) =

1

3

3
∑

k=1

diag

(

L−1
∏

s=0

Uk(x+ sak̂)−3q ,
L−1
∏

s=0

Uk(x+ sak̂)3q

)

, (B.6)

while for Coulomb interpolating operators

Φc
q(x) =

1

3

3
∑

k=1

diag

(

L−1
∏

s=0

[Uk(x+ sak̂)e−iAc
k
(x+sak̂)]−3q ,

L−1
∏

s=0

[Uk(x+ sak̂)e−iAc
k
(x+sak̂)]3q

)

.

(B.7)

Fermionic Wick contractions are generated by the following rule

ηf (x)η
T
f ′(y) = −δf,f ′D−1

f (x; y)σ1C
−1 , (B.8)

where Df is the O(a)-improved Wilson-Dirac operator defined in eq. (3.14). The relevant

mesonic two-point functions are readily calculated. For neutral mesons,

〈P 0(t)P 0(0)〉 = − 1

4L3

∑

x

〈tr[γ5D−1
d (t,x; 0)γ5D

−1
s (0; t,x)]〉 , (B.9)

〈V 0
k (t)V

0
k (0)〉 =

1

4L3

∑

x

〈tr[γkD−1
d (t,x; 0)γkD

−1
s (0; t,x)]〉 , (B.10)

and similarly for charged mesons with I = {s, c},

〈P I(t)P I(0)〉 = − 1

4L3

∑

x

〈tr[γ5ΦI
1(t,x)D

−1
d (t,x; 0)γ5Φ

I
−1(0)D

−1
s (0; t,x)]〉 , (B.11)

〈V I
k (t)V

I
k (0)〉 =

1

4L3

∑

x

〈tr[γkΦI
1(t,x)D

−1
u (t,x; 0)γkΦ

I
−1(0)D

−1
s (0; t,x)]〉 . (B.12)
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We rewrite the interpolating operator for a P+γ state in the V channel as

W I
k (t) = − 1

2L3

∑

x

Ξk(t,x) η
T
s σ1σ3Φ

I
1Cγ5ηu(t,x) , (B.13)

Ξk(t,x) =
∑

p∈Ohp̄

e−ipxǫkℓjpℓÃ
c
j(t,p) . (B.14)

The two new correlators used for the generalised-eigenvalue problem in section 4.2 are

〈W I
k (t)V

I
k (0)〉 = (B.15)

=
1

4L3

∑

x

〈Ξk(t,x) tr[σ3Φ
I
1(t,x)γ5D

−1
u (t,x; 0)ΦI

−1(0)γkD
−1
s (0; t,x)]〉 ,

〈W I
k (t)W

I
k (0)〉 = (B.16)

=
1

4L3

∑

x

〈Ξk(t,x)Ξk(0) tr[σ3Φ
I
1(t,x)γ5D

−1
u (t,x; 0)σ3Φ

I
−1(0)γ5D

−1
s (0; t,x)]〉 .
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